Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM

Total Page:16

File Type:pdf, Size:1020Kb

Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM THE STATE OF WYOMING Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM TO: Water Development Commission DATE: December 13, 2013 FROM: Keith E. Clarey, P.G. REFERENCE: Snake/Salt River Basin Plan Update, 2012 SUBJECT: Available Groundwater Determination – Tab XI (2012) Contents 1.0 Introduction .............................................................................................................................. 1 2.0 Hydrogeology .......................................................................................................................... 4 3.0 Groundwater Development .................................................................................................... 15 4.0 Groundwater Quality ............................................................................................................. 21 5.0 Geothermal Resources ........................................................................................................... 22 6.0 Groundwater Availability ...................................................................................................... 22 References ..................................................................................................................................... 23 Appendix A: Figures and Table ....................................................................................................... i 1.0 Introduction This 2013 Technical Memorandum is an update of the September 10, 2003, Tab S – “Available Groundwater Determination Technical Memorandum” (Hinckley, 2003) and focuses on the changes in the Snake/Salt River Basin groundwater resources from approximately 2003 to 2013. The population of the Basin and real estate values in the Basin has continued to increase over the past 10 years with a corresponding increase in groundwater use. The Snake/Salt River Basin is located in northwestern Wyoming and covers an area of approximately 5,096 square miles (3,261,440 acres). Private lands only comprise 256,340 acres (7.8%) of the Snake/Salt River Basin, which means 92.2% of this Basin is public land. Most of the private land is located in the river valleys, hill sides, and stream/river drainages within the Basin. The Snake/Salt River Basin has several unique features compared to the other six major river basins located in Wyoming, including: • The highest percentage of public land (92.2%) and the lowest percentage (7.8%) of private land. • The highest rates (62+ inches) of annual precipitation. • The highest potential for large earthquakes (magnitude 5.0 or greater) to occur, including earthquakes in the 7 to 8+ magnitude range. • The highest concentration of landslide deposits. Technical Memorandum Available Groundwater Determination Wyoming Water Development Office Page 1 The Wyoming Framework Water Plan was completed in 2007 and included updated data on the groundwater resources of the Snake/Salt River Basin: • The Framework Plan (WWC Engineering, 2007; Table 5-6, p. 5-11) listed the average Basin demand factor as 223 gallons per capita per day (surface and groundwater combined); with municipal groundwater use as 5,875,140 gallons per day (18.0 acre- feet/day or 6,581 acre-feet/year) and domestic groundwater use as 2,241,000 gallons per day (6.9 acre-feet/day or 2,510 acre-feet/year). • The Framework Plan (WWC Engineering, 2007; Table 5-7, p. 5-12) listed municipal and domestic groundwater depletions combined as approximately 9,100 acre-feet per year. • The Framework Plan (WWC Engineering, 2007; Table 5-8, p. 5-14) listed industrial (manufacturing) groundwater use as 140 acre-feet per year. There are a total of sixty-eight (68) GIS geologic units shown on the Geologic Map of the Snake/Salt River Basin (Figure A-1) and these units are included in Table A-1. Figure A-2 illustrates the Major Aquifer Groups of the Basin. These groups include the Cenozoic, Mesozoic, Paleozoic, and Precambrian Aquifer Groups and the Volcanic and Intrusive Formations. The Volcanic and Intrusive Formations (Middle Eocene and younger age) are actually a subgroup within the Cenozoic Aquifer Group. Figure A-3 shows spring locations that are mapped on the U.S. Geological Survey (USGS) 1:24,000-scale topographic maps within Wyoming. The locations of 418 springs in the Snake/Salt River Basin are shown on Figure A-3. In the October 2012 database provided by the Wyoming State Engineer’s Office (WSEO), there are a total of 6,161 groundwater permit entries in the Snake/Salt River Basin (Figure A-4). Not all of these 6,161 permit entries represent one single water well. Some wells and springs have more than one permit. These WSEO groundwater permits include water wells and small springs of 25 gallons per minute (gpm) or less yield. Larger yielding (greater than 25 gpm) springs have a surface water permit from the WSEO. The total calculated area of the Snake/Salt River Basin using the GIS Wyoming Geologic Map data (1:500,000-scale digital Geologic Map of Wyoming) is 5,108.70 square miles, which is a difference of 12.70 square miles compared to the basin area of 5,096 square miles as calculated by using a digital GIS method. There are 4,212 digital polygons for the Snake/Salt River Basin as part of the 1:500,000-scale state-wide GIS geologic map of Wyoming. A very small mapped GIS polygon of geologic unit “Tcs” is reportedly located in the northern part of the Teton Range and is mapped as Conglomerate of the Sublette Range (Tcs). This is apparently an error in the GIS database for the 1:500,000-scale digital GIS geologic map of Wyoming. Using the 5,108.70 square mile area from the 1:500,000 scale digital Wyoming Geologic Map, the following Basin areas are calculated: Technical Memorandum Available Groundwater Determination Wyoming Water Development Office Page 2 Water/Reservoir 70.47 square miles (1.4%) Volcanic and Intrusive Formations 825.50 square miles (16.2%) Cenozoic Aquifer Group 2,044.77 square miles (40.0%) Mesozoic Aquifer Group 1,218.74 square miles (23.8%) Paleozoic Aquifer Group 789.65 square miles (15.5%) Precambrian Aquifer Group 159.57 square miles (3.1%) TOTAL 5,108.70 square miles (100%) Cenozoic Aquifer Group The Cenozoic Aquifer Group is the most heavily used aquifer group for groundwater supplies in the Snake/Salt River Basin. The various units of this aquifer group and the corresponding surface areas within the Basin are listed below: Qal – Quaternary alluvium and colluvium 540.34 square miles (10.6%) Qg – Quaternary glacial deposits 429.87 square miles (8.4%) Qls – Quaternary landslide deposits 369.73 square miles (7.2%) Qt – Quaternary gravel deposits 155.93 square miles (3.1%) Qu – Quaternary, undivided 106.69 square miles (2.1%) QTg – Tertiary-Quaternary conglomerate 5.75 square miles (0.1%) Approximately 15.9% (808.71 square miles) of the Snake/Salt River Basin is covered by the “alluvial aquifer,” which combines the alluvium/colluvium, gravel deposits, undivided deposits, and conglomerate into one larger unit of similar hydrogeologic characteristics. Hinckley (2003, p. 30) considered the “alluvial aquifer” to cover approximately 400 square miles. Please note that the “Volcanic and Intrusive Formations” are actually of Cenozoic age (Middle Eocene and younger) and therefore may be considered a subgroup of an expanded Cenozoic Aquifer Group that covers a total area of 2,870.27 square miles (56.2%). There are 12 units listed in Table A-1 that are considered primarily “volcanic” (also includes intrusive igneous rock units). When these Yellowstone-related igneous rock formations are included in the Cenozoic Aquifer Group, all of the geologic formations of Cenozoic age cover a total area of 56.2% of the Snake/Salt River Basin in Wyoming. Previous Studies – Since 2003 The 2003 Hinckley Consulting, Snake/Salt River Basin Plan Technical Memorandum listed the older hydrogeologic studies in the Basin. Since 2003, many additional studies have been conducted. The Wyoming Water Development Commission (WWDC) has funded the following water development studies and projects during the time period from 2003 to 2013: • Hinckley Consulting (2003), Available Groundwater Determination, Snake/Salt River Basin Plan, Technical Memorandum. • Keller Associates, Inc. (2003), Kennington Springs Pipeline Company, Level I Water System Reconnaissance Study. • Nelson Engineering (2006), Hoback Junction Water Supply Study, Level I, Final Report. Technical Memorandum Available Groundwater Determination Wyoming Water Development Office Page 3 • Sunrise Engineering (2006), Siting, Construction and Testing of the Town of Afton New Municipal East Alley Well. • Rendezvous Engineering, P.C. (2007), Final Report, Level II – Alta Groundwater Supply Study. • WWC Engineering (2007), Wyoming Framework Water Plan. • Forsgren Associates, Inc. (2008), Star Valley Ranch Master Plan. • Rendezvous Engineering, P.C. (2009), Final Report, Level II – Alpine Master Plan Update. • Sunrise Engineering (2009), Star Valley Regional Master Plan, Final Report. • Sunrise Engineering (2009), Star Valley Regional Master Plan, Water System Investigation & Evaluations, Book 1 of 2. • Sunrise Engineering (2009), Star Valley Regional Master Plan, Water System Investigation & Evaluations, Book 2 of 2. • Weston Engineering (2009), Final Report, Star Valley Ranch Groundwater Level II Study. • Jorgensen Associates, PC (2012), Thayne Storage – Level II Study, Final Report. The more complete references for these listed WWDC studies are included in the reference
Recommended publications
  • Mass-Independent Isotopic Signatures of Volcanic Sulfate from Three Supereruption Ash Deposits in Lake Tecopa, California
    Earth and Planetary Science Letters 282 (2009) 102–114 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California Erwan Martin ⁎, Ilya Bindeman Department of Geological Sciences, 1272 University of Oregon, Eugene OR 97403, USA article info abstract Article history: Hundreds to thousands of megatons of sulfur dioxide released by supereruptions can change chemical and Received 10 October 2008 physical properties of the atmosphere and thus induce climate perturbations. We present oxygen and sulfur Received in revised form 24 February 2009 isotope analyses of sulfate in 48 volcanic ash samples, and 26 sediment samples from dry lake beds in the Accepted 2 March 2009 Tecopa basin, California, USA. These ash layers represent three supereruptions, including the 0.64 Ma Lava Available online 10 April 2009 Creek Tuff, 2.04 Ma Huckleberry Ridge Tuff and 0.76 Ma Bishop Tuff. 17 Editor: R.W. Carlson Mass-independent oxygen signatures (Δ O up to 2.26‰) that are present in these ash units, and not in associated sediments, indicate oxidation of volcanic SO2 by mass-independent ozone and its products. In this Keywords: study, we consider the formation, deposition, preservation and dilution of mass-independent volcanic sulfate oxygen and sulfur isotopes (MIVS). Using the isotopic compositions of the sulfates, we construct a mixing model that demonstrates that isotopic mass-independence the main source of sulfate in Lake Tecopa is mass-dependent sediment-derived sulfate (MDSDS, >77%). sulfate However, ash beds still preserve up to 23% of MIVS that initially had undiluted Δ17O value around 8‰, and aerosols Δ33S as low as −0.35‰, and Δ36S up to 1.08‰.
    [Show full text]
  • 1 KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka
    KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka Ranges, Wyoming (Year 2) Project Leaders: John Craddock (Macalester College; [email protected]) and Dave Malone (Illinois State University; [email protected]) Host Institution: Macalester College, St. Paul, MN Project Dates: ~July 15-August 14, 2011 Student Prerequisites: Structural Geology, Sedimentology. Preamble: This project is an expansion of a 2010 Keck project that was funded at a reduced level (Craddock, 3 students); Malone and 4 students participated with separate funding. We completed or are currently working on three 2010 projects: 1. Structure, geochemistry and geochronology (U-Pb zircon) of carbonate pseudotachylite injection, White Mtn. (J. Geary, Macalester; note that this was not part of last year’s proposal but a new discovery in 2010 caused us to redirect our efforts), 2. Calcite twinning strains within the S. Fork detachment allochthon, northwest, WY (K. Kravitz, Smith; note because of a heavy snow pack in the Tetons this past summer, we chose a different structure to study), and 3. Provenance of heavy minerals and detrital zircon geochronology, Eocene Absaroka volcanics, northwest, WY (R. McGaughey, Carleton). We did not sample the footwall folds proposed in the previous proposal (under snow) and will focus on this project and mapping efforts of White Mountain and the 40 x 10 km S. Fork detachment area near Cody, WY, in part depending on the results (calcite strains, detrital zircons) of the 2010-11 effort. All seven students are working on the detrital zircon geochronology project, and two abstracts are accepted at the 2011 Denver GSA meeting. Overview: This proposal requests funding for 2 faculty to engage 6 students researching a variety of outstanding problems in the tectonic evolution of the Sevier-Laramide orogens as exposed in the Teton and Absaroka ranges in northwest Wyoming.
    [Show full text]
  • Middle Eocene CO and Climate Reconstructed from the Sediment Fill
    Middle Eocene CO2 and climate reconstructed from the sediment fill of a subarctic kimberlite maar Alexander P. Wolfe1, Alberto V. Reyes2*, Dana L. Royer3, David R. Greenwood4, Gabriela Doria3,5, Mary H. Gagen6, Peter A. Siver7, and John A. Westgate8 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA 4Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada 5Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 6Department of Geography, Swansea University, Singleton Park, Swansea SA2 8PP, UK 7Department of Botany, Connecticut College, New London, Connecticut 06320, USA 8Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada ABSTRACT mismatch and frustrates efforts to understand the sensitivity of past equi- Eocene paleoclimate reconstructions are rarely accompanied librium climate response to greenhouse gas forcing. by parallel estimates of CO2 from the same locality, complicating Our objective is to assess climate and greenhouse-gas forcing for assessment of the equilibrium climate response to elevated CO2. We Northern Hemisphere subarctic latitudes during the latest middle Eocene reconstruct temperature, precipitation, and CO2 from latest middle by exploiting a remarkable terrestrial sedimentary archive. The Giraffe Eocene (ca. 38 Ma) terrestrial sediments in the posteruptive sediment kimberlite locality (paleolatitude ~63°N) comprises the posteruptive sedi- fill of the Giraffe kimberlite in subarctic Canada. Mutual climatic mentary fill of a maar formed when kimberlite intruded Precambrian cra- range and oxygen isotope analyses of botanical fossils reveal a humid- tonic rocks of the Slave Province at 47.8 ± 1.4 Ma (Creaser et al., 2004).
    [Show full text]
  • Related Magmatism in the Upper Wind River Basin, Wyoming (USA), GEOSPHERE; V
    Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE The leading wisps of Yellowstone: Post–ca. 5 Ma extension- related magmatism in the upper Wind River Basin, Wyoming (USA), GEOSPHERE; v. 14, no. 1 associated with the Yellowstone hotspot tectonic parabola doi:10.1130/GES01553.1 Matthew E. Brueseke1, Anna C. Downey1, Zachary C. Dodd1, William K. Hart2, Dave C. Adams3, and Jeff A. Benowitz4 12 figures; 2 tables; 1 supplemental file 1Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, Kansas 66506, USA 2Department of Geology and Environmental Earth Science, Miami University, 118C Shideler Hall, Oxford, Ohio 45056, USA 3Box 155, Teton Village, Wyoming 83025, USA CORRESPONDENCE: brueseke@ ksu .edu 4Geophysical Institute and Geochronology Laboratory, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA CITATION: Brueseke, M.E., Downey, A.C., Dodd, Z.C., Hart, W.K., Adams, D.C., and Benowitz, J.A., 2018, The leading wisps of Yellowstone: Post–ca. 5 Ma ABSTRACT the issue of linking volcanic events to a specific driving mechanism (Fouch, extension-related magmatism in the upper Wind River 2012; Kuehn et al., 2015). Complicating matters, magmatism often continues Basin, Wyoming (USA), associated with the Yellow- The upper Wind River Basin in northwest Wyoming (USA) is located ~80– long after (e.g., millions of years) the upper plate has been translated away stone hotspot tectonic parabola: Geosphere, v. 14, no. 1, p. 74–94, doi:10.1130/GES01553.1. 100 km southeast of the Yellowstone Plateau volcanic field. While the upper from an upwelling plume (Bercovici and Mahoney, 1994; Sleep, 2003; Shervais Wind River Basin is a manifestation of primarily Cretaceous to Eocene Lara- and Hanan, 2008; Jean et al., 2014).
    [Show full text]
  • Chapter 17. Quartzite Gravel Northwest Wyoming
    Chapter 17 Quartzite Gravel of Northwest Wyoming The quartzites of southwest Montana and adjacent Idaho extend eastward into Wyoming1 in a semi-continuous belt, as shown on Figure 16.1 of the previous chapter. This chapter will describe those deposits. Quartzite Gravel Lag John Hergenrather and I have found scattered surficial quartzites from near Interstate 15 in northeastern Idaho, just south of Lima, Montana, eastward to the northern Teton Mountains and over a four-wheel drive pass between Yellowstone and Grand Teton National Parks. These quartzites seem to have mostly formed a thin layer or lag deposit on the surface or were reworked by local mountain glaciation. This lag rep- resents the red hashed area in Figure 16.1. Quartzites on Top of the Northern Teton Mountains Probably the most fascinating quartz- ite location is on top of the northern Teton Mountains! Brent Carter and I took a Figure 17.1. Slightly dipping limestone at the top three day round trip hike to the top of Red of Red Mountain. Mountain in the northern Teton Moun- tains, 10,177 feet (3,102 m) msl!2,3 Red Mountain and Mount Moran (12,605 feet, 3,842 m msl) represent remnants of a flat-topped planation surface.2 Red Mountain is composed of slightly tilted limestones (Figure 17.1), while Mount Moran is composed of granite or gneiss with a 50-foot (15 m) thick cap of Flathead Sandstone on top (see Figure 33.7). The quartzites on top of Red Mountain are mainly a thin lag mixed with angular lime- stone cobbles and boulders (Figure 17.2).
    [Show full text]
  • GEOHYDROLOGY of TERTIARY ROCKS in the GREEN RIVER STRUCTURAL BASIN in WYOMING, UTAH, and COLORADO by Lawrence J
    GEOHYDROLOGY OF TERTIARY ROCKS IN THE GREEN RIVER STRUCTURAL BASIN IN WYOMING, UTAH, AND COLORADO by Lawrence J. Martin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4164 Prepared in cooperation with the WYOMING STATE ENGINEER Cheyenne, Wyoming 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of trade, product, industry, or firm names i$ for descriptive purposes only and does not imply endorsement by thelU.S. Government. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Branch of Information Services 2617 E. Lincolnway, Suite B Box 25286, Denver Federal Center Cheyenne, Wyoming 82001-5662 Denver, Colorado 80225 CONTENTS Page Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Purpose and scope .................................................................................................................................................... 3 Criteria for data selection ......................................................................................................................................... 3 Previous investigations ............................................................................................................................................
    [Show full text]
  • Fen Mapping for the Bridger-Teton National Forest
    Fen Mapping for the Bridger-Teton National Forest November 2018 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 Report Prepared for: Bridger-Teton National Forest 340 N. Cache Jackson, WY 83001 Recommended Citation: Smith, G. and J. Lemly. 2018. Fen Mapping for the Bridger-Teton National Forest. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: © Colorado Natural Heritage Program Fen Mapping for the Bridger-Teton National Forest Gabrielle Smith and Joanna Lemly Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 November 2018 Page intentionally left blank. EXECUTIVE SUMMARY The Bridger-Teton National Forest (BTNF) covers 3.4 million acres within the Upper Green and Snake Headwaters River Basins in northwest Wyoming. The diverse geography of the BTNF creates an equally diverse set of wetlands that provide important ecological services to both BTNF and lands downstream. Organic soil wetlands known as fens are an irreplaceable resource that the U.S. Forest Service has determined should be managed for conservation and restoration. Fens are defined as groundwater-fed wetlands with organic soils that typically support sedges and low stature shrubs. In the arid west, organic soil formation can take thousands of years. Long-term maintenance of fens requires maintenance of both the hydrology and the plant communities that enable fen formation. In 2012, the U.S.
    [Show full text]
  • Eocene Green River Formation, Western United States
    Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil.
    [Show full text]
  • Landsat Evaluation of Trumpeter Swan Historical Nesting Sites In
    Eastern Kentucky University Encompass Online Theses and Dissertations Student Scholarship 2014 Landsat Evaluation Of Trumpeter Swan Historical Nesting Sites In Yellowstone National Park Laura Elizabeth Cockrell Eastern Kentucky University, [email protected] Follow this and additional works at: https://encompass.eku.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Ornithology Commons Recommended Citation Cockrell, Laura Elizabeth, "Landsat Evaluation Of Trumpeter Swan Historical Nesting Sites In Yellowstone National Park" (2014). Online Theses and Dissertations. 222. https://encompass.eku.edu/etd/222 This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact [email protected]. LANDSAT EVALUATION OF TRUMPETER SWAN HISTORICAL NESTING SITES IN YELLOWSTONE NATIONAL PARK By Laura Elizabeth Cockrell Bachelor of Science California State University, Chico Chico, California 2007 Submitted to the Faculty of the Graduate School of Eastern Kentucky University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 2014 Copyright © Laura Elizabeth Cockrell, 2014 All rights reserved ii DEDICATION This thesis is dedicated to my family and friends for their unwavering support during this adventure. iii ACKNOWLEDGMENTS This research was made possible through funding from the Yellowstone Park Foundation and the Society of Wetland Scientists Student Research Grant for support of field work, and by a Graduate Assistantship and Research Assistantship from the Department of Biological Sciences at Eastern Kentucky University. Thank you to Dr. Bob Frederick for his insight and persistence and for providing the GIS lab and to Dr.
    [Show full text]
  • Coexisting Discrete Bodies of Rhyolite and Punctuated Volcanism Characterize 1
    RESEARCH ARTICLE Coexisting Discrete Bodies of Rhyolite and Punctuated 10.1029/2019GC008321 Volcanism Characterize Yellowstone's Post‐Lava Key Points: • Zircons from Yellowstone's Upper Creek Tuff Caldera Evolution ‐ Basin Member rhyolites yield U Pb Christy B. Till1 , Jorge A. Vazquez2 , Mark E. Stelten2 , Hannah I. Shamloo1 , dates defining crystallization 1,3 populations at ~750–550 and and Jamie S. Shaffer ~350–250 ka 1 2 • Discrete bodies of magma School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, U.S. Geological Survey, Menlo Park, characterized the subvolcanic CA, USA, 3Now at Arizona State Geological Sciences, Now at New Mexico State University, Las Cruces, NM, USA system during the Upper Basin Member period and during storage of the Lava Creek Tuff ‐ 206 238 • Abstract Ion microprobe Pb/ U geochronology and trace element geochemistry of the unpolished The geochemical and isotopic ‐ evolution of Yellowstone's rims and sectioned interiors of zircons from Yellowstone caldera's oldest post caldera lavas provide post‐caldera rhyolites suggests a insight into the magmatic system during the prelude and aftermath of the caldera‐forming Lava Creek shift in the magmatic supereruption. The post‐caldera lavas compose the Upper Basin Member of the Plateau Rhyolite and fall assimilation/recharge ratio into two groups based on zircon crystallization age: early lavas with zircon ages between ~750 and 550 ka ‐ Supporting Information: and late lavas with zircon ages between ~350 and 250 ka. Zircons from the early erupted East Biscuit Basin • Supporting Information S1 flow yield U‐Pb dates and trace element compositions, which when considered with the Pb isotopic • Table S1 compositions of their coexisting feldspars and pyroxenes, point to an isotopically distinct parental melt • Table S2 • Table S3 present during crystallization of the Lava Creek magma but untapped by the supereruption.
    [Show full text]
  • Forest Wide Hazardous Tree Removal and Fuels Reduction Project
    107°0'0"W VAIL k GYPSUM B e 6 u 6 N 1 k 2 k 1 h 2 e . e 6 . .1 I- 1 o 8 70 e c f 7 . r 0 e 2 2 §¨¦ e l 1 0 f 2 u 1 0 3 2 N 4 r r 0 1 e VailVail . 3 W . 8 . 1 85 3 Edwards 70 1 C 1 a C 1 .1 C 8 2 h N 1 G 7 . 7 0 m y 1 k r 8 §¨¦ l 2 m 1 e c . .E 9 . 6 z W A T m k 1 5 u C 0 .1 u 5 z i 6. e s 0 C i 1 B a -7 k s 3 2 .3 e e r I ee o C r a 1 F G Carterville h r e 9. 1 6 r g 1 N 9 g 8 r e 8 r y P e G o e u l Avon n C 9 N C r e n 5 ch w i r 8 .k2 0 N n D k 1 n 70 a tt e 9 6 6 8 G . c 7 o h 18 1 §¨¦ r I-7 o ra West Vail .1 1 y 4 u h 0 1 0. n lc 7 l D .W N T 7 39 . 71 . 1 a u 1 ch W C k 0 C d . 2 e . r e 1 e 1 C st G e e . r 7 A Red Hill R 3 9 k n s e 5 6 7 a t 2 .
    [Show full text]
  • Formation of Low-Δ18o Rhyolites After Caldera Collapse at Yellowstone, Wyoming, USA
    Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA Ilya N. Bindeman John W. Valley Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT We present a new model for the genesis of low-δ18O rhyolites of the Yellowstone caldera based on analyses of zircons and individual quartz phenocrysts. Low-δ18O rhyolites were erupted soon after the massive caldera-forming Lava Creek Tuff eruption (602 ka, ~1000 km3) and contain xenocrysts of quartz and zircon inherited from precaldera rhyolites. These zircons are iso- topically zoned and out of equilibrium with their host low-δ18O melts and quartz. Diffusion modeling predicts that magmatic disequilibria of oxygen isotopes persists for as much as tens of thousands of years following nearly total remelting of the hydrothermally altered igneous roots of the depressed cauldron, in which the alteration-resistant quartz and zircon initially retained their δ18O values. These results link melting to caldera collapse, rule out rapid or catastrophic magma–meteoric water interaction, and indicate wholesale melting rather than assimilation or partial melting. Keywords: Yellowstone, zircon, oxygen isotopes, caldera, low δ18O. INTRODUCTION rock major and trace element composition is simi- (Spicuzza et al., 1998b). We measured four to Meteoric water plays an important role in the lar to that of isotopically normal high-silica rhyo- seven aliquots of UWG-2 garnet standard on each genesis of ore deposits, explosive volcanism, and lites of precaldera lavas or lavas erupted simul- day of analysis. Nine analyses of NBS-28 quartz hydrothermal activity. Low values of δ18O un- taneously outside the caldera.
    [Show full text]