Water Resources of Teton County, Wyoming, Exclusive of Yellowstone National Park

Total Page:16

File Type:pdf, Size:1020Kb

Water Resources of Teton County, Wyoming, Exclusive of Yellowstone National Park WATER RESOURCES OF TETON COUNTY, WYOMING, EXCLUSIVE OF YELLOWSTONE NATIONAL PARK 105° 104° U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 95-4204 Prepared in cooperation with the WYOMING STATE ENGINEER WATER RESOURCES OF TETON COUNTY, WYOMING, EXCLUSIVE OF YELLOWSTONE NATIONAL PARK by Bernard T. Nolan and Kirk A. Miller U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 95-4204 Prepared in cooperation with the WYOMING STATE ENGINEER Cheyenne, Wyoming 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center Water Resources Division Open-File Reports Section 2617 E. Lincolnway, Suite B Box 25286, Denver Federal Center Cheyenne, Wyoming 82001 -5662 Denver, Colorado 80225 CONTENTS Page Abstract................................................................................................................................................................................. 1 Introduction........................................................................................................................................................................... 2 Purpose and scope....................................................................................................................................................... 2 Climate........................................................................................................................................................................ 4 Generalized geology................................................................................................................................................... 4 Water-right administration.......................................................................................................................................... 6 By Richard G. Stockdale. Wyoming State Engineer's Office Acknowledgments.................................................................................................._ 6 Surface water.. .......................................................................................................................................................^ 7 Streamflow data........................... ............................................................................................................................... 7 Streamflow characteristics.......................................................................................................................................... 7 Flow duration.................................................................................................................................................... 11 High flow........................................................................................................................................................... 11 Low flow........................................................................................................................................................... 13 Ground water......................................................................................................................................................................... 13 Ground-water data network ........................................................................................................................................ 26 Relation of ground water to geology........................................................................................................................... 26 Quaternary unconsolidated deposits ................................................................................................................. 26 Thickness................................................................................................................................................ 38 Ground-water use and yield.................................................................................................................... 40 Quaternary and Tertiary volcanic rocks............................................................................................................ 40 Tertiary rocks.................................................................................................................................................... 40 Mesozoic rocks................................................................................................................................................. 41 Paleozoic rocks................................................................................................................................................. 41 Precambrian metamorphic rocks....................................................................................................................... 42 Recharge, movement, and discharge........................................................................................................................... 43 Changes in water levels............................................................................................................................................... 46 Water use............................................................................................................................................................................... 48 Water quality......................................................................................................................................................................... 48 Surface-water quality.................................................................................................................................................. 54 Ground-water quality.................................................................................................................................................. 54 Quaternary unconsolidated deposits ................................................................................................................. 56 Quaternary and Tertiary volcanic rocks............................................................................................................ 56 Tertiary rocks.................................................................................................................................................... 56 Mesozoic rocks................................................................................................................................................. 67 Paleozoic rocks................................................................................................................................................. 67 Precambrian metamorphic rocks....................................................................................................................... 67 Agricultural chemicals in surface and ground water.................................................................................................. 69 Summary............................................................................................................................................................................... 71 References............................................................................................................._^ 73 Glossary................................................................................................................................................................................ 75 Plates (in pocket) 1. Geologic map of Teton County study area, Wyoming 2. Map showing surface-water, ground-water and geophysical-data networks, Teton County study area, Wyoming 3. Map showing water-level contours for alluvium, colluvium, and gravel, pediment, and fan deposits in Jackson Hole, Wyoming, July 12-21, 1993 CONTENTS IV Figures Page 1. Map showing location and physiography of Teton County study area, Wyoming................................................... 3 2. Map showing mean annual precipitation for Teton County study area, Wyoming, 1951-80................................... 5 3-5. Graphs showing: 3. Daily mean discharge for selected nonregulated and regulated perennial and intermittent streams in Teton County study area, Wyoming, water year 1992 ........................................................................... 10 4. Flow-duration curves for selected surface-water stations in Teton County study area, Wyoming................... 12 5. Annual peak discharge on the Snake River near Moran, Wyoming (site 2), water years 1904-92.................. 14 6. Diagram showing systems for numbering wells and springs.................................................................................... 37 7-13. Graphs showing: 7. Comparison of specific conductance and daily mean discharge in the Snake River above Jackson Lake, at Flagg Ranch (site 1) in Teton County study area, Wyoming, water year 1992............................ 55 8. Principal chemical constituents in ground-water samples collected from representative wells completed in and springs issuing from Quaternary unconsolidated deposits in Teton County study area, Wyoming.................................................................................................................................. 57 9. Principal chemical constituents in ground-water samples collected
Recommended publications
  • WPLI Resolution
    Matters from Staff Agenda Item # 17 Board of County Commissioners ‐ Staff Report Meeting Date: 11/13/2018 Presenter: Alyssa Watkins Submitting Dept: Administration Subject: Consideration of Approval of WPLI Resolution Statement / Purpose: Consideration of a resolution proclaiming conservation principles for US Forest Service Lands in Teton County as a final recommendation of the Wyoming Public Lands Initiative (WPLI) process. Background / Description (Pros & Cons): In 2015, the Wyoming County Commissioners Association (WCCA) established the Wyoming Public Lands Initiative (WPLI) to develop a proposed management recommendation for the Wilderness Study Areas (WSAs) in Wyoming, and where possible, pursue other public land management issues and opportunities affecting Wyoming’s landscape. In 2016, Teton County elected to participate in the WPLI process and appointed a 21‐person Advisory Committee to consider the Shoal Creek and Palisades WSAs. Committee meetings were facilitated by the Ruckelshaus Institute (a division of the University of Wyoming’s Haub School of Environment and Natural Resources). Ultimately the Committee submitted a number of proposals, at varying times, to the BCC for consideration. Although none of the formal proposals submitted by the Teton County WPLI Committee were advanced by the Board of County Commissioners, the Board did formally move to recognize the common ground established in each of the Committee’s original three proposals as presented on August 20, 2018. The related motion stated that the Board chose to recognize as a resolution or as part of its WPLI recommendation, that all members of the WPLI advisory committee unanimously agree that within the Teton County public lands, protection of wildlife is a priority and that there would be no new roads, no new timber harvest except where necessary to support healthy forest initiatives, no new mineral extraction excepting gravel, no oil and gas exploration or development.
    [Show full text]
  • Mass-Independent Isotopic Signatures of Volcanic Sulfate from Three Supereruption Ash Deposits in Lake Tecopa, California
    Earth and Planetary Science Letters 282 (2009) 102–114 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California Erwan Martin ⁎, Ilya Bindeman Department of Geological Sciences, 1272 University of Oregon, Eugene OR 97403, USA article info abstract Article history: Hundreds to thousands of megatons of sulfur dioxide released by supereruptions can change chemical and Received 10 October 2008 physical properties of the atmosphere and thus induce climate perturbations. We present oxygen and sulfur Received in revised form 24 February 2009 isotope analyses of sulfate in 48 volcanic ash samples, and 26 sediment samples from dry lake beds in the Accepted 2 March 2009 Tecopa basin, California, USA. These ash layers represent three supereruptions, including the 0.64 Ma Lava Available online 10 April 2009 Creek Tuff, 2.04 Ma Huckleberry Ridge Tuff and 0.76 Ma Bishop Tuff. 17 Editor: R.W. Carlson Mass-independent oxygen signatures (Δ O up to 2.26‰) that are present in these ash units, and not in associated sediments, indicate oxidation of volcanic SO2 by mass-independent ozone and its products. In this Keywords: study, we consider the formation, deposition, preservation and dilution of mass-independent volcanic sulfate oxygen and sulfur isotopes (MIVS). Using the isotopic compositions of the sulfates, we construct a mixing model that demonstrates that isotopic mass-independence the main source of sulfate in Lake Tecopa is mass-dependent sediment-derived sulfate (MDSDS, >77%). sulfate However, ash beds still preserve up to 23% of MIVS that initially had undiluted Δ17O value around 8‰, and aerosols Δ33S as low as −0.35‰, and Δ36S up to 1.08‰.
    [Show full text]
  • Teton Range Bighorn Sheep Herd Situation Assessment January 2020
    Teton Range Bighorn Sheep Herd Situation Assessment January 2020 Photo: A. Courtemanch Compiled by: Teton Range Bighorn Sheep Working Group Table of Contents EXECUTIVE SUMMARY ............................................................................................................ 2 Introduction and Overview .................................................................................................... 2 Assessment Process ................................................................................................................. 2 Key Findings: Research Summary and Expert Panel ......................................................... 3 Key Findings: Community Outreach Efforts ....................................................................... 4 Action Items .............................................................................................................................. 4 INTRODUCTION AND BACKGROUND ............................................................................... 6 Purpose of this Assessment .................................................................................................... 6 Background ............................................................................................................................... 6 ASSESSMENT APPROACH....................................................................................................... 6 PART 1: Research Summary and Expert Panel ................................................................... 6 Key Findings: Research Summary
    [Show full text]
  • Middle Eocene CO and Climate Reconstructed from the Sediment Fill
    Middle Eocene CO2 and climate reconstructed from the sediment fill of a subarctic kimberlite maar Alexander P. Wolfe1, Alberto V. Reyes2*, Dana L. Royer3, David R. Greenwood4, Gabriela Doria3,5, Mary H. Gagen6, Peter A. Siver7, and John A. Westgate8 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA 4Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada 5Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 6Department of Geography, Swansea University, Singleton Park, Swansea SA2 8PP, UK 7Department of Botany, Connecticut College, New London, Connecticut 06320, USA 8Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada ABSTRACT mismatch and frustrates efforts to understand the sensitivity of past equi- Eocene paleoclimate reconstructions are rarely accompanied librium climate response to greenhouse gas forcing. by parallel estimates of CO2 from the same locality, complicating Our objective is to assess climate and greenhouse-gas forcing for assessment of the equilibrium climate response to elevated CO2. We Northern Hemisphere subarctic latitudes during the latest middle Eocene reconstruct temperature, precipitation, and CO2 from latest middle by exploiting a remarkable terrestrial sedimentary archive. The Giraffe Eocene (ca. 38 Ma) terrestrial sediments in the posteruptive sediment kimberlite locality (paleolatitude ~63°N) comprises the posteruptive sedi- fill of the Giraffe kimberlite in subarctic Canada. Mutual climatic mentary fill of a maar formed when kimberlite intruded Precambrian cra- range and oxygen isotope analyses of botanical fossils reveal a humid- tonic rocks of the Slave Province at 47.8 ± 1.4 Ma (Creaser et al., 2004).
    [Show full text]
  • Related Magmatism in the Upper Wind River Basin, Wyoming (USA), GEOSPHERE; V
    Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE The leading wisps of Yellowstone: Post–ca. 5 Ma extension- related magmatism in the upper Wind River Basin, Wyoming (USA), GEOSPHERE; v. 14, no. 1 associated with the Yellowstone hotspot tectonic parabola doi:10.1130/GES01553.1 Matthew E. Brueseke1, Anna C. Downey1, Zachary C. Dodd1, William K. Hart2, Dave C. Adams3, and Jeff A. Benowitz4 12 figures; 2 tables; 1 supplemental file 1Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, Kansas 66506, USA 2Department of Geology and Environmental Earth Science, Miami University, 118C Shideler Hall, Oxford, Ohio 45056, USA 3Box 155, Teton Village, Wyoming 83025, USA CORRESPONDENCE: brueseke@ ksu .edu 4Geophysical Institute and Geochronology Laboratory, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA CITATION: Brueseke, M.E., Downey, A.C., Dodd, Z.C., Hart, W.K., Adams, D.C., and Benowitz, J.A., 2018, The leading wisps of Yellowstone: Post–ca. 5 Ma ABSTRACT the issue of linking volcanic events to a specific driving mechanism (Fouch, extension-related magmatism in the upper Wind River 2012; Kuehn et al., 2015). Complicating matters, magmatism often continues Basin, Wyoming (USA), associated with the Yellow- The upper Wind River Basin in northwest Wyoming (USA) is located ~80– long after (e.g., millions of years) the upper plate has been translated away stone hotspot tectonic parabola: Geosphere, v. 14, no. 1, p. 74–94, doi:10.1130/GES01553.1. 100 km southeast of the Yellowstone Plateau volcanic field. While the upper from an upwelling plume (Bercovici and Mahoney, 1994; Sleep, 2003; Shervais Wind River Basin is a manifestation of primarily Cretaceous to Eocene Lara- and Hanan, 2008; Jean et al., 2014).
    [Show full text]
  • Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM
    THE STATE OF WYOMING Water Development Office 6920 YELLOWTAIL ROAD TELEPHONE: (307) 777-7626 CHEYENNE, WY 82002 FAX: (307) 777-6819 TECHNICAL MEMORANDUM TO: Water Development Commission DATE: December 13, 2013 FROM: Keith E. Clarey, P.G. REFERENCE: Snake/Salt River Basin Plan Update, 2012 SUBJECT: Available Groundwater Determination – Tab XI (2012) Contents 1.0 Introduction .............................................................................................................................. 1 2.0 Hydrogeology .......................................................................................................................... 4 3.0 Groundwater Development .................................................................................................... 15 4.0 Groundwater Quality ............................................................................................................. 21 5.0 Geothermal Resources ........................................................................................................... 22 6.0 Groundwater Availability ...................................................................................................... 22 References ..................................................................................................................................... 23 Appendix A: Figures and Table ....................................................................................................... i 1.0 Introduction This 2013 Technical Memorandum is an update of the September 10, 2003,
    [Show full text]
  • Coexisting Discrete Bodies of Rhyolite and Punctuated Volcanism Characterize 1
    RESEARCH ARTICLE Coexisting Discrete Bodies of Rhyolite and Punctuated 10.1029/2019GC008321 Volcanism Characterize Yellowstone's Post‐Lava Key Points: • Zircons from Yellowstone's Upper Creek Tuff Caldera Evolution ‐ Basin Member rhyolites yield U Pb Christy B. Till1 , Jorge A. Vazquez2 , Mark E. Stelten2 , Hannah I. Shamloo1 , dates defining crystallization 1,3 populations at ~750–550 and and Jamie S. Shaffer ~350–250 ka 1 2 • Discrete bodies of magma School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, U.S. Geological Survey, Menlo Park, characterized the subvolcanic CA, USA, 3Now at Arizona State Geological Sciences, Now at New Mexico State University, Las Cruces, NM, USA system during the Upper Basin Member period and during storage of the Lava Creek Tuff ‐ 206 238 • Abstract Ion microprobe Pb/ U geochronology and trace element geochemistry of the unpolished The geochemical and isotopic ‐ evolution of Yellowstone's rims and sectioned interiors of zircons from Yellowstone caldera's oldest post caldera lavas provide post‐caldera rhyolites suggests a insight into the magmatic system during the prelude and aftermath of the caldera‐forming Lava Creek shift in the magmatic supereruption. The post‐caldera lavas compose the Upper Basin Member of the Plateau Rhyolite and fall assimilation/recharge ratio into two groups based on zircon crystallization age: early lavas with zircon ages between ~750 and 550 ka ‐ Supporting Information: and late lavas with zircon ages between ~350 and 250 ka. Zircons from the early erupted East Biscuit Basin • Supporting Information S1 flow yield U‐Pb dates and trace element compositions, which when considered with the Pb isotopic • Table S1 compositions of their coexisting feldspars and pyroxenes, point to an isotopically distinct parental melt • Table S2 • Table S3 present during crystallization of the Lava Creek magma but untapped by the supereruption.
    [Show full text]
  • Sensitive and Rare Plant Species Inventory in the Salt River and Wyoming Ranges, Bridger-Teton National Forest
    Sensitive and Rare Plant Species Inventory in the Salt River and Wyoming Ranges, Bridger-Teton National Forest Prepared for Bridger-Teton National Forest P.O. Box 1888 Jackson, WY 83001 by Bonnie Heidel Wyoming Natural Diversity Database University of Wyoming Dept 3381, 1000 E. University Avenue University of Wyoming Laramie, WY 21 February 2012 Cooperative Agreement No. 07-CS-11040300-019 ABSTRACT Three sensitive and two other Wyoming species of concern were inventoried in the Wyoming and Salt River Ranges at over 20 locations. The results provided a significant set of trend data for Payson’s milkvetch (Astragalus paysonii), expanded the known distribution of Robbin’s milkvetch (Astragalus robbinsii var. minor), and relocated and expanded the local distributions of three calciphilic species at select sites as a springboard for expanded surveys. Results to date are presented with the rest of species’ information for sensitive species program reference. This report is submitted as an interim report representing the format of a final report. Tentative priorities for 2012 work include new Payson’s milkvetch surveys in major recent wildfires, and expanded Rockcress draba (Draba globosa) surveys, both intended to fill key gaps in status information that contribute to maintenance of sensitive plant resources and information on the Forest. ACKNOWLEDGEMENTS All 2011 field surveys of Payson’s milkvetch (Astragalus paysonii) were conducted by Klara Varga. These and the rest of 2011 surveys built on the 2010 work of Hollis Marriott and the earlier work of she and Walter Fertig as lead botanists of Wyoming Natural Diversity Database. This project was initially coordinated by Faith Ryan (Bridger-Teton National Forest), with the current coordination and consultation of Gary Hanvey and Tyler Johnson.
    [Show full text]
  • Formation of Low-Δ18o Rhyolites After Caldera Collapse at Yellowstone, Wyoming, USA
    Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA Ilya N. Bindeman John W. Valley Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT We present a new model for the genesis of low-δ18O rhyolites of the Yellowstone caldera based on analyses of zircons and individual quartz phenocrysts. Low-δ18O rhyolites were erupted soon after the massive caldera-forming Lava Creek Tuff eruption (602 ka, ~1000 km3) and contain xenocrysts of quartz and zircon inherited from precaldera rhyolites. These zircons are iso- topically zoned and out of equilibrium with their host low-δ18O melts and quartz. Diffusion modeling predicts that magmatic disequilibria of oxygen isotopes persists for as much as tens of thousands of years following nearly total remelting of the hydrothermally altered igneous roots of the depressed cauldron, in which the alteration-resistant quartz and zircon initially retained their δ18O values. These results link melting to caldera collapse, rule out rapid or catastrophic magma–meteoric water interaction, and indicate wholesale melting rather than assimilation or partial melting. Keywords: Yellowstone, zircon, oxygen isotopes, caldera, low δ18O. INTRODUCTION rock major and trace element composition is simi- (Spicuzza et al., 1998b). We measured four to Meteoric water plays an important role in the lar to that of isotopically normal high-silica rhyo- seven aliquots of UWG-2 garnet standard on each genesis of ore deposits, explosive volcanism, and lites of precaldera lavas or lavas erupted simul- day of analysis. Nine analyses of NBS-28 quartz hydrothermal activity. Low values of δ18O un- taneously outside the caldera.
    [Show full text]
  • Range Expansion and Population Growth of Non-Native Mountain
    Wildlife Society Bulletin; DOI: 10.1002/wsb.636 Original Article Range Expansion and Population Growth of Nonnative Mountain Goats in the Greater Yellowstone Area: Challenges for Management ELIZABETH P. FLESCH,1 Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, 310 Lewis Hall, Bozeman, MT 59717, USA ROBERT A. GARROTT, Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, 310 Lewis Hall, Bozeman, MT 59717, USA P. J. WHITE, National Park Service, Yellowstone National Park, P.O. Box 168, Yellowstone National Park, WY 82190, USA DOUG BRIMEYER, Wyoming Game and Fish Department, 420 N Cache, P.O. Box 67, Jackson, WY 83001, USA ALYSON B. COURTEMANCH, Wyoming Game and Fish Department, 420 N Cache, P.O. Box 67, Jackson, WY 83001, USA JULIE A. CUNNINGHAM, Montana Fish, Wildlife and Parks, 1400 S 19th Avenue, Bozeman, MT 59717, USA SARAH R. DEWEY, National Park Service, Grand Teton National Park, P.O. Box 170, Moose, WY 83012, USA GARY L. FRALICK, Wyoming Game and Fish Department, P.O. Box 1022, Thayne, WY 83127, USA KAREN LOVELESS, Montana Fish, Wildlife and Parks, 1354 Highway 10 W, Livingston, MT 59047, USA DOUG E. MCWHIRTER, Wyoming Game and Fish Department, 2820 State Highway 120, Cody, WY 82414, USA HOLLIE MIYASAKI, Idaho Department of Fish and Game, 4279 Commerce Circle, Idaho Falls, ID 83401, USA ANDREW PILS, United States Forest Service, Shoshone National Forest, 203A Yellowstone Avenue, Cody, WY 82414, USA MICHAEL A. SAWAYA, Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, 310 Lewis Hall, Bozeman, MT 59717, USA SHAWN T.
    [Show full text]
  • Grand Teton National Park and John D
    From: Jackson Hole Children"s Museum To: Arne Jorgensen Subject: Time is Running Out! Date: Thursday, July 29, 2021 10:24:21 AM View this email in your browser "During a year of so much uncertainty, our family was so grateful to have the resources and support of local preschool programs at Children’s Learning Center, Jackson Hole Children’s Museum and Teton Literacy Center. It brought us peace of mind to know that there were caring, professional educators working to minimize the impact of this difficult year on our kids." – Jackson Hole Parent SEE ALL STORIES Hello friends and supporters, You’ve heard it before: kids are resilient. They’re capable of navigating big challenges and being okay. But with the help of caring teachers and peers, their chances are even better. When kids have professional support, guidance, and excellent education, they’re significantly more likely to come out of a challenging time — like the pandemic — with healthy social, emotional, and academic skills and on-track development. The Jackson Hole Children’s Museum, Teton Literacy Center, and Children’s Learning Center are dedicated to collaborating and implementing innovative programming to maximize the resilience of local kids in this critical moment. With programming that includes experience-based curricula as well as an expanded focus on social-emotional development, our organizations are teaming up to ensure that kids have every chance to be as resilient as possible. Your support of Champions for Children will empower us to continue this critical work. Healthy, happy kids make for healthy, happy families — which in turn makes for a thriving workforce, economy, and community.
    [Show full text]
  • Basic Seismological Characterization for Sublette County, Wyoming By
    Basic Seismological Characterization for Sublette County, Wyoming by James C. Case, Rachel N. Toner, and Robert Kirkwood Wyoming State Geological Survey September 2002 BACKGROUND Seismological characterizations of an area can range from an analysis of historic seismicity to a long-term probabilistic seismic hazard assessment. A complete characterization usually includes a summary of historic seismicity, an analysis of the Seismic Zone Map of the Uniform Building Code, deterministic analyses on active faults, “floating earthquake” analyses, and short- or long- term probabilistic seismic hazard analyses. Presented below, for Sublette County, Wyoming, are an analysis of historic seismicity, an analysis of the Uniform Building Code, deterministic analyses of nearby active faults, an analysis of the maximum credible “floating earthquake”, and current short- and long-term probabilistic seismic hazard analyses. Historic Seismicity in Sublette County The enclosed map of “Earthquake Epicenters and Suspected Active Faults with Surficial Expression in Wyoming” (Case and others, 1997) shows the historic distribution of earthquakes in Wyoming. Eighteen magnitude 2.5 or intensity III and greater earthquakes have been recorded in Sublette County. On October 24, 1936, two earthquakes occurred in western Wyoming. The U.S.G.S. National Earthquake Information Center reported these two intensity III earthquakes as occurring in Sublette County, approximately 3 miles southwest of Cora. The original reference and description of these events, however, indicates that these earthquakes originated in the Star Valley of Lincoln County (Neumann, 1936). In June of 1945, two earthquakes occurred in southwestern Sublette County. These intensity III earthquakes were recorded on June 7, 1945, approximately 4 miles northwest of Calpet, and on June 23, 1945, approximately 3 miles northeast of Calpet.
    [Show full text]