Deliberations on the External Morphology and Modification of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS in a MONTANE DESERT STREAM Eric K
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody Arizona State University Jessica R. Corman University of Nebraska - Lincoln, [email protected] Michael T. Bogan University of California - Berkeley Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Moody, Eric K.; Corman, Jessica R.; and Bogan, Michael T., "CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM" (2016). Papers in Natural Resources. 796. http://digitalcommons.unl.edu/natrespapers/796 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Western North American Naturalist 76(2), © 2016, pp. 172–179 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody1, Jessica R. Corman1,2, and Michael T. Bogan3 ABSTRACT.—Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream sub- strates, mineral deposits can also form on benthic invertebrates. -
Scope: Munis Entomology & Zoology Publishes a Wide
790 _____________Mun. Ent. Zool. Vol. 8, No. 2, June 2013__________ LIFE CYCLE AND LABORATORY REARING OF LACCOTREPHES MACULATES (HEMIPTERA:NEPIDAE) FROM JAMMU (J & K, INDIA) Ramnik Kour*, J. S. Tara, Sheetal Sharma and Shivani Kotwal * Department of Zoology, University of Jammu (J & K), 180006, INDIA. E-mail: [email protected] [Kour, R., Tara, J. S., Sharma, S. & Kotwal, S. 2013. Life cycle and laboratory rearing of Laccotrephes maculates (Hemiptera: Nepidae) from Jammu (J & K, India). Munis Entomology & Zoology, 8 (2): 790-795] ABSTRACT: The life cycle of Laccotrephes maculates was studied by rearing from egg to adult in laboratory conditions at a temperature of 28.9± 1.08oC with description of immature stages. Individuals were reared on nymphs of Anisops sp. (Hemiptera: Notonectidae) and mosquito larvae. The incubation period averaged 12.6 days. Durations of five subsequent instars averaged 8.1, 10.0, 10.3, 11.3 and 9.1 days respectively. Total life cycle averaged 61.4 days. KEY WORDS: Anisops, Laccotrephes maculates, laboratory rearing, Hemiptera, Nepidae. Aquatic hemipterans play a significant role as the major predator of aquatic fauna (Blaustein, 1998). The members belonging to family nepidae feed on a variety of aquatic organisms such as aquatic insects and tadpoles (Menke, 1979). Laccotrephes maculates Fabr. commonly known as water scorpion belongs to family Nepidae of order Hemiptera is carnivorous and air breather. Though most of the time they live in water but sometimes emerge out of water on the ground or under stones in damp beds of recently dried streams. All legs are employed in swimming but they are not good swimmers. -
Final Version
STUDIES ON THE FAUNA OF SURINAME AND OTHER GUYANAS: No. 40. Notonectidae of Suriname with additional records of other neotropical species by N. Nieser (Zoologisch Laboratorium, Utrecht) The material studied was mainly collected by Drs. P. H. VAN in DOESBURG, Jr. during his stay Surinam and during a visit to Venezuela. In addition, specimens from the Western Hemisphere brought together in the Rijksmuseum at Leiden by various collectors in and some samples taken Surinam by Dr. P. WAGENAAR HUM- MELINCK have been studied. Some specimens in the author’s col- lection, with unknown collector were also examined. The has been Na- material deposited at the Rijksmuseum van tuurlijke Historie at Leiden (LM); the Zoologisch Museum at Utrecht (UM) and the collection of the author (N). The collection of Drs. P. H. VAN DOESBURG now belongs to the Leiden Museum and is consequently indicated LM too. The author is indebted to Drs. VAN DOESBURG (Rijksmuseum van Natuurlijke Historie, Leiden) for allowing him to study his fine collection and the materials in the Leiden Museum of which he is in charge, and to Dr. WAGENAAR HUMMELINCK for further material. Both have read the manuscript critically and provided valuable suggestions for its completion. The Notonectidae can be distinguished from other families of Hemiptera- Heteropteraby the following characteristics: Antennae shorter than the rostrum head not head; eyes prominent; 4-segmented; fused with prothorax, without ocelli. Abdomen higher than wide, without respiratory funnel, with a ventral median carina laterally beset with hairs (in Buenoa sometimes few). The animals are aquatic raptorial insects and swim ontheir backs. -
(Coleoptera: Curculionidae) for the Control of Salvinia
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana Katherine A. Parys Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Parys, Katherine A., "Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana" (2011). LSU Doctoral Dissertations. 1565. https://digitalcommons.lsu.edu/gradschool_dissertations/1565 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA: CURCULIONIDAE) FOR THE CONTROL OF SALVINIA MINIMA BAKER (SALVINIACEAE), AND INTERSPECIES INTERACTIONS POSSIBLY LIMITING SUCCESSFUL CONTROL IN LOUISIANA. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology By Katherine A. Parys B.A., University of Rhode Island, 2002 M.S., Clarion University of Pennsylvania, 2004 December 2011 ACKNOWLEDGEMENTS In pursing this Ph.D. I owe many thanks to many people who have supported me throughout this endeavor. -
Studies on the Genitalia of Some Aquatic and Semi-Aquatic Heteroptera
Studies on the Genitalia of some Aquatic and Semi-Aquatic Heteroptera By B. KUMAR lDeparlmenl of Zoolog-.". Birla College. Pilani. Rajasthan, India) Introduction and Acknowledgementr Genitalia of aquatic Heteroptera have attracted the attention of many workers and there are several valuable works concerning them. Particular mention may be made here of the studies of Pruthi (1925), Larsen (1938), Truxal (1952) and Scudder (1959). But a need for further study of these organs becomes apparent due to their taronomic value. Present paper deals rvith the study of genitalia in twelve families of aquatic and semi-aquatic Heteroplera and their bearing on the classification. The study reveals many inleresting facts hitherto unknown. The author wishes to express his gratitude to Dr. lI. C. Parsons (Canada) for kindly donating many of the otherwise unavailable specimens used in the present study. Grateful thanks are also due to l{r. R. J. lzzard of British \luseunl (Natural History) London for identifying some of the specimens used in the presenl work. Dr. A. K. Datta has given many helpful suggestions itr these invesligations for which the author feels indebted. Syetematic Coneideration of the Genitalia of the Familiee of Aquatic and Semi-Aquatic Heteroptera SALDOIDEA Saldidae Ouipositor (Figs. 1, 2, 3l .SnIrIn sp. probablg dironi First valvifers cone shaped and make contact by lheir poinled ends rvith lhe basivah'ulae of first valvulae; first yalvula is an elongated curved plate rvhich bears distally strong teeth on lhe upper surface, the inner surface of first valvula bears a elongated sclerite (basivalvula), pointed outer and of n'hich makes coutact with the first valvifer as mentioned above; first yalvula bears an arcuate ramus which curves over the first valvifer to make contact by a sclerite (n) with the anlerior extension of the ninth paratergile; second Entomol.Ts. -
Adult Nepidae of Florida
Graduate Student Project – Insect Classification – ENY 6166 University of Florida - Kendra Pesko - December 8, 2004 Adult Nepidae of Florida The family Nepidae, common name “waterscorpions”, is an aquatic insect family in the order Hemiptera (suborder Heteroptera). Of 13 species and three genera known throughout the United States and Canada, only five species in one genus (Ranatra) occur in Florida. Ranatra species are found in aquatic vegetation and debris, and can be collected by sweeping an aquatic net through vegetation along the edges of lakes. They will cling to emergent vegetation such as cattails to hide during the day, and return to the water surface at night. Ranatra species also make night time flights in order to colonize new areas, and will often end up on car windshields, which they may mistake for open water. Nepidae are unique among water bugs in possessing a stridulatory mechanism which consists of serrations on their fore-coxal cavity that contact coarse ridges which appear to be sclerotized setae. Both nymphs and adults of Ranatra possess these structures. Checklist of Species of Florida Ranatra Fabricius (Hemiptera: Heteroptera: Nepidae) R. australis Hungerford R. buenoi Hungerford R.drakei Hungerford R. kirkaldyi Torre-Bueno R. nigra Herrich-Schaeffer Key to Species of Adult Florida Nepidae (adapted from Sites and Polhemus 1994) 1. Prothorax with mid-ventral hollow groove (fig. 6)…Ranatra buenoi Hungerford 1’. Prothorax without mid-ventral hollow groove, but may be ventrally flattened or have a paired ventro-lateral longitudinal depressed lines .........................................................2 2. Penultimate antennal segment with lateral projection absent or if present, < ½ length of terminal antennal segment (Figs. -
Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183 -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Butterflies of North America
Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS -
Liste Des Punaises Du Québec Et Des Régions Adjacentes (Hemiptera : Heteroptera)
ENTOMOFAUNE DU QUÉBEC LISTE DES PUNAISES DU QUÉBEC ET DES RÉGIONS ADJACENTES (HEMIPTERA : HETEROPTERA) Jean-François Roch DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 Entomofaune du Québec 2. Photo de la page frontispice Punaise terne Lygus lineolaris (P. de B.) par Lina Breton. Arsenault, J. & L. Breton. 2003. Insectes et maladies des peupliers dans les pépinières forestières. Ministère des Ressources naturelles, de la Faune et des Parcs, Direction de la conservation des forêts, Gouvernement du Québec. 38 p. Entomofaune du Québec inc. 637-108 boulevard Talbot Saguenay, Québec G7H 6A4 (418) 545-5011, poste 2461 (418) 545-5012 Adrélec : [email protected] Site sur la Toile : http://entomofaune.qc.ca/ DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 HÉMIPTÈRES - HÉTÉROPTÈRES 3. INTRODUCTION Ce document présente une liste des punaises trouvées dans le territoire du Québec et ses régions adjacentes. Elle résulte d’une revue de la littérature entomologique, d’un inventaire de collections appartenant à des organismes publics et à des entomologistes et d’une recherche sur internet. Provancher fut le premier à publier, de 1885 à 1890, un ouvrage d’identification des punaises pour le Canada, mais il donne très peu d’information sur la répartition des espèces. Uhler (1917) cite 163 espèces pour la province et 286 autres dans les régions adjacentes. Fournier (1950) mentionne que Moore (1950) catalogua 560 espèces et variétées. Hutchinson (1979), en se basant seulement sur la littérature entomologique, produisit une liste préliminaire de 101 punaises aquatiques et subaquatiques du Québec, mais cette liste comporte de nombreuses erreurs. Larochelle (1984) publia un important ouvrage d’identification sur les punaises terrestres du Québec, rapportant 488 espèces; en outre, il annexe une liste de 283 espèces et sous-espèces pouvant se rencontrer dans la province. -
Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors. -
Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.