Model Independent Constraints on Geometrical Extended Theories of Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Model Independent Constraints on Geometrical Extended Theories of Gravity Department of Physics Model independent constraints on geometrical extended theories of gravity Mar´ıaOrtiz Ba~nos Supervisors: Dr. Ruth Lazkoz S´aez Dr. Vincenzo Salzano A thesis submitted for the degree of Doctor of Physics 2016-2020 (cc)2021 MARIA ORTIZ BAÑOS (cc by-nc-sa 4.0) Acknowledgements I arrived in Bilbao in 2016 and now, almost five years later, I look back over these past years and remember all the people that have helped me all along this way. First of all, I would like to acknowledge my supervisors, Ruth Lazkoz and Vincenzo Salzano. Thank you for your guidance during this thesis and for teaching me the tools to work together and get through such an interesting field as Cosmology. Of course, I am also grateful to all the people of the Department of Theoretical Physics and History of Science: Alex Feinstein, David Brizuela, Jon Urrestilla, Jos´e Juan Blanco Pillado, Jos´eM. Senovilla, Juan M. Aguirregabiria, Ivan De Martino, Igor Bandos, Manuel Angel´ Valle, G´ezaT´oth,Lianao Wu, Michele Modugno, Thomas Broadhurst and Jesus Ib´a~nez.Thanks also to ´I~nigoEgusquiza, for helping me with the bureaucracy and, of course, thanks to Ra¨ul,the master of computers, who has been always available to make my computer work. Finally, I do not want to forget Montse, who has helped me to solve many problems related with university procedures. Regarding financial support, this thesis has been possible thanks to the FPI fel- lowship contract from the Spanish Ministry of Economy and Competitiveness (BES- 2015-071489) linked to the research project FIS2014-57956-P and also thanks to the Basque Government through research project No. GIC17/116-IT956-16. Besides, some research stays have been possible thanks to the fundings coming from the COST Action CA15117 (CANTATA). During these years, I have done some collaborations and many visits and stays, all of them enriching and profitable. Firstly, I want to express my gratitude to Mariam Bouhmadi L´opez. I have learnt a lot from our time together. Secondly, I want to acknowledge the team from the Cosmology Group of the University of Szczecin. I have always felt very welcome there. I will always remember Szczecin as the coldest and the most special trip of my PhD, where I took Enzo's first lessons. Finally, I want to thank all the team from the Institute of Astrophysics and Space Sciences of the University of Lisbon. Specially, I want to thank Noemi Frusciante, who, even if we could not keep on the project we started, gave me very useful lessons. And, of course, I have to thank Francisco S.N. Lobo for inviting me to Lisbon. It was a great experience to work with you, not only from a scientific perspective but also from a personal one. I really enjoyed my time there. To end up, I want to thank my teachers in Murcia, in Zaragoza and in Marseille, specially Christian Marinoni, who made me fall in love with Cosmology; and also my favourite physics teacher at high school, Tom´asRup´erez,as the one who lighted the spark which made me study physics. Estos a~nosme he cruzado con personas maravillosas en muchas conferencias, en Euskal Herria, en Bilbo y, en concreto, en la universidad. A veces hemos estado m´as cerca y otras m´aslejos, pero siempre es un placer compartir con vosotras. Lehenik eta behin, eskerrak eman nahi dizkiet nire bulegokideei: Pablo, Joao, Asier, Mikel, Fran eta Dani. Asko gozatu dut zuekin egoteaz. Jarraitzeko, Ikerri, nire neba-akademikoa, eskerrik asko nire zalantzak erantzuteko beti hurbil egoteagatik. Laguntza handi bat izan zara niretzat. Borja eta I~naki,milesker zure adiskideta- sunagatik. Ailegatu nintzenetik, oso erraza izan da zuekin hitz egitea eta ez dakizue zenbat lagundu didazuen. Como el camino es largo, no me puedo olvidar de las personas que, nada m´asllegar, me acogieron con los brazos abiertos, as´ıcomo de las que se han ido a~nadiendo en el camino en Bilbo, en Lisboa y en Szczecin: Laura, Aitziber, Naiara, Santi, Nastassja, Olatz, Charlotte, Giuseppe, Adri´an,Iagoba, Joanes, I~nigo, Iraultza, Jeremy, Mark, Julen, Kepa, Mattin, Peio, Xiao-Hang, Airam, Alvaro,´ Asier, Sara, Jose, Marco, Isma, Hussain, Manuel, Federico y alguna persona m´as que seguro que se me escapa. Quiero agradecer tambi´ena mis pisukides Laura, Vir, Silvia, Raulet y Enrique. Por soportarme, porque el roce hace el cari~noy porque a partir de ah´ıya no hay vuelta atr´as. Gracias a mi gente murciana, en especial a Esmeralda y a Pablo. Hab´eissido el chorrico de lim´onque mi tesis necesitaba. Y, por supuesto, gracias a mis valencianas de pega, Cynthia y Arantxa, por vuestro abrazo constante. Eskerrik asko Maialen, etapa hau askoz errazagoa izan da zugaz konpartitzeagatik. Zure pazientzia, maitasuna eta alaitasuna funtsezkoak izan dira. Por ´ultimo,quiero agradecer a mi madre, Isabel, y a mi padre, Tom´as,por estar siempre al pie del ca~n´on,por aguantarme, aconsejarme y animarme. Por enterarse m´aso menos de lo que hago y ser capaces de dec´ırseloa la gente. En estos momentos no dejo de pensar en toda mi familia, los que est´any las que no, desde Murcia hasta Barcelona. A todas vosotras: <Mirad lo que hab´eisconseguido! ii Resumen Desde los primeros estudios sobre el uso de Supernovas Tipo Ia a modo de candelas est´andar,sabemos que el universo se expande aceleradamente. La descripci´onf´ısico- matem´aticade este fen´omenopuede abordarse desde perspectivas muy diferentes. Por un lado, si se quiere mantener un universo descrito por la teor´ıade la Relatividad General de Einstein, es necesario acudir a la idea de que un tipo de fluido diferente de la materia bari´onicadebe estar presente. Dentro de este escenario, una posibilidad es incluir la denominada constante cosmol´ogica,que puede interpretarse como un fluido con ecuaci´onde estado constante. De hecho, este modelo es el que actualmente est´am´asaceptado y es considerado el modelo est´andarde la Cosmolog´ıa. Otra opci´onbastante m´asgeneral es considerar un fluido din´amico,lo que normalmente se conoce como energ´ıaoscura. Por ´ultimo,una tercera perspectiva que puede adoptarse, conlleva dejar de lado el contexto de la Relatividad General y establecer otro marco te´oricopartiendo de una definici´ondiferente de la acci´on. Dentro de este grupo se encuentran las teor´ıasde gravedad modificada. Un ingrediente crucial a la hora de describir de qu´emanera ocurren las inter- acciones en el universo y c´omose forman las estructuras es la densidad de energ´ıa presente en ´el.Por un lado, tenemos la materia bari´onica, la radiaci´ony los neutrinos (cuya naturaleza es conocida hoy d´ıa).Por otro lado, hemos de tener en cuenta que las observaciones cosmol´ogicasy astrof´ısicasdel entramado que forma la estructura del universo se~nalanla presencia de otro componente m´as,generalmente conocido como materia oscura. Por ´ultimo,el fen´omenode la expansi´ondel universo, al menos desde una perspectiva conservadora, exige la presencia de otro componente de naturaleza desconocida, la energ´ıaoscura. No obstante, en el marco de la gravedad modificada, donde la descripci´onde las interacciones cambia completamente, esta energ´ıaoscura es completamente prescindible y de hecho, es una de las motivaciones para estudiar alternativas a la Relatividad General de Einstein. Otra alternativa ampliamente estudiada dentro del marco de la Relatividad Gen- eral es la denominada energ´ıaoscura unificada. Dado que la presencia de energ´ıa oscura y de materia oscura en el universo es aproximadamente del mismo orden, y te- niendo en cuenta que desconocemos la naturaleza de ambas, parece l´ogicoconsiderar un fluido capaz de describir el comportamiendo de ambos componentes. En esta tesis analizamos cada una de las perspectivas expuestas en lo anterior. En el primer Cap´ıtulo 1, hacemos una breve introducci´ona la cosmolog´ıamoderna desde un punto de vista hist´oricoy explicamos los pilares fundamentales sobre los que se sustenta. Presentamos un esquema general sobre la energ´ıaoscura y la gravedad modificada y, finalmente, describimos en detalle los datos observacionales que hemos usado, as´ıcomo la base de la estad´ısticaBayesiana, haciendo ´enfasisen los m´etodos de Monte Carlo Markov Chain, una pieza fundamental en nuestro trabajo. En el Cap´ıtulo2, estudiamos las teor´ıas f(R) desde un enfoque \observational tester friendly", y para ello utilizamos el redshift. Los resultados de este estudio han sido publicados en: • \f(R) modifications: from the action to the data", R. Lazkoz, M. O-B, V. Salzano, Eur. Phys. J. C (2018) 78: 213. En el Cap´ıtulo3, aplicamos el procedimiento anterior a una clase diferente de teor´ıas de gravedad modificada menos explotadas. En concreto, trabajamos con la \no-metricidad", Q, explorando un m´etodo similar al aplicado para las teor´ıas f(R) (que consiste en una generalizaci´ondel Lagrangiano), pero incluyendo objetos geom´etricoscompletamente diferentes, dando lugar a las teor´ıas f(Q). Este tipo de teor´ıasofrece una nueva perspectiva por investigar que servir´apara estudiar diferentes fen´omenoscosmol´ogicospara los que a´unno existe una explicaci´onconsensuada. El an´alisisrealizado en torno a este tema ha ido publicado en: • \Observational constraints on f(Q) gravity", R. Lazkoz, F. S. N.Lobo, M. O-B, V. Salzano, Phys. Rev. D 100, 104027 (2019). En el Cap´ıtulo4, siguiendo con el tema de las teor´ıasde gravedad modificada, analizamos una alternativa que forma parte de las teor´ıas f(R) que incluyen un acoplo no-m´ınimoentre la geometr´ıay la materia. Este tipo de teor´ıaspermite sustituir el componente de energ´ıaoscura por un acoplo cuyo valor puede modular el efecto de un componente repulsivo que produce la presente expansi´onacelerada del universo.
Recommended publications
  • Summary As Preparation for the Final Exam
    UUnnddeerrsstatannddiinngg ththee UUnniivveerrssee Summary Lecture Volker Beckmann Joint Center for Astrophysics, University of Maryland, Baltimore County & NASA Goddard Space Flight Center, Astrophysics Science Division UMBC, December 12, 2006 OOvveerrvviieeww ● What did we learn? ● Dark night sky ● distances in the Universe ● Hubble relation ● Curved space ● Newton vs. Einstein : General Relativity ● metrics solving the EFE: Minkowski and Robertson-Walker metric ● Solving the Einstein Field Equation for an expanding/contracting Universe: the Friedmann equation Graphic: ESA / V. Beckmann OOvveerrvviieeww ● Friedmann equation ● Fluid equation ● Acceleration equation ● Equation of state ● Evolution in a single/multiple component Universe ● Cosmic microwave background ● Nucleosynthesis ● Inflation Graphic: ESA / V. Beckmann Graphic by Michael C. Wang (UCSD) The velocity- distance relation for galaxies found by Edwin Hubble. Graphic: Edwin Hubble (1929) Expansion in a steady state Universe Expansion in a non-steady-state Universe The effect of curvature The equivalent principle: You cannot distinguish whether you are in an accelerated system or in a gravitational field NNeewwtotonn vvss.. EEiinnssteteiinn Newton: - mass tells gravity how to exert a force, force tells mass how to accelerate (F = m a) Einstein: - mass-energy (E=mc²) tells space time how to curve, curved space-time tells mass-energy how to move (John Wheeler) The effect of curvature A glimpse at EinsteinThe effect’s field of equationcurvature Left side (describes the action
    [Show full text]
  • Abstract Generalized Natural Inflation and The
    ABSTRACT Title of dissertation: GENERALIZED NATURAL INFLATION AND THE QUEST FOR COSMIC SYMMETRY BREAKING PATTERS Simon Riquelme Doctor of Philosophy, 2018 Dissertation directed by: Professor Zackaria Chacko Department of Physics We present a two-field model that generalizes Natural Inflation, in which the inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spon- taneously broken, and the radial mode is dynamical. Within this model, which we designate as \Generalized Natural Inflation”, we analyze how the dynamics fundamentally depends on the mass of the radial mode and determine the size of the non-Gaussianities arising from such a scenario. We also motivate ongoing research within the coset construction formalism, that aims to clarify how the spontaneous symmetry breaking pattern of spacetime, gauge, and internal symmetries may allow us to get a deeper understanding, and an actual algebraic classification in the spirit of the so-called \zoology of con- densed matter", of different possible \cosmic states", some of which may be quite relevant for model-independent statements about different phases in the evolution of our universe. The outcome of these investigations will be reported elsewhere. GENERALIZED NATURAL INFLATION AND THE QUEST FOR COSMIC SYMMETRY BREAKING PATTERNS by Simon Riquelme Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Advisory Committee: Professor Zackaria Chacko, Chair/Advisor Professor Richard Wentworth, Dean's Representative Professor Theodore Jacobson Professor Rabinda Mohapatra Professor Raman Sundrum A mis padres, Kattya y Luis. ii Acknowledgments It is a pleasure to acknowledge my adviser, Dr.
    [Show full text]
  • Degree in Mathematics
    Degree in Mathematics Title: Singularities and qualitative study in LQC Author: Llibert Aresté Saló Advisor: Jaume Amorós Torrent, Jaume Haro Cases Department: Departament de Matemàtiques Academic year: 2017 Universitat Polit`ecnicade Catalunya Facultat de Matem`atiquesi Estad´ıstica Degree in Mathematics Bachelor's Degree Thesis Singularities and qualitative study in LQC Llibert Arest´eSal´o Supervised by: Jaume Amor´osTorrent, Jaume Haro Cases January, 2017 Singularities and qualitative study in LQC Abstract We will perform a detailed analysis of singularities in Einstein Cosmology and in LQC (Loop Quantum Cosmology). We will obtain explicit analytical expressions for the energy density and the Hubble constant for a given set of possible Equations of State. We will also consider the case when the background is driven by a single scalar field, obtaining analytical expressions for the corresponding potential. And, in a given particular case, we will perform a qualitative study of the orbits in the associated phase space of the scalar field. Keywords Quantum cosmology, Equation of State, cosmic singularity, scalar field. 1 Contents 1 Introduction 3 2 Einstein Cosmology 5 2.1 Friedmann Equations . .5 2.2 Analysis of the singularities . .7 2.3 Reconstruction method . .9 2.4 Dynamics for the linear case . 12 3 Loop Quantum Cosmology 16 3.1 Modified Friedmann equations . 16 3.2 Analysis of the singularities . 18 3.3 Reconstruction method . 21 3.4 Dynamics for the linear case . 23 4 Conclusions 32 2 Singularities and qualitative study in LQC 1. Introduction In 1915, Albert Einstein published his field equations of General Relativity [1], giving birth to a new conception of gravity, which would now be understood as the curvature of space-time.
    [Show full text]
  • Gravitational Decoupling in Higher Order Theories
    S S symmetry Article Gravitational Decoupling in Higher Order Theories Joseph Sultana Department of Mathematics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; [email protected] Abstract: Gravitational decoupling via the Minimal Geometric Deformation (MGD) approach has been used extensively in General Relativity (GR), mainly as a simple method for generating exact anisotropic solutions from perfect fluid seed solutions. Recently this method has also been used to generate exact spherically symmetric solutions of the Einstein-scalar system from the Schwarzschild vacuum metric. This was then used to investigate the effect of scalar fields on the Schwarzschild black hole solution. We show that this method can be extended to higher order theories. In particular, we consider fourth order Einstein–Weyl gravity, and in this case by using the Schwarzschild metric as a seed solution to the associated vacuum field equations, we apply the MGD method to generate a solution to the Einstein–Weyl scalar theory representing a hairy black hole solution. This solution is expressed in terms of a series using the Homotopy Analysis Method (HAM). Keywords: Einstein–Weyl gravity; gravitational decoupling; black holes 1. Introduction Obtaining exact physically relevant solutions of Einstein’s field equations is by no means a straightforward task. The spherically symmetric perfect fluid analytic solutions of Einstein’s equations have been derived and analyzed in detail [1,2]. However, as soon as Citation: Sultana, J. Gravitational one relaxes the assumption of a perfect fluid source and considers more realistic sources, Decoupling in Higher Order Theories. then the problem of finding analytic solutions becomes intractable.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Research Article Conformal Mappings in Relativistic Astrophysics
    Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 196385, 12 pages http://dx.doi.org/10.1155/2013/196385 Research Article Conformal Mappings in Relativistic Astrophysics S. Hansraj, K. S. Govinder, and N. Mewalal Astrophysics and Cosmology Research Unit, School of Mathematics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa Correspondence should be addressed to K. S. Govinder; [email protected] Received 1 March 2013; Accepted 10 June 2013 Academic Editor: Md Sazzad Chowdhury Copyright © 2013 S. Hansraj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We describe the use of conformal mappings as a mathematical mechanism to obtain exact solutions of the Einstein field equations in general relativity. The behaviour of the spacetime geometry quantities is given under a conformal transformation, and the Einstein field equations are exhibited for a perfect fluid distribution matter configuration. The field equations are simplified andthenexact static and nonstatic solutions are found. We investigate the solutions as candidates to represent realistic distributions of matter. In particular, we consider the positive definiteness of the energy density and pressure and the causality criterion, as well as the existence of a vanishing pressure hypersurface to mark the boundary of the astrophysical fluid. 1. Introduction By considering the case of a uniform density sphere, Schwarzschild [3]foundauniqueinteriorsolution.However, The gravitational evolution of celestial bodies may be mod- the problem of finding all possible solutions for a nonconstant eled by the Einstein field equations.
    [Show full text]
  • Ex Latere Christi Ex Latere Christi
    EX LATEREWoman: Her Nature & CHRISTIVirtues THE PONTIFICAL NORTH AMERICAN COLLEGE WINTER 2020 - ISSUE 1 1 11 First Feature 32 Second Feature 34 Third Feature 36 Fourth Feature EX LATERE CHRISTI EX LATERE CHRISTI Rector, Publisher (ex-officio) VERY Rev. PETER C. HARMAN, STD Academic Dean, Executive Editor (ex-officio) Rev. JOHN P. CUSH, STD Editor-in-Chief Rev. RANDY DEJESUS SOTO, STD Managing Editor MR. AleXANdeR J. WYVIll, PHL Student Editor MR. AARON J. KellY, PHL Assistant Student Editor MR. THOMAS O’DONNell, BA www.pnac.org TAble OF CONTENTS A WORD OF INTRODUCTION FROM THE EXECUTIVE EDITOR 7 Rev. John P. Cush, STD EX LATERE CHRISTI 10 Msgr. William Millea, STL, JCD SAlve, AEDES MATER! 11 Rev. Randy DeJesus Soto, STD WOMAN: HER NATURE & VIRTUES 13 Sr. Mary Angelica Neenan, O.P., STD AS THE PERSON GOES, SO GOES THE WHOLE WORLD 39 Aaron J. Kelly, PHL BEING IN THE RIGHT 51 Alexander J. Wyvill, PHL HANS URS VON BALTHASAR AND DIALOGICAL PHILOSOPHY 91 Rev. Walter R. Oxley, STD JESUS CHRIST: WORD, PREACHER AND LORD 101 Rev. Randy DeJesus Soto, STD HOMILY FOR THE MASS OF THE PASSION OF ST. JOHN THE BAPTIST 131 Rev. Adam Y. Park, STL LOGOS, CREATION AND SCIENCE 135 Rev. Joseph Laracy, STD HOLINESS 163 Msgr. James McNamara, M.Div., MS, PA CATHERINE PICKSTOCK’S EUCHARISTIC THEOLOGY 167 Rev. John P. Cush, STD CONTRIBUTORS 211 6 Rev. JOHN P. CUSH, STD A WORD OF INTRODUCTION FROM THE EXecUTIve EDITOR As the college’s academic dean, it is a joy to present to you Ex Latere Christi, the first academic journal published by the faculty, alumni, and friends of the Pontifical North American College.
    [Show full text]
  • Axisymmetric Spacetimes in Relativity
    9, tr' Axisymmetric Spacetimes in Relativity S. P. Drake Department of Physics and Mathematical Physics îåäi,î31 tÏfåi" Australia 22 July 1998 ACKNO\MTEDGEMENTS It is an unfortunate fact that only my name Soes on this thesis' This is not the work of one person, it is an accumulation of the labor of many' AII those who have helped me in ways that none of us could image should be acknowledged, but how. None of this would have been possible were it not for the wisdom and guidance of my supervisor Peter Szekeres. I have often pondered over the difficulty of supervising students. It must be heart-bleaking to watch as students make necessary mistakes. Patience I'm sure must be the key' So for his wisdom, patience and kindness I am deeply indebted to Peter Szekeres. Without the love and support of my family this thesis would never have begun, much less been completed, to them I owe my life, and all that comes with it. It would take too long to write the names of all those I wish to thank. Those who are special to me, have helped me through so much over the years will receive the thanks in Person. I would like to the department of physics here at Adelaide where most of my thesis work was done. I would like to thank the department of physics at Melbourne university, where I did my undergraduate degree and began my PhD. I would like to thank the university of Padova for there hospitality dur- ing my stay there.
    [Show full text]
  • There's a Future. Visions for a Better World
    The Past Is Prologue: The Future and the History of Science José Manuel Sánchez Ron >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> “Whereof what’s past is prologue, what to come In yours and my discharge” William Shakespeare, The Tempest, Act II, Scene 1 We live on the borderline between the past and the future, with the present constantly eluding us like a shadow that fades away. The past gives us memories and knowledge – confirmed or awaiting confirmation: a priceless treasure that shows us the way forward. However, we really do not know where that road will lead us in the future, what new features will appear in it, or whether or not it will be easily passable. Of course, these comments can be obviously and immediately applied to life, to individual and collective biographies: think, for example, of how some civilisations replaced others over the course of history, to the surprise — in most cases — of those who found themselves cornered by the passage of time. Yet they also apply to science, the human activity with the greatest capacity for making the future very different from the past. Precisely because of the importance of the future to our lives and societies, an issue that has repeatedly emerged is whether it is possible to predict the future, doing so based on a solid knowledge of what the past and the present offer us. If it is important to understand where historical and individual events are headed, it is even more important to do so for the scientific future. Some may wonder, “Why is it more Blanca Muñoz, Espacio combado magnético (model), 1998 important? Are the life, lives and stories — present and future — of individuals and societies not truly essential? Should we not be interested in these beyond all other considerations?” Admittedly so, yet it still must be stressed that scientific knowledge is a central — irrevocably central — element in the future of these individuals and societies, and, in fact, in the future of humanity.
    [Show full text]
  • Redshifts Vs Paradigm Shifts: Against Renaming Hubble's
    Redshifts vs Paradigm Shifts: Against Renaming Hubble’s Law Cormac O’Raifeartaigh and Michael O’Keeffe School of Science and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland. Author for correspondence: [email protected] Abstract We consider the proposal by many scholars and by the International Astronomical Union to rename Hubble’s law as the Hubble-Lemaître law. We find the renaming questionable on historic, scientific and philosophical grounds. From a historical perspective, we argue that the renaming presents an anachronistic interpretation of a law originally understood as an empirical relation between two observables. From a scientific perspective, we argue that the renaming conflates the redshift/distance relation of the spiral nebulae with a universal law of spatial expansion derived from the general theory of relativity. We note that the first of these phenomena is merely one manifestation of the second, an important distinction that may be relevant to contemporary puzzles concerning the current rate of cosmic expansion. From a philosophical perspective, we note that many of the named laws of science are empirical relations between observables, limited in range, rather than laws of universal application derived from theory. 1 1. Introduction In recent years, many scholars1 have suggested that the moniker Hubble’s law – often loosely understood as a law of cosmic expansion – overlooks the seminal contribution of the great theoretician Georges Lemaître, the first to describe the redshifts of the spiral nebulae in the context of a cosmic expansion consistent with the general theory of relativity. Indeed, a number of authors2 have cited Hubble’s law as an example of Stigler’s law of eponymy, the assertion that “no scientific discovery is named after its original discoverer”.3 Such scholarship recently culminated in a formal proposal by the International Astronomical Union (IAU) to rename Hubble’ law as the “Hubble-Lemaître law”.
    [Show full text]
  • PUBLICATIONS 1. Compact Four-Dimensional Einstein Manifolds
    PUBLICATIONS 1. Compact four-dimensional Einstein manifolds, J.Differential Geometry 9 (1974), 435- 441. 2. Harmonic spinors, Advances in Mathematics 14 (1974), 1-55. 3. On the curvature of rational surfaces, Proc. Sympos. Pure Math. XXVII, pp 65-80, Amer. Math. Soc. Providence RI (1975) 4. (with M F Atiyah, I M Singer) Deformations of instantons, Proc. Nat. Acad. Sci. USA (1977) 7, 2662-2663. 5. (with M F Atiyah, I M Singer) Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser A 362 (1978), 425-461. 6. Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85 (1979), 465-476. 7. (with M F Atiyah, V G Drinfeld, Yu I Manin) Construction of instantons, Phys. Lett. A 65 (1978), 185-187. 8. Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), 173-191. 9. K¨ahleriantwistor spaces, Proc. London Math. Soc. 43 (1981), 133-150. 10. Complex manifolds and Einstein's equations, in \Twistor geometry and nonlinear sys- tems" , H.Doebner et al (Eds), Lecture Notes in Mathematics 970, 73-99, Springer, Berlin (1982). 11. Monopoles and geodesics, Commun. Math. Phys. 83 (1982) 579-602. 12. On the construction of monopoles, Commun. Math. Phys. 89 (1983) 145-190. 13. The Yang-Mills equations and the topology of 4-manifolds (after Simon Donaldson), Bourbaki seminar vol 1982/83, 167-178, Ast´erisque 105-106, Soc. Math. France, Paris (1983). 14. \Global Riemannian geometry". Proceedings of the symposium held at the University of Durham, Durham, July 1983. Edited by T. J. Willmore and N.
    [Show full text]
  • General Relativistic Static Fluid Solutions with Cosmological Constant
    General Relativistic Static Fluid Solutions with Cosmological Constant Diplomarbeit von Christian G. B¨ohmer aus Berlin eingereicht bei der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam arXiv:gr-qc/0308057v3 4 Feb 2006 durchgefuhrt¨ am Max-Planck-Institut fur¨ Gravitationsphysik - Albert-Einstein-Institut - in Golm unter Anleitung von Prof. Dr. Bernd G. Schmidt Contents 1 Introduction 3 2 Cosmological TOV equation 7 2.1 TheCosmologicalConstant . 7 2.2 Remarks on the Newtonian limit . 8 2.3 TOV-Λequation ......................... 8 2.4 Schwarzschild-anti-de Sitter and Schwarzschild-de Sitter so- lution ............................... 11 2.5 Newtonianlimits ......................... 13 2.5.1 Limit of Schwarzschild-anti-de Sitter and Schwarzschild- deSittermodels ..................... 13 2.5.2 Limit of the TOV-Λ equation . 13 3 Solutions with constant density 15 3.1 Spatial geometry of solutions . 16 3.2 Solutions with negative cosmological constant . 17 3.2.1 Stellar models with spatially hyperbolic geometry . 18 3.2.2 Joining interior and exterior solution . 20 3.2.3 Stellar models with spatially Euclidean geometry . 22 3.2.4 Stellar models with spatially spherical geometry . 24 3.3 Solutions with vanishing cosmological constant . 27 3.4 Solutions with positive cosmological constant . 28 3.4.1 Stellar models with spatially spherical geometry . 28 3.4.2 Solutions with exterior Nariai metric . 31 3.4.3 Solutions with decreasing group orbits at the boundary 33 3.4.4 Decreasing solutions with two regular centres . 35 3.4.5 The Einstein static universe . 37 3.4.6 Increasing solutions with two regular centres . 38 3.4.7 Solutions with geometric singularity .
    [Show full text]