Chapter 2: Rocks of the Northwest Central US

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2: Rocks of the Northwest Central US Chapter 2: Rocks of the Precambrian • a geologic time period that spans from Northwest Central US the formation of Earth (4.6 billion years ago) to the beginning of the Cambrian The amazing diversity of rocks in the Northwest Central records several billion (541 million years ago). years of history—from 3.8-billion-year-old Precambrian granites to sedimentary deposits from the most recent ice age. Colliding plates, rifting, inland seas, deposition, erosion, igneous and metamorphic activity, and recent glacial processes are all part of this story. The Northwest Central’s different rock types ice age • a period of global influence itstopography and tell us where to look for certain fossils or natural cooling of the Earth’s surface resources. Each type of rock forms in a particular environment under particular and atmosphere, resulting in the presence or expansion of conditions (Figure 2.1). ice sheets and glaciers. plates • large, rigid pieces of Igneous RocksIgneous of Rocks the of Northwest the Midwest Central rhyolite granite the Earth’s crust and upper andesite graniteanorthosite obsidiansyenite rhyolite mantle, which move and basalt komatiiteandesite phonolitediorite syenite interact with one another at dacite lamproitebasalt pyroclasticgabbro rocks tuff serpentine their boundaries. rift • a break or crack in the Unconsolidated Metamorphic crust that can be caused by Sediments of Rocks of the tensional stress as a landmass breaks apart into separate the Northwest Northwest Central SedimentsCentral of the Metamorphic Rocks plates. Midwest of thegneiss Midwest (notclay consolidated into rocks) slategreenstonephyllite gravel schist gneiss gravel sand marble marble quartzite loesssilt clay amphibolitenovaculiteserpentine sand quartzite inland sea • a shallow sea silt schist covering the central area of a continent during periods of high sea level. Sedimentary Rocks of the Midwest Sedimentary Rocksiron formation of the Northwestchert Central chalcedony rock salt mudstonegypsum chert limestone shaledolomite argillite shale conglomeratesiltstone siltstonesandstone halite (rock greywackesalt) sandstoneconglomerate gypsum tillite CHAPTER AUTHORS limestone travertine Lisa R. Fisher Figure 2.1: The rock cycle shows the relationships among the three basic types of rock. Bryan Isaacs 37 2 Rocks A rock is a naturally occurring solid substance composed of one or more Review minerals. Broadly speaking, there are three types of rock: sedimentary, igneous, and metamorphic. The rock cycle describes the many processes that produce rocks, while also illustrating differences between the rock types. One type of rock may be transformed into either of the other types, often with the mineral • a naturally help of other parts of the Earth system, such as plate tectonics, the water occurring solid with a specific cycle, and biological processes, to name a few. chemical composition and crystalline structure. Sedimentary rock is formed by the lithification of sediments (e.g., unconsolidated mineral and organic particles created through the weathering of other materials, such as rock and organic matter). Typically, sediments are created in an environment where erosion is a dominant force, and they are system • a set of connected things or parts forming a transported by wind, water, or ice to a depositional environment. For example, complex whole. a rushing river can wear away the rock it is flowing over, and it also has enough energy to transport the resulting sediment to a lake. The water slows down, losing energy, and deposits the sediment on the bottom of the lake. plate tectonics • the process by which the plates of the Earth’s crust move and interact with one another at Sedimentary Rock Classification their boundaries. Sedimentary rocks are classified by their sediment size or their mineral content, and each one reveals the story lithification• the process of the depositional environment where its sediments of creating sedimentary rock through the compaction or accumulated and were eventually lithified. sementation of soft sediment. Sediment size Sedimentary rock Environment of (decreasing size) deposition weathering • the breakdown of rocks by physical or gravel conglomerate river beds, mountains chemical means. sand sandstone beaches, river sand bars, sand dunes sand, silt, clay graywacke continental shelf silt siltstone quiet water wind • the movement of air clay shale very quiet water, lakes, from areas of high pressure to swamps, shallow oceans areas of low pressure. Mineral Content Sedimentary Rock Environment of Deposition cementation • the precipi- calcium carbonate tropical reefs, beaches, tation of minerals that binds skeletons of marine limestone warm shallow seas together particles of rock, organisms bones, etc., to form a solid precipitated calcium travertine, tufa hot spings, playas (dry mass of sedimentary rock. carbonate lake beds), drying seas gypsum rock gypsum playas, dryng seas halite rock salt playas, drying seas 38 Rocks 2 Lithification of sediments occurs in several ways. As sediments build up and lower layers are buried more deeply, they may become permeated by water. Review Minerals dissolved in the water are precipitated, filling the spaces between particles and cementing them together. This cementation helps to form many common sedimentary rocks, such as shale, sandstone, and most conglomerates. The evaporation of water may also form sedimentary rocks shale • a dark, fine-grained, by leaving behind evaporites (previously dissolved minerals) such as salt. laminated sedimentary rock Deposits of calcium carbonate, usually created through the accumulation formed by the compression of of calcium carbonate skeletal material (such as clams and corals), form the successive layers of silt- and clay-rich sediment. sedimentary rocks limestone and dolostone. Igneous rocks form from the cooling of magma (molten rock underground) or (molten rock at the Earth’s surface). When magma cools slowly lava sandstone • sedimentary underground, it has time to produce large crystals that are visible to the naked rock formed by cementing eye. Rocks that form in this manner, such as granite, are called plutonic. together grains of sand. When magma comes to the surface (as lava), it cools quickly so that individual crystals are not visible, resulting in a volcanic rock such as basalt. In some circumstances, lava may cool so quickly that crystals do not form at all, creating a glassy rock such as obsidian. Smaller fragmental rocks that cool quickly at conglomerate • a the surface form during explosive eruptions; these are called pyroclastic rocks, sedimentary rock composed of multiple large and rounded and they are composed of a variety of different volcanic ejecta. fragments that have been cemented together in a fine- grained matrix. Igneous Rock Classification salt • a mineral composed primarily of sodium chloride (NaCl). Igneous rocks differ not only in their cooling rates and subsequent crystal sizes, but also in their chemical compositions. Rocks found in continental crust, such as granite, have high silica content and low iron and calcium carbonate • a magnesium content. They are light in color and are called chemical compound with the formula CaCO3, commonly felsic. Rocks found in oceanic crust, like basalt, are low in found in rocks in the mineral silica and high in iron and magnesium. They are dark in forms calcite and arago- nite, as well as the shells color and are called mafic. and skeletons of marine organisms. Crystal size Felsic Intermediate Mafic Ultramafic large (plutonic) granite diorite gabbro peridotite limestone • a sedimentary small (volcanic) rhyolite andesite basalt -- rock composed of calcium none (glassy) obsidian, tuff, obsidian obsidian -- carbonate (CaCO3 ). pumice dolostone • a rock primarily composed of dolomite, a carbonate mineral. 39 2 Rocks Every rock is capable of being melted, weathered, or changed by heat and Review pressure. Any rock that has been subjected to intense heat and pressure can recrystallize into a metamorphic rock. This process destroys features in the rock that would have revealed its previous history, transforming it into an entirely new form as the minerals within realign. The pressure to transform a rock may heat • a form of energy come from burial by sediment or from compression due to plate movements, transferred from one body while the heat may come from very deep burial or from contact with magma. to another as a result of a difference in temperature or a change in phase. Metamorphic Rock Classification recrystallization • the change in structure of mineral crystals that make up rocks, or Metamorphic rocks are classified differently depending the formation of new mineral on the protolith (parent rock) they are made from. crystals within the rock. The following chart shows common rocks and the metamorphic rocks that they can become. compression • flattening or squeezing as a result of forces acting on an object from all or Parent rock Metamorphic rocks most directions. shale slate, phyllite, schist, gneiss (in order of increasing heat and pressure) granite gneiss crust • the uppermost, rigid sandstone quartzite outer layer of the Earth, limestone marble composed of tectonic plates. peridotite serpentinite intrusive rock • a plutonic igneous rock formed when As you read through this chapter, keep in mind that once you understand magma from within the Earth’s the geologic events that have affected a given region, you should be able to crust escapes into spaces in the overlying strata.
Recommended publications
  • Mass-Independent Isotopic Signatures of Volcanic Sulfate from Three Supereruption Ash Deposits in Lake Tecopa, California
    Earth and Planetary Science Letters 282 (2009) 102–114 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California Erwan Martin ⁎, Ilya Bindeman Department of Geological Sciences, 1272 University of Oregon, Eugene OR 97403, USA article info abstract Article history: Hundreds to thousands of megatons of sulfur dioxide released by supereruptions can change chemical and Received 10 October 2008 physical properties of the atmosphere and thus induce climate perturbations. We present oxygen and sulfur Received in revised form 24 February 2009 isotope analyses of sulfate in 48 volcanic ash samples, and 26 sediment samples from dry lake beds in the Accepted 2 March 2009 Tecopa basin, California, USA. These ash layers represent three supereruptions, including the 0.64 Ma Lava Available online 10 April 2009 Creek Tuff, 2.04 Ma Huckleberry Ridge Tuff and 0.76 Ma Bishop Tuff. 17 Editor: R.W. Carlson Mass-independent oxygen signatures (Δ O up to 2.26‰) that are present in these ash units, and not in associated sediments, indicate oxidation of volcanic SO2 by mass-independent ozone and its products. In this Keywords: study, we consider the formation, deposition, preservation and dilution of mass-independent volcanic sulfate oxygen and sulfur isotopes (MIVS). Using the isotopic compositions of the sulfates, we construct a mixing model that demonstrates that isotopic mass-independence the main source of sulfate in Lake Tecopa is mass-dependent sediment-derived sulfate (MDSDS, >77%). sulfate However, ash beds still preserve up to 23% of MIVS that initially had undiluted Δ17O value around 8‰, and aerosols Δ33S as low as −0.35‰, and Δ36S up to 1.08‰.
    [Show full text]
  • Archeological and Bioarcheological Resources of the Northern Plains Edited by George C
    Tri-Services Cultural Resources Research Center USACERL Special Report 97/2 December 1996 U.S. Department of Defense Legacy Resource Management Program U.S. Army Corps of Engineers Construction Engineering Research Laboratory Archeological and Bioarcheological Resources of the Northern Plains edited by George C. Frison and Robert C. Mainfort, with contributions by George C. Frison, Dennis L. Toom, Michael L. Gregg, John Williams, Laura L. Scheiber, George W. Gill, James C. Miller, Julie E. Francis, Robert C. Mainfort, David Schwab, L. Adrien Hannus, Peter Winham, David Walter, David Meyer, Paul R. Picha, and David G. Stanley A Volume in the Central and Northern Plains Archeological Overview Arkansas Archeological Survey Research Series No. 47 1996 Arkansas Archeological Survey Fayetteville, Arkansas 1996 Library of Congress Cataloging-in-Publication Data Archeological and bioarcheological resources of the Northern Plains/ edited by George C. Frison and Robert C. Mainfort; with contributions by George C. Frison [et al.] p. cm. — (Arkansas Archeological Survey research series; no. 47 (USACERL special report; 97/2) “A volume in the Central and Northern Plains archeological overview.” Includes bibliographical references and index. ISBN 1-56349-078-1 (alk. paper) 1. Indians of North America—Great Plains—Antiquities. 2. Indians of North America—Anthropometry—Great Plains. 3. Great Plains—Antiquities. I. Frison, George C. II. Mainfort, Robert C. III. Arkansas Archeological Survey. IV. Series. V. Series: USA-CERL special report: N-97/2. E78.G73A74 1996 96-44361 978’.01—dc21 CIP Abstract The 12,000 years of human occupation in the Northwestern Great Plains states of Montana, Wyoming, North Dakota, and South Dakota is reviewed here.
    [Show full text]
  • How Old Is Old? (.Pdf)
    How Old is Old? Purpose: This lesson will help students visualize the geologic time scale and identify when and where regional features were formed in the Rogue Valley. Objectives: Time Required: 1.5 hours (can be Students will: broken into 2 class periods) Identify the point in time when their assigned Appropriate grades: 6th-8th geological formation was formed by calculating NGSS and Common Core Standards: how many centimeters from the end of the MS-ESS2-2: Construct an explanation based ribbon their tag should be placed. on evidence for how geoscience processes Teach the class about their assigned geological have changed Earth's surface at varying time formations by conducting research about when and spatial scales. they were formed, how they were formed, CCSS.ELA-LITERACY.SL.6-8.4: Present claims where they are located, and what they are made and findings, emphasizing salient points in a of, and preparing visual presentations in small focused, coherent manner with pertinent groups. descriptions, facts, details, and examples; use appropriate eye contact, adequate Materials: volume, and clear pronunciation. CCSS.ELA-LITERACY.SL.6-8.5: Include Time scale ribbon (1) multimedia components and visual displays Time period tags (19) in presentations to clarify claims and “Geology of Jackson County, Oregon” booklets findings and emphasize salient points. (5) Geological formation half sheets (1 for each group with the name of their formation on it) Poster boards (not provided) Markers (not provided) Activity: Introduction Prep: cut the geological formation half sheets along the solid line in the middle of the page. Each group of students will get a half sheet with the name of their geological formation.
    [Show full text]
  • Middle Eocene CO and Climate Reconstructed from the Sediment Fill
    Middle Eocene CO2 and climate reconstructed from the sediment fill of a subarctic kimberlite maar Alexander P. Wolfe1, Alberto V. Reyes2*, Dana L. Royer3, David R. Greenwood4, Gabriela Doria3,5, Mary H. Gagen6, Peter A. Siver7, and John A. Westgate8 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA 4Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada 5Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 6Department of Geography, Swansea University, Singleton Park, Swansea SA2 8PP, UK 7Department of Botany, Connecticut College, New London, Connecticut 06320, USA 8Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada ABSTRACT mismatch and frustrates efforts to understand the sensitivity of past equi- Eocene paleoclimate reconstructions are rarely accompanied librium climate response to greenhouse gas forcing. by parallel estimates of CO2 from the same locality, complicating Our objective is to assess climate and greenhouse-gas forcing for assessment of the equilibrium climate response to elevated CO2. We Northern Hemisphere subarctic latitudes during the latest middle Eocene reconstruct temperature, precipitation, and CO2 from latest middle by exploiting a remarkable terrestrial sedimentary archive. The Giraffe Eocene (ca. 38 Ma) terrestrial sediments in the posteruptive sediment kimberlite locality (paleolatitude ~63°N) comprises the posteruptive sedi- fill of the Giraffe kimberlite in subarctic Canada. Mutual climatic mentary fill of a maar formed when kimberlite intruded Precambrian cra- range and oxygen isotope analyses of botanical fossils reveal a humid- tonic rocks of the Slave Province at 47.8 ± 1.4 Ma (Creaser et al., 2004).
    [Show full text]
  • Geological Formation Educational Hand Sample Collection Content Last Updated 06/30/2010
    CT Geological Survey Geological Formation Educational Hand Sample Collection Content last updated 06/30/2010 TOWN Sample Numer Geological Description Formation Barkhamsted 19-9-1 Єh Cambrian "Waramaug Formation", Hoosac Schist, West Hill Road, New Hartford, 2 samples. Quartzplagioclase- biotite schist and gneissic schist. Bethel 92-4-1 Og Collected from Huntington State Park, site of large tourmaline 76-9-1 OCs Inwood? Marble from W side of stream just below Cameron's Line 76-9-2 Or Sheared Hartland? from E side of stream just above Cameron's Line Bozrah 71-5 Otay Collected from intersection of South and Bishop Rds, Bozrah Branford 97-1 Zsc & Pn Stony Creek Quarry Granite 97-6 Zp, Zsc & Pn From Red Hill Quarry, Stony Creek Preserve, Branford Bridgeport 109-1 Ohb Collected in Beardsley Park, Bridgeport Burlington 35-5-1 DSt Straits Schist, collected on road cut for entrance of side road on W side of Maine Rd Canterbury 57-6-1 Dc Canterbury Gneiss, Note Muskovite and garnet? 57-6-2 SOh Meta siltstone/Hornfels? Mapped as hCS on GQ 392, Collected just W of pond, low outcrops Canterbury is just to the W of the outcrop, inclusions of this rock and a very fine grained biotite schist are found in Canterbury. This rock is quite massive with n Chester 84-7 Dc In woods SW of Chester Elementary School, Ridge Rd, Chester 84-1 b SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 c SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 a SOh Biotite Gneiss
    [Show full text]
  • Geology and Petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon Area, Crook County, Wyoming Don L
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1980 Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming Don L. Halvorson University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Halvorson, Don L., "Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming" (1980). Theses and Dissertations. 119. https://commons.und.edu/theses/119 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY AND PETROLOGY OF THE DEVILS TOWER, MISSOURI BUTTES, AND BARLOW CANYON AREA, CROOK c.OUNTY, WYOMING by Don L. Halvorson Bachelor of Science, University of Colorado, 1965 Master of Science Teaching, University of North Dakota, 1971 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 1980 Th:ls clisserratio.1 submitted by Don L. Halvol'.'son in partial ful­ fillment of the requirements fo1· the Degree of Doctor of Philosophy from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whora the work has been done. This dissertation meets the standards for appearance aud con­ forms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.
    [Show full text]
  • Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara Ezra Kavana Acacia Mining PLc, North Mara Gold Mine, Department of Geology, P. O. Box 75864, Dar es Salaam, Tanzania Email: [email protected] Keywords: Musoma Mara Greenstone Belt, Mnanka volcanics, Archaean rocks and lithology ABSTRACT The Mnanka area is situated within the Musoma Mara Greenstone Belt, the area is near to Nyabigena, Gokona and Nyabirama gold mines. Mnanka area comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments. Gold mineralizations in Mnanka area is structure controlled and occur mainly as hydrothermal disseminated intrusion related deposits. Hence the predominant observed structures are joints and flow banding. Measurements from flow banding plotted on stereonets using win-TENSOR software has provided an estimate for the general strike of the area lying 070° to 100° dipping at an average range angle of 70° to 85° while data from joints plotted on stereonets suggest multiple deformation events one of which conforms to the East Africa Rift System (striking WSW-ENE, NNE-SSW and N-S). 1. INTRODUCTION This paper focuses on performing a systematic geological mapping and description of structures and rocks of the Mnanka area. The Mnanka area is located in the Mara region, Tarime district within the Musoma Mara Greenstone Belt. The gold at Mnanka is host ed by volcanic rocks that belong to the Musoma Mara Greenstone Belt (Figure 1). The Mnanka volcanics are found within the Kemambo group that comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments south of the Nyarwana fault.
    [Show full text]
  • Relationships Between Pre-Eruptive Conditions and Eruptive Styles of Phonolite-Trachyte Magmas Joan Andújar, Bruno Scaillet
    Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas Joan Andújar, Bruno Scaillet To cite this version: Joan Andújar, Bruno Scaillet. Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas. Lithos, Elsevier, 2012, 152 (1), pp.122-131. 10.1016/j.lithos.2012.05.009. insu-00705854 HAL Id: insu-00705854 https://hal-insu.archives-ouvertes.fr/insu-00705854 Submitted on 10 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas JOAN ANDÚJAR*,a AND BRUNO SCAILLETa a. CNRS/INSU-UNIVERSITÉ D’ORLÉANS-BRGM ; INSTITUT DES SCIENCES DE LA TERRE D’ORLEANS, UMR 6113 - 1A, RUE DE LA FÉRROLLERIE-45071 ORLEANS CEDEX 2 (FRANCE) * Corresponding author : Joan Andújar phone number : (+33) 2 38 25 53 87 Fax: (+33) 02 38 63 64 88 e-mail address: [email protected] Bruno Scaillet e-mail address: [email protected] KEY WORDS: Phase equilibria, phonolite, trachyte, experimental petrology, eruptive dynamic, explosive, effusive, andesite, rhyolite, melt viscosity, magma viscosity. 2 Abstract Phonolitic eruptions can erupt either effusively or explosively, and in some cases develop highly energetic events such as caldera-forming eruptions.
    [Show full text]
  • Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM
    THE STATE OF WYOMING Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM TO: Water Development Commission DATE: December 13, 2013 FROM: Keith E. Clarey, P.G. REFERENCE: Snake/Salt River Basin Plan Update, 2012 SUBJECT: Available Groundwater Determination – Tab XI (2012) Contents 1.0 Introduction .............................................................................................................................. 1 2.0 Hydrogeology .......................................................................................................................... 4 3.0 Groundwater Development .................................................................................................... 15 4.0 Groundwater Quality ............................................................................................................. 21 5.0 Geothermal Resources ........................................................................................................... 22 6.0 Groundwater Availability ...................................................................................................... 22 References ..................................................................................................................................... 23 Appendix A: Figures and Table ....................................................................................................... i 1.0 Introduction This 2013 Technical Memorandum is an update of the September 10, 2003,
    [Show full text]
  • The Jackson Volcano
    THE DEPARTMENT OF ENVIRONMENTAL QUALITY Office of Geology P. 0. Box 20307 Volume 18, Number 3 Jackson, Mississippi 39289-1307 September 1997 THE JACKSON VOLCANO David T. Dockery ID, John C. Marble, and Jack Henderson Mississippi Office of Geology INTRODUCTION One of the most interesting geologic features ofMississippi is the Jackson Volcano, which rests only 2900 feet beneath the state's capital city. The volcano's dense core forms one ofthe most prominent structural anomalies found on gravity and magnetic surveys of the state, showing tightly wrapped con­ tours of increasing gravity and magnetic deflection like a crowded bull's- eye (Figure l ). This igneous complex and the up Iifted formations around it comprise a structure known as the Jackson Dome. Northwest ofthe Jackson Volcano in southern Humphreys County is the Midnight Volcano and the associ­ ated volcanic terrain ofthe Sharkey Platform . Dense igneous rock below Jackson and Midnight increase the force ofgravity slightly as shown in Figure I. A person tipping the scales at Jackson or Midnight would be slightly heavier than elsewhere in the state (if anyone would like to use that for an excuse). No other capital city or major population center is situated above an extinct volcano, even though the recent movie "Volcano" fictitiously placed Los Angeles, California, above one. Monroe, Louisiana, is Jackson 's sister city in being a close second, as it rests above a volcanic terrain known as the Monroe Uplift. However, the position ofJackson's downtown district above the throat of an extinct Cretaceous volcano seems to be unique. Ifthe Jackson Volcano were to ever vent itself in the future, the Coliseum would be near ground zero.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]
  • Directions to Devils Tower Wy
    Directions To Devils Tower Wy Rodded Stanislaw sometimes hopped any intermediacy opalesce knee-deep. Square-toed Leonid squeg that logopaedics hoke instead and solves neurobiological. Murdock convince profusely. First day one requires less volume of them in to devils tower rises above the tower, from hulett is not attempt to please consider enjoying the tower visitor at Need the distances between two places? Each room features a queen size beds and private bathrooms. Very often trail that drop around Devils Tower. The carpet also enacted a voluntary climbing closure during last month of June. What you have a community located near belle fourche river campground is held annually closed at least the tower to devils tower beneath the parking. Where saying I hike? To cash support the investigation, you can engender the corresponding error below from your web server and topic it our motion team. Did indeed trail available in the flour, when medium was not too fat or crowded; simply majestic, with the kids and their grandma. CALL quickly MAKE RESERVATIONS TODAY! How did Devils Tower or its Name? And, the best place to be prairie dogs at Devils Tower is divide the regular Dog does pull out. AMS, because to add fine magnetite dust influence the analogue magma that works as a tracer of magnetic fabric improve the models. Devils Tower matches the room of phreatomagmatic outcrops at Missouri Buttes. You need military experience it. She attended school in Midwest until your father was transferred to Elk Basin, Wyoming. You now need a permit to battle any closer than most Trail.
    [Show full text]