ARTICLE 77

t , , , ) r m e #

o r you get i tans enus f fr i g ências, rr i 2010a eaceae Cristina , t , bed . # exhibits a o ri T oriaceae Pr y l p , n i desc to the families

2009a g . s 8(1): 77–97 (2017) 77–97 8(1): · in al Key words: Clados Endophytic fung Multigene phylogeny E g aceae to colonise distinct t enus, few reports of y mini e =!** g es, ma o i Pin , '| T. h the above conditions can be waived i f

spec y d d Crous pe ( n 2016), respectively. In et al. 2016), respectively. y ze i a MA MA Toxicocladosporium Toxicocladosporium

I um m i s , (2009) reported the isolation of y solated as t i . n l Myrtaceae , a

Johannes Z. Groenewald Johannes legalcode. Any o , / non , t a y ospor 3.0 e 1,2 / d . nov. a T. irrit T. l pp are s s by-nc-nd / Strelitziaceae rom cacti in Brazil, and in Brazil, rom cacti coc

ladosporium i comb. nov. f i d C ox licenses Cyperaceae / HV]„;E##$;$#!! T

an , % , Similar results were obtained in Italy by Piña osporum . 2017. yd y aceae al species have been described imilar to ecies am r g S Gladstone A. Silva Gladstone e hl , T. immaculatum T. p N. leucadendri t 1

a h creativecommons.org . c % \ / t // !**!*!*#!*‡/ the exception being isolation of have been published in different countries. For example, have been published in different ' *_ in Portugal, Mesquita substrates and families. Almost all species in this substrates and plant families. were described from plant species belon T. irritans T. widespread distribution and the capacit mouldy paint (Crous et al. 2007) and a human bronchoalveola As Rubiaceae addition to species descriptions in this % i T i and as main phylogenetic loci to recognise

s

2 d i : m an tub2

- u x ound at http: d f i o l T. cact T. E' no en. nov. an

p pical en. nov., w en. nov., 2 or g several new fun g y um i

y Ca p /;V *#*#*_ rpb um ve

, Laura M. Paiv , Laura M. i , um * m i ollowing conditions f #‡ ospor os u the t d i g <V a . 2007). After . 2007). d ospor l l Melocactus zehntner ospor d A this work, which can be a d f a or l l a coc l i oriaceae act et a p and

p

coc ox i ‡ e i roduction of several described here as eoc T # h , p N s ox os n coc i T

i (2007) to accommodate anisms, and recentl d . y l t ƒ; g i as Clados orium 22 a E' ( d p gounelle l ox ecies were described in the ub et a t vers p T of or di proposes t y < \ " # "‡ / \ +{ ubsp. and dy eoc orium es c s i 2 p

i i ere name , N t z% i n VX]V\% . h P

r es. 22 rpb2 s stu i @V%'X d f Toxicoclados hi ub 1,2 ec ” because of the t hy en enetic position and limited number of unique nucleotide differences. Six strains previousl Six nucleotide differences. enetic position and limited number of unique

p s d g and Pedro W. Crou and Pedro W. enus s d 1 n , g “V\ ON lo a

. an 1,2 y ;% op d um O i euca e 2 l assess spec d irrit s: <V d ermore, t “ ib or CTI k . tion o Toxicoclados tans, was isolated from mouldy paint in Suriname : Submitted: 16 March 2017; Accepted: 24 April 2017; Published: 1 Ma Accepted: 24 Submitted: 16 March 2017;

h i p T l rpb2 A U a p i rr , i os ;Œƒ/ urt c ed H escr r D A ‚ . act d F to e ve wor d : on an i m T a i +z d l rom the copyright holder. Nothing in this license impairs or restricts the author’s Nothing in moral rights. rom the copyright holder. t O f i , a ree to share - to copy, distribute and transmit the work, under the ree to share - to copy, act ) was described by Crous f ME 8 · N vat mm

n s Pilosocereus gounelle i s es. ne i h U g u n coc co er i ig c ion has an important diversit L ew en d d n- VŒ'@ g hi O outh Africa n ss *# o ox 2017 International Mycological Associatio 2017 International Mycological @X;\\%]"# "‡/Ž\+ H ]]'= ;H]]=';HX@]/%;\%H Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Bioci Av. de Pernambuco, Prof. Chaves Batista, Universidade Federal Departamento de Micologia J spec reco from to an un a based on their ph w @ Article info: ƒ ]z%]@A/;/\%/U]| !`_!'$!*A]U;Œ # /\%/U]| !`_!'$!*A]U;Œ{'|‚ re belonging to the Abstract: westerdijkinstitute.nl T S descri from different hosts and substrates within it. During a survey of fungal endophyte diversity from cacti in this forest, hosts and substrates within it. During a survey of fungal endophyte from different '‚ including Attribution You are You Jadson D.P. Bezerra Jadson D.P. © 5 4 2 # 1 N For any reuse or distribution, you must make clear to others the license terms o No N permission its introduction, several new s *# different host in studies from America (Suriname and host plants in studies from different USA), Africa (Madagascar and South Africa), Asia (China), and Oceania (Australia) coronate diale gen a ' % Oconidial and conidiophore septa, and lackin ' volatile metabolites in culture, causing skin irritation when there is exposure to the fungus (Crous INTR doi:10.5598/imafungus.2017.08.01.06 V BezerraBe erra ettl al .

al. !* ' Bezerra et al. (2017) described a new order in the class and scanning electron microscopy (SEM) to verify the fungi for endophytes isolated from the cactus LE colonizing parchment manuscripts, and by Bonadonna et al. Tacinga inamoena collected in the Caatinga. C (2014), who reported T. irritans J E' Toxicocladosporium

RTI T. species isolated from different substrates and hosts in order

A irritans was associated with mouldy paint in Suriname (Crous to report on the isolation and to describe those we recovered et al. 2007). Toxicocladosporium irritanss was also reported as endophytes from the cacti Melocactus zehntneri and associated with patients having atopic dermatitis in Japan Pilosocereus gounelleii subsp. gounelleii growing in the (Zhang et al. 2011), and it was isolated from human blood Caatinga. Using morphological characters and multigene V%'Xet al. (2015) in the USA. phylogenetic analyses (actA<V “V\ rpb22 and tub2), the / et al. (2015) genus Toxicocladosporium and its respective species ' on baobab trees in southern Africa, and on equipment used evaluated. We aimed to determine the phylogenetic relationship in the International Space Station or Space Shuttle in Japan of endophytes from cacti with species of Toxicocladosporium, (Satoh et al. 2016). provide an overview of hosts and substrates amongst Toxicocladosporium species, and propose new loci to assist ª +½ et with species differentiation in the genus. al. 2011), the vector of visceral leishmaniasis (Lutzomyia longipalpis) in Brazil (McCarthy et al!** sponge from Korea (Cho et al. 2016), patients with seborrheic MATERIALS AND METHODS Z et al. 2014), outdoor dust samples in the USA (Barberán et al. 2015), and as a plant Endophytic fungi from cacti pathogen on African olive (Olea europaea subsp. cuspidata, Endophytic fungi were isolated as described by Bezerra et al. Oleaceae) in Australia (Australian Government Department !*#Melocactus zehntneri and Pilosocereus of Agriculture 2015). Toxicocladosporium and Cladosporium gounellei subsp. gounellei growing in the Brazilian tropical were also suggested as candidates for fungal structures / / + ] ;ƒ found in the fossilized extinct aquatic angiosperm Eorhiza ];Œ":#`R# RRV#_:*‡R‡!RR arnoldii in Canada (Klymiuk et al. !*# W), and sustainable family farming plots, Itaíba municipality, that Toxicocladosporium Pernambuco state, Brazil (9o !""$ R V #_o 12.069’ W). and may differ from Cladosporium, in which species tend Œ @ @ % E Ambiente (MMA)/Instituto Chico Mendes de Conservação (Bensch et al. 2012). Toxicocladosporium chlamydosporum ;%

78 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

‚ƒ„ `†+@*#+,$" *&';,[#*+,$"‡ˆ‰ *"_ @; % #` Ž Aƒ !!* ARTICL sequencing E@% = X+z E JŒ& simultaneous runs for 5 M generations with the stopval = X+z ] ‰ ] @ J< % % *!!! R analyses were stopped when the two runs converged and E “A!A “A ª Ž *$$! <V <V‡ the average standard deviation of split frequencies came (White et al. *$$! z/' *H z/'_"#A / !!* ! †‚' Kohn 1999), Bt2a and Bt2b or Bt10 (Glass & Donaldson 1995) Bayesian posterior probabilities (BPP) were calculated after and 5f2 and 7cr (O’Donnell et al. 2010) were used to amplify † % O'P “V\X+z % <V<V% @@ % # "V X+z actA !' + !!‡ z gene (tub2A+z and included in the analyses, in all cases selecting the largest subunit gene (rpb2 % z =A"<"= z sequencing reactions, sequences analyses, and consensus H % *‡ |). sequences were performed as described by O’Donnell et z al. (2010) and Bezerra et al !*_ < *#` X+z locus and visually inspected for topological incongruences sequences representing 57 taxa were retrieved from GenBank * @'= ‰*$$`J*$$"ƒ Phylogenetic analyses +/;

V O LUME 8 · NO . 1 79 BezerraBe erra ettl al . LE C tub2 RTI A 0

‡ 3 2 # 5 41 ‡ 75 7 # "` 2 88 s 99 99 2 r ""#$$ "" *` #! pb be LT799751 ‰*` ‰ LT7 ‰*_ ‰*` ! LT7 LT799754 r KX2 ‰^ ‰ ‰^ m u n o i access actA nk a 1 7 4 2 nB 91 ** 457 89 99 ##‡ ## ##* ### Ge 7 75 # !! 1 ‡ ‡ ‡ ‡ !#`! 0 86961 * ` 009 019266 16 286952 251800 #*!!* # 90 901862 Z `‡## Z ` Z ` Z ` X Q62209 ‰ KF =\ J ‰H EU ‰*_ ‰ KF LSU J KX2 KX EU _EU ‰ GU214419 7 ‰Z 7 7 EU7 ! # ! ‡ _ 20 67 ` # 45 89 ‡ 655 7 809 7 # __ $# ! $#`# 1 $# 55 4 *#"#"$ *‡‡$ ‡ ‰H **$ 0 " _ _ _ 2 1 *‡ _"!#"" ‰ ¯ ¯ 009 ``` ` #!$$"! ` ` 90 ` 901 S M148001 M A ° A¯ H H F ^ + Y7 X Q622084 T H =\ DQ678091 DQ67809 EU ‰H H J +A EU009456‰*_ EU009456 U U + K I ‰ + J X EU7 H A r ) aeonia ) )

i P rica f USA ( Spain ) ( y) ecovlje salterns +' (Germany) outh A (Belgium) S + +[ fruit

) f (S (Japan) na

a li s ca are i li countr m (Italy) g ( i ea ucalyptus diversicolo + r x rotea sp. sp. (Indonesia) E upu Antarctica Spain sp. (Germany) l ( ( s P s bo enta Paeonia delavay i r f u omest l a

d Carex ) ) na max ) cago a or li ea us h t di l p o Fiji e a s + UH ) ordeum vul ordeum vulgare r ucalyptu straga ( i +[ r ercu Larix leptolepis H P H E M M Beta vulgaris Ty I A b lovenia n leaves o n leaves of n n n n n leaf of n n n n n leaves of n n ypersaline water o ubstrate/host u Australia ruit ands f Unknown host, on calyx attached to On leaf and stem lesions on (Germany) O O ( Rock sample Rock sample (Antarctica) On O O O l O Rock sample S O O H (S O O O O T O O . y hloridium C E' ) 7 !_ # 58 E'

4 1 *#"`‡ r 9 12211 1217 / C C **#" 2 ) ) be ] P P HUU ) / C / m E' C C ] P u // / C = — = n E' = CPC 15459 —/]/*#" # —//HUU‡ * —A+$` —/]/***_*E' U U U = U ) 4 ‡— 5 8 0 4 2 ## ! 1 ate ! !# l 99 098 * * 41 712 4 10081 so 9 8 8 #` #` 41.7 8 11 11 * ** — 142 11 12598 * *‡‡

in/i S S V V S S S V V a S r B B BS 12162 ;V*#"‡ ; ; 100405 BS B B B ; ; BS 116456 BS 121621 ;V*#!"‡—/]/*"$`$ BS 12290 BS 11829 B BS 204.89 ;V#‡" colicotrichum iridis C C C / / / C C C MAFF 4 Devriesia antarctica C CBS 12598 / Mycosphaerella sumatrensis / S St C C / C Devriesia adstricta C C crateriforme C / hala p

i are l us t cu i ic tr

i cus ads um ac

pt sis chloroce i i ti are ora beticola l p c ly . GenBank accession numbers and details of strains used in this stud s r p us 1 a cu

m i hio e roteae nt e l p p ecie a ssocon ra . fusiforme . chalastosporoides . hillianum . euca . . ac crodontium crateriforme xtr . luzulae ab C C. capsic Cladosporium allicinum G C. iridis M. laricis-leptolepidis M. sumatrensis Mycodiella eucalypt C C E. A Sp D D T Cercos C. herbarum E A Di D

80 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil ARTICL 06602 KY7 tub2 E

# _ 0 9 5 6 7 1 4 _ _ _ 4 60 58 62 6 ` 6 7 75 7 7 7 2 "! ‡ "! "!"‡ "!"` 4 s ‡ ‡ ‡ ‡ 0 99 99 99 99 99 r 2 # "$ # # # be LT79975 LT7 LT7 LT79975 LT79975 LT7 LT79976 LT7 rpb KJ5 ‰^ ‰] LT7 LT799763 ‰^ ‰^ m u n o i 6 7 8213 access LT actA nk a ‰^ 4 4 # nB _ 5 1 5 2 9 0 6 7 8 4 5 6 5 7 7 28 Ge 74 74 18 211 47 4 0 99 99 0 $!!# 251826 04445 902020 9020 9018 90 U21441 \##$_ Q599606 U75417 J5 Q F951165 Q62209 LT79974 LT7 U\!‡!# G = H E J LT79974 LT79974 LT7 ‰H KF LSU K KF KF J J EU KF _ ` 8 1 KF ‡ 7 0 1 7 8 94 7 25 6 _ 69 39 7 7 74 7 1 "!"‡ 17 $# 47 *‡‡$` **$`"‡ 4 ‡ 0 99 99 ¯ ¯ 0 # 901690 *# !‡‡‡# 9016 901 90 S A¯*‡ !$" A F25117 F H F J5 T79974 T7 T79973 T7 ° F951145 L L L L + z + K K ‰ Z LT79973 IT K K KF J GU214650 GU21448 ‰^ KF EU +A¯*!!" +=!‡`*

) s lis ni is ) u outh r a a (S ll mm ) y a (USA Australia h ) sp. ( co (China) +A

egatens al l a a g ca e oea austra bum y) ron ti d h sp. (Australia) y mi d e a es z orr uercus robu Denmark (Malaysia) sp. (Australia) en ) ( r Portu m o h d Q ( ytus r u l +[ U\!‡!#

ea b do countr nus monop

( ac ant a k pain li akea marginat Pi X etrophil ucalyptus oblong uca sp. M anksia medi euca

us )

(S l f s

P H Ha E E f L f B <=

a

f f f f f f f Cucurbita maxima M Lucu ptu ptus ro ) ) ) ) ly ly um perenne li ) + uca uca Pakistan o ( L E Schizolobium parah E n leaves of n leaves o n leaves o n leaves o n leaves o n leaves o n leaves o n n n dead leaves of n twig debris (USA) n leaf of n needles o n fruit of n fruit of n leaves o n leaves o frica ubstrate/host oil rom human bronchoalveolar lavage +[ Australia Ecuador Australia) Australia) O O A O O O O O ( O ( (Australia (Australia Rock sample On leaves o On On S O F \ O O O O + S O O O ( O ( haeria p S ) i E' E' E' ‡ 0 # 7

9 1 8961 #`#* r *"#* ) 1677 1 1444 * / *#‡ be ) C C C / bii ] / P P P ] o ia m / ) l ] u C C C / a er / E' — zo n h orium leucadendr n — /]/ * #" E' — /]/ *__! — /]/ *$` —/]/*‡!# = CPC 11407 = —/]/*$‡ = = — U a = CPC 126 p hi ) _ _ 9 9 5 4 1 0 9 5 ` 6 ate * 5 2 _ l # hilli 4 66 !"_ !"" # * a a zant 1 !!# 5002 so i i # ora sc 95 9090 9 # # l es es 2 2 2909 2 $# i **"#!—A+*‡ *#!#‡— 11117 * * * * ** 12 in/i C C C C / V V S V V a V V V S vri r P ;V *#*" BS 12952 e P P P ] ; BS 12821 evr BS 11010 ; B BS 12542 ; ; BS 12002 BS 12944 BS 12162 BS 400.7 ; ; ; B assa unctiformis C / C C C C / / C D C / C P C D / / Toxicoclados St C p C C C / / / C . e

orum d sis . ) a n iculatum n p a aie . ora n p e orium cbolia

hilli

orium gen. sp. nov oeae i p i a a sp i i i p m ontinued ae ca rrh it

ob es es ni i l (C i o b ae m a r o . iella s li vri r ptorum ocercos 1 i m usta

y evr nth eu d hiz t b e d a l as ucu u cucu sc eode eo eoclados . glenni . l amichloridium a . . l amularia endophylla . t arastagonospora no seu pecie . ro ab N R. pin eucal N P P P Rachiclados N. x N leucadendr S Reade T P. R R R R R R R

V O LUME 8 · NO . 1 81 BezerraBe erra ettl al . 4 4 5 5 9 8 86 88 89 92 9 98 5 5 5 5 5 5 5 LE 0659 0658 06 06 06 06 06 06 06 C KY7 KY7 KY7 KY7 KY7 KY7 KY7 KY7 KY70660 tub2 RTI A 0 1 2 3 5 8 9 6 69 7 7 77 77 77 77 775 KY7 77 2 "*!‡ s ‡ 99 99 99 99 99 99 99 99 r 2 # T7 T799768T7 KY706587 T7 T7 T7 T7 T799777T799774 KY706590 T7 KY706591 T799776 KY706593 be LT799766 ‰^ L L L L L L L L L L L LT7 LT79977 rpb m u n o i 9 2 3 5 7 358 21 821368 8 8213 821360 821362 821363 821366 821369 8213 access T821371 LT799767 KY706597 LT821361 LT LT LT LT LT LT LT821364 LT821365 LT LT821367 LT LT LT82138 actA L nk a nB 9 6 2 3 5 7 * 1 75 8 Ge 2817 2818 2820 2821 2824 2827 2 52826 5 $!#!` 599599 902120 9020 _ F901901 F Z SU K K KF KY75281 KY7 KY7 KY75 KY75 KY75 KY75 KY75282 KY75 KY75282 KY75 H L KF90200 HQ 8 6 0 2 4 _ 6 28 88 803 7 7 2 2804 2805 2807 2808 2811 2814 2 52813 5 90 59959 901 901 7 S H*#‡$‡"H*#‡$‡ KF902024 J T KY75 KY75 KY75281 KF KY75280 KY7 KY7 KY75 KY75 KY752809KY75281 KY75282 KY75 KY75 HZ_$!"#F HZ_$!#! I U U HQ )

s s ) ) ) ) ) ) ) ) )

a t Brazil Brazil Brazil Brazil Brazil Brazil) Brazil) Brazil Brazil Brazil Brazil) Brazil a ( ( ( ( ( ( ( ( ( ( ( ( l

eus eus eus eus eus eus eus eus i i i i i i i i i i i i r r r r r r r r u p. (Australia) KF901577 (Australia) KF e e e e y)

s ll ll ll ll m s e

a ) i osoce osoce osoce osoce osocereus s ounelle oune ounelle il ilosocereus il ilosocereus il il ilosocereus countr g g g P Pilosoce Pilosoce Pil Pilosoce Pilosoce P P P P P P ( nk . . . . gounelle . gounelle . gounelle . gounelle Italy ( sp. (South Africa rotea sp. (South a p p p p p p p s sp. goune sp. goune sp. goune P ) ) rom rom rom b b b b ucalyptus camaldulensi ucalyptus camaldulensi f f f E E

subs su su su subs su subs subsp. gounelle subs subs subs subsp. gounelle f f

te te from te from te from te from te from i i i i i i i i i i i i y y y y y y e e e e ll ll ll ll olygonum sachalinense P n leaves of Corymbia n Eucalyptus globulu n leaves of n leaf o n n leaves of B ubstrate/host ounelle oune oune oune ounelle oune ounelle ounelle ounelle ounelle ounelle ounelle Madagascar Madagascar Australia) O O Endophyte Endophyte from O g g g g g g g g g g g g Endoph Endoph Endophyte Endoph Endoph Endoph Endoph Endophyte from Endophyte from Endophyte from ( O ( On leaf o O + Unknown host S O ( E' ! ) " #$ 1 *##‡ 17280 ) ber / C *‡* ] P m V u / C ; —/]/*#$` n / — /]/ * _!$ E' — /]/ * _#` E' — = U — 5 ` 0 7 ate 57 59 07 l 89 ) so ; ; x Z Z B B B B B ; ; 12821 *!_# 1241 1241 228.5 1217 Z; in/i J J ' ' S V S S S S a 5 J * Z r ;V**"# $—/@J** `! B ; B B BS 486.5 B B RM 74 88 J 26 J #`Z / C / 1 191 192 *$ 22 2 # # `* C C T. chlamydosporum T. velo T. C C C St \A@_‡$!—/;V*‡* # U i osporum d . (Continued). sp. nov. s i 1

amy e l hl pecie . c Toxicocladosporium banksiae Toxicocladosporium T. molleriana T. T Schizothyrium pom # #+ Tab S T. cacti T.

82 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil ARTICL 1 4 5 99 5 06606 06596 0660 06 06600 0660 0660 06608 KY7 tub2 KY7 KY7 KY7 KY7 KY7 KY7 E 2 KY7 8 83 80 81 85 86 88 89 91 7 7 7 7 7 7 7 7 7 2 s 99 99 99 99 99 99 99 99 99 r 2 T799792 be L LT7 rpb LT7 LT799790 LT7 LT7 LT7 LT7 LT7 LT7 m u n o i 0 5 3 8 9 7 7 7 74 LT7 7 7 380 3 3 3 21 21 21 21 8 8 8 8213 8213 8 8213 821382 access T LT LT actA L LT LT LT821377LT LT799784LT KY706603 LT LT821381 LT799787 KY706607 nk a 8 7 nB 8 # 1 7 9 7 2 44 4 8 ‡ 2 Ge ##` 74 2 ! 02 2829 actin gene; rpb2 |A+z ‡ : 5 ‡ 4 ` 99 9986 A 0 069858 °" $# ct \! /!! "!# F4 X a ]/%;\%H] = ‰Z J KY7 LSU U EU J KF777 KJ86921 ‰ LT7 GQ85258 KY75 X+z{ 5 # 4 0 2 1 4 ` *# #` 47 8 ‡ _ 190

74 2 ! 02

5 ‡ 4 99 998 ** *** 0 S U J790287 HZ_$!#! _ F4 z J KY7 IT U\! E KF777 F “+"#‡‡‡‡ KJ86916 +A HQ599586 HQ59958 +A LT7 LT799743 LT799750

i r . e ) South ) hntn bold ( United (South e

( outh

z s llii i (S hina (Australia) ‰H‡‡ e s ) ) (Australia) GQ852741 us h t n a (C y) ca ll e South Africa y di ili ( urc )

h n b i sp. s ocac aenocoma l a ass e i us ptus camaldulensis Ph Australia Australia countr ten atyp n i l ( ( ( i y m

c osoqueria latifolia rotea a Pin f Fi P P )

rom M f ucal f E ptus n South Africa ) yptus p te ) ly ( l y peraceae peraceae ) ) ) ucalyptus molucana uca uca E E Cy Cy E n n lichen Dirin n leaves o n needles o n leaves of n leaves of n leaf bracts of n leaf of n leaves of Strelitzia reginae n n n ndoph ubstrate/host ingdom frica) frica frica rom mouldy paint (Suriname) rom human bronchoalveolar lavage rolifera \Vz Brazil Australia Madagascar O E ( On S F O K O A F \ O O ( O A O p O ( O A O O O # $ 7 54 62 2 2 7 1 $#! 5 85 9 r *" #`# * 1 1 1 be / / / C C C ] ] ] P P P m u / / / C C C n —/]/"#! — —H@A*#$_ — — = = —/]/* _# = —/]/*#" = CBS 141540 8

4 5 9 4 ate ‡ 8 0 !` 99 l 58 1 . ‡ # 4 72 @zH{\A@|@\A@]@zE/%X@ 9 17 6 0 so 9 85 #` ## "# # 2 1 * *#"!! * 12 12877 * 12 in/i <\"# "‡/\+{//HUU|/E%XVŒz S V V a V S S V C S r ]/*#` BS 12415 B ; ; BS 14069 RM 74 ; B B ; PC 2916 P B BS 110809 CBS 11279 / C C / / St C U / C C / C C C C e E' ;% U . ) es es i i H sp. nov. ‚ ec p oxum spec s l atum d d l |!'+Eƒ e e i Continued 2 iae ( ove ib ib s E' . d s tz acu genum ub n i 1 t

r a i eli e b escr escr l in seu tr zil. ecie d d p p s a %ª<{/@J|/Hz;<Hz;<\%]]Vz{/]/|/ n n webraunia australiensis . commune r errucocladosporium dirina A+|/A% .W. Crous, held at the Westerdijk Fungal Biodiversity Institute; FMR: Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; JB: Collection of J.D.P. Bezerra, housed at URM; Reus, Spain; JB: Collection of J.D.P. Rovira i Virgili, Fungal Biodiversity Institute; FMR: Facultat de Medicina i Ciències la Salut, Universitat Crous, held at the Westerdijk .W. ab . ru . . /;V|J <V|% "VX+z{“V\| V U. dekker T T. irrit T. \ P B #+ gene; Sp 1 2 T T. T T U U U U T. hominis T. imm T. T. posoqueriae T. T. protearum T.

V O LUME 8 · NO . 1 83 BezerraBe erra ettl al .

99/96/1 P. robusta CBS 111175T 0.2 100/100/1 P. eucalyptorum CBS 132034 Pseudocercospora T LE 71/87/- P. schizolobii CBS 120029

C 100/100/1 C. beticola CBS 116456 Cercospora C. capsici CBS 118712 -/98/1 Mycosphaerellaceae 85/99/0.99 M. sumatrensis CBS 118499T RTI 100/100/1 M. eucalypti CBS 142098 Mycodiella A 80/72/- M. laricis-leptolepidis MAFF 410081 89/-/- T 100/100/1 R. glennii CBS 129441 Ramularia R. endophylla CBS 113265ET S. pomi CBS 486.50 Schizothyrium Schizothyriaceae 100/100/1 S. pomi CBS 228.57

100/-/0.99 D. eucalypti CBS 132084 D. proteae CBS 122900T Dissoconium 100/100/1 D. aciculare CBS 204.89 D. aciculare CBS 342.82T T U. commune CBS 110809 Dissoconiaceae 100/100/1 U. dekkeri CPC 13264 Uwebraunia 99/99/1 U. australiensis CBS 120729T 91/99/1 R. apiculatum CBS 400.76 88/99/1 R. cucurbitae CBS 132087T Ramichloridium R. luteum CBS 132088T 100/100/0.99 E. antarcticus CBS 136103T 100/100/1 E. antarcticus CBS 136104 Extremus Extremaceae T 97/100/1 E. adstrictus CBS 118292 N. hilliana CBS 123187T 100/100/1 N. xanthorrhoeae CBS 128219T Neodevriesia Neodevriesiaceae Neodevriesia sp. CBS 118302 100/98/1 T. fimbriata CBS 120736T 100/100/1 T. molleriana CBS 118359 Teratosphaeria 93/100/1 T. fibrillosa CBS 121707ET 100/100/1 R. tasmanica CBS 125002T Teratosphaeriaceae 98/100/1 Readeriella R. menaiensis CBS 125003T 100/100/1 A. luzulae CBS 841.71T Acrodontium A. crateriforme CBS 144.33T 93/99/1 T. chlamydosporum CBS 124157T 71/78/0.98 T. velox CBS 124159T 100/99/1 T. protearum CBS 126499T T. pini CBS 138005T 100/78/1 95/82/- T. pseudovelox CBS 128775T 70/90/1 T. posoqueriae CBS 133583T Toxicocladosporium T. rubrigenum CBS 124158T T 8x 88/100/1 T. strelitziae CBS 132535 T 100/91/0.98 T. hominis CBS 140694 T. irritans CBS 185.58T T. ficiniae CBS 136406T T 95/89/0.96 T. banksiae CBS 128215 C. fusiforme CBS 119414T C. chalastosporoides CBS 125985ET C. hillianum CBS 125988T 100/98/1 ET Cladosporium -/84/0.96 C. allicinum CBS 121624 80/87/1 C. iridis CBS 138.40ET Cladosporiaceae C. herbarum CBS 121621ET N. leucadendri CPC 29092 N. leucadendri CPC 29090 N. leucadendri CPC 29545 Neocladosporium gen. nov. 100/100/1 N. leucadendri CPC 29166 N. leucadendri CPC 29237 79/95/1 N. leucadendri CPC 18315T 99/75/- 94/77/- 100/100/1 CPC 29168 Incertae sedis CPC 29170 -/90/1 V. dirinae CBS 112794T Verrucocladosporium G. chlorocephala CBS 100405 Graphiopsis 100/100/1 G. chlorocephala CBS 121522 91/95/0.97 R. pini CBS 129525T 100/95/.097 R. luculiae CBS 121620T Rachicladosporium R. cboliae CBS 125424T Parastagonospora nodorum CBS 110109

Fig. 1.@EAE@“<V“V\X+zrpb2 sequences of 67 taxa belonging to CapnodialesNeocladosporium, is shown in bold;%@E]@]';V @E“@“';V;;]]%_!†!$ % @]';V@“';V;]] Parastagonospora nodorum (CBS 110109) was used as outgroup. —E''U—E'

84 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

191 JB (Pilosocereus gounellei subsp. gounellei, Brazil) ARTICL

195-2 JB (Pilosocereus gounellei subsp. gounellei, Brazil)

225 JB (Pilosocereus gounellei subsp. gounellei, Brazil)

T URM 7489 (Pilosocereus gounellei subsp. gounellei, Brazil) E 70/73/0.95 188 JB (Pilosocereus gounellei subsp. gounellei, Brazil)

261-2 JB (Pilosocereus gounellei subsp. gounellei, Brazil) 70/88/0.98 T. cacti sp. nov. URM 7490 (Pilosocereus gounellei subsp. gounellei, Brazil)

100/100/1 231 JB (Pilosocereus gounellei subsp. gounellei, Brazil)

236JB (Pilosocereus gounellei subsp. gounellei, Brazil)

235 JB (Pilosocereus gounellei subsp. gounellei, Brazil) 99/100/1 192 JB (Pilosocereus gounellei subsp. gounellei, Brazil)

100/100/1 226JB (Pilosocereus gounellei subsp. gounellei, Brazil)

T CBS 128215 (Banksia emulata, Australia) T. banksiae

T CBS 128775 ( prolifera, South Africa) T. pseudovelox -/94/1 CBS 124159 (Eucalyptus camaldulensis, Madagascar) 100/100/1 T T. chlamydosporum 94/98/1 CBS 124157 (Eucalyptus camaldulensis, Madagascar) 0.04 T CBS 126499 (Protea bruchelii, South Africa) T. protearum 100/100/1 T CBS 138005 (Pinus sp., China) T. pini T CBS 132535 (Strelitzia reginae, South Africa) 93/91/1 T. strelitziae T 93/99/0.95 CBS 140694 (Bronchoalveolar lavage fluid, USA) T. hominis 2x T 100/100/1 CBS 185.58 (Mouldy paint, Suriname) T. irritans 100/-/- T CBS 124158 (Eucalyptus camaldulensis, Madagascar) T. rubrigenum T URM 7491 (Melocactus zehnteri, Brazil) -/81/0.95 T. immaculatum sp. nov. T CBS 133583 (Posoqueria latifolia, Australia) T. posoqueriae T CBS 136406 (Ficinia indica, South Africa) T. ficiniae T CBS 131317 (Leucadendron sp., South Africa) Neocladosporium leucadendri

Fig. 2. @EAE@“<VX+z“V\X+z actA, rpb2 and tub22 datasets of the genus Toxicocladosporium+bold;%@E]@]';V @E“@“';V;;]]%_!†!$ %@]';V @“';V;]]Neocladosporium leucadandri /;V*#*#*_ was used as outgroup. E''

the species resolution, actA, rpb22 and tub22 sequences here as the new species Toxicocladosporium cacti E' culture URM 7489 —/;V*‡* #$Toxicocladosporium included sequences from 26 isolates (including the outgroup) immaculatum E' \A@ _‡$* — /;V *‡* ‡! and 2 562 characters (actA|‡_<V|#$`“V\|_"! rpb2: respectively. 724 and tub2|‡* ‡"'% < E' T. chlamydosporum (actA| <V|“V\|" rpb2|#! tub2: 125), 215 (CBS 124157) and T. velox (CBS 124159) always clustered % '% actA| # <V| % @]';V *!! † @“';V 48, LSU: 28, rpb2: 68 and tub2|#`*"! *!! † ;]] *!! H (actA| *# <V| #** “V\| _` rpb2: 420 and tub2: 240). based on the few nucleotide differences between the two H] species (actA|**<V| “V\|* rpb2:0 “ \;|!% —*"_!{/<—! _!{A<—!` *{A/—!#_* morphological and ecological features, we treat the name T. {*' velox as a synonym of T. chlamydosporum. supported clade close to T. banksiae/;V*"* @]';V “V\<V%% *!! †@“';V*!! †;]]*\A@_‡$* between genera and species groups. However, the actA, rpb2 = CBS 141540) formed a moderately supported monotypic and tub22 sequences were more informative to distinguish linage closely related to but distinct from #+ (CBS related species, especially in the case of T. cacti, which is *#`‡!` T. posoqueriae /;V*## "#@]';V˜_! † closely related to T. banksiae. @“';V "* † ;]] !$

V O LUME 8 · NO . 1 85 BezerraBe erra ettl al . ) ) ) ) ) ) ) 2016 2007 2014 2009 2012 ( ( ( (2012) !*# ( (

(2010)

LE ) . . . . . l. l l l l. (2011 l. l. l a a a a C ces t t al. (2010 t t t a t a t a t al t n e e e e e e e e e 2009 e ) ( r . l RTI rous rous rous rous rous rous et a Refe C C C C C C Crous Crous Crous & Groenewald (2011 et a Crous Crous A Ç M M Æ!M* ‡ M# #M M #

Ç ! & # M & M &M &

Æ  {`'+* M*! M$ Œ . M d al l M** M** & n i " ] `M" `M_& _M" & bo M ` rm

M ‡M M 0–1 _M"M*!M**&M M# [0] M "M*! te [ _M"M$& M# "M*! ‡M`M_&#M‡ $M**M*#M*`&M M #Æ!M*Ç `M_M*!M**&M #Æ!Ç `M*!&M M#Æ!Ç / # Ç Ç # * $",_,*  ," )& ‹"J&/`@ $ !M* M M Æ M ! ˆ y Æ # ar & & l *# ‡& M$ Æ!M*Ç * M M M**M* & M#M‡ `M_M"M$& M#M‡ M*`&#M‡ nterca i $ # $ ** ' * ' ' ' [0–1] `M$& M#Ü!M*Ç *!M*&M "M$M**M*& M#M $M*!M**& M _M" & M Ç Ç{ Ç 10– M‡ M*" ) * * M M &  M# Ç { { 9– Ç Ç ! ! ) ( & * Æ!M*Ç & Æ!Ç "M*‡ * Æ !M* Æ *M !M M‡Æ M !M Æ Æ # M*` Æ!Ç _M # ** M# M M & & *‡M* _& ] ] ! * &‡M * M *&$#$",_,*  ," M‡ &#M !M*‡M! &M#Æ!M*Ç{ ‡M*`& M#M‡Æ!M*'Ç M# &#M‡Æ!Ç{ M!& M#Æ!M*Ç M#&M‡ ‡ M M#Æ!M*Ç M* &#M Æ M*_&# M M M* & M‡ M#M# {$ M!&M# Æ!Ç{ * M!&#M‡Æ!M*Ç _M*!M*‡&M# "J&/`@  $Œ {`'+* *‡M*_M & M#M‡Æ!M*Ç *!M*M!& M#M# * M*`M*_M*"& M#M‡ *#M 0–1 0–1]; secondary 0–1 ‰ ‹ * [ [ * * * * [ * _ * * " * *! *!M*M*‡& M#M# # # # # ‡ # M M ` ‡ # M M‡ M‡ M M M‡ M &

# # # M M ) # # & & & &‡M_ & & & + &‡M

& & ‡& & & ! *` #! * ! ! ! ! * ! M M M M M M M* onidiogenous M M M* M !M* & M# " C ` *# *! *# *! *! *! *! * * M #`;;{  ," _M orium p Ç * *Ç M M  ! ! ores h *Ç Æ Ç M M Æ # op * !  {`'+* M‡ M Æ Œ

idi ! # M‡ M‡ M Toxicoclados # M d ] ‡ & n ) & & # a ! & _& & #! * & Æ crocon 1–2 * #! M‡ M M M M ( Mi ' *! * ' * *! *! ' ' ' ' #M_& M# [0 orium p Ç Ç Ç Ç ` Ç #Ç Ç Ç Ç Ç ores M M Ç " " " M_Ç M h M `M* # Æ M‡Ç M_ M M M Æ Æ*

* * * *M* M op Æ Æ Æ Neoclados Æ Æ # # # ` M‡Æ M idi # M M Æ M M‡Æ M‡Æ M‡Æ # # # # & &‡M_ & & & & &‡M & & & # $",_,$']$@`{  ," )& ‹"J&/`@ $ *#! `! `! $! !! "! ˆ *#! *!! *!! M M M** M M M M acrocon ! ! ! !M‡!&#M !M !&#M‡ !M* !&#M M ! * #! #! #! _ ‡!M_!&M#

ical features of g m i r d ae i atu n l ae s Morpholo uer . q s i 2 litzi

i mini e tans e i n l o i oso seudovelox tr eucade mmacu rr ecie i i p p s . l ab . cact . . . p . T Sp N T T T T T T. banksiae T. #+ rubrigenum T. T. T. chlamydosporum T. T. protearum T. T. h T.

86 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

TAXONOMY Description: Crous et al. (2011a). ARTICL

Our phylogenetic analyses revealed that the endophytic fungi Substrate and distribution: On leaves of Leucadendron %Toxicocladosporium sp. (Proteaceae) in the Western Cape province of South Africa (Crous et al. 2011a). On leaves of <= E proposed species are established based on phylogenetic (Myrtaceae), and Banksia media, Hakea sp., and Petrophile analyses and morphological features. In addition, we introduce sp. (Proteaceae) in Western Australia. a new generic name, Neocladosporium to accommodate “Toxicocladosporium” leucadendri, which is not congeneric with Other material examined: Australia: Western Australia: Albany, Toxicocladosporium. In this section a bibliographic synopsis of HŒ A% + ] ] z % Banksia the genus is compiled including key morphological features media (Proteaceae), 21 Sep. 2015, P.W. Crouss /]/ $#_{ Denmark, Lights Beach, on leaves of Hakea sp. (Proteaceae), 19 geographic distribution for all the currently accepted species of Sep. 2015, P.W. Crouss (CPC 29166); Wellstead, Cape Riche, on Toxicocladosporium leaves of Hakea marginata (Proteaceae), 21 Sep. 2015, P.W. Crous features of the Neocladosporium and Toxicocladosporium (CPC 29092); ibid., on leaves of <= (Myrtaceae), species included here. 21 Sep. 2015, P.W. Crouss/]/$!$!{JJ+ Reserve, on leaves of Petrophile sp. (Proteaceae), 18 Sep. 2015, Neocladosporium ZX] ;Œ V%'X P.W. Crouss (CPC 29545). /@VŒ'@ / gen. nov. MycoBank MB820266 Notes: Crous et al. !**/]/*"#* — /;V *#*#*_ T. leucadendrii based on phylogenetic Etymology| + “V\<Vƒ Cladosporium. characters. According to these authors, based on a combination of culture characteristics, conidiophore and Diagnosis: Differs from Toxicocladosporium by its verruculose conidial dimensions, it differs from known taxa, many to warty ramoconidia, and from Cladosporium s. str. by its of which also occur in the fynbos vegetation (Crous et ' al. !** z +/;< =; lacking the typical coronate Cladosporium scar. ƒ <V “V\ sequences of N. leucadendrii retrieved as closest hits Type species: Neocladosporium leucadendri (Crous) J.D.P. Graphiopsis chlorocephala and Verrucocladosporium Bezerra et al. 2017 (syn. Toxicocladosporium leucadendri dirinae, amongst others. In our phylogenetic analyses Crous 2011). this strain appeared in a single lineage closely related to Graphiopsis chlorocephala and Verrucocladosporium Description: Mycelium consisting of pale brown, smooth, dirinae as shown before by Crous et al. (2011a), but clearly branched, septate hyphae. Conidiophores solitary, erect, separated from members of Toxicocladosporium (Fig. 1). unbranched or branched above, subcylindrical, straight Morphologically, Neocladosporium leucadendri is very similar \E to Toxicocladosporium species, but can be distinguished from thickened. Conidiogenous cellss integrated, polyblastic, it by size and ornamentation of ramoconidia (verruculose to terminal and lateral, subcylindrical, smooth, brown; scars warty) and ramoconidia frequently forking close to the apex. truncate, thickened and darkened. Ramoconidia medium Vƒ<V“V\X+zrpb22 are the best approach brown, verruculose to warty, giving rise to branched chains to separate N. leucadendri from Toxicocladosporium species of conidia, subcylindrical, polyblastic, brown, verruculose to and related genera. Also very similar to Cladosporium s. str., !M*' ƒ E{ but differing in the size and ornamentation of the ramoconidia darkened, thickened. Intercalary conidia subcylindrical to (verruculose to warty), which are frequently forking close to ' Small E' terminal conidia ' { lacking the typical coronate Cladosporium scar type similar to thickened and darkened. Toxicocladosporium (David 1997, Crous et al. 2007); it differs from Graphiopsis which has morphological peculiarities on Neocladosporium leucadendri (Crous) J.D.P. its conidiophores (cladosporioid and periconioid morphs), ;Œ V%'X /@ VŒ'@ conidiogenous loci and hila (Schubert et al. 2007a, Braun Crous, comb. nov. et al. 2008); from Rachicladosporium which has an apical MycoBank MB 820267 conidiophore rachis with inconspicuous to subconspicuous H# '% Basionym: Toxicocladosporium leucadendri Crous, Persoonia (Crous et al. 2007); and from Verrucocladosporium which 27: 157 (2011). has mainly an unusual conidial and hyphal ornamentation (Crous et al. 2007). Because of our phylogenetic results Type: South Africa: Western Cape Province: Hermanus, and morphological observations, the new generic name H + A% % Leucadendron sp. Neocladosporium, is proposed to accommodate N. leuca- (Proteaceae), 4 May 2010, P.W. Crouss /;V Ž'!__‡ M dendri. {/]/*"#* —/;V*#*#*_ME'

V O LUME 8 · NO . 1 87 BezerraBe erra ettl al . LE C RTI A

Fig. 3. Neocladosporium leucadendri /;V*#*#*_ME'A. Colony sporulating on MEA. B–F. Conidiophores giving rise to chains of conidia. Bars = 10 )

Toxicocladosporium Crous & U. Braun, Stud. Mycol. in the size and shape of the intercalary and terminal conidia, 58|#$!!_ ramoconidia, and presence or absence of chlamydospores. < % Type species: Toxicocladosporium irritans Crous & U. Braun closely related to the new species T. cacti which differs in 2007. ŒÆ*!M‡!& M‡3 T. banksiae vs. * M#‡ &M )!M*' T. cactii], Notes: Toxicocladosporium was introduced by Crous et al. *‡M & M‡ 3 vs. *!M! & M# ) !!_ ' % *!M!& M# 3vs. `M$& M#3 ' _M**&M#3vs. M`&M ) and lacking the typical coronate Cladosporium scar type. culture characteristics (colonies olivaceous grey reaching up After this original publication, several new species isolated to 7 mm diam in 2 wk in T. banksiae vs. colonies pale grey to from different substrates and hosts were introduced in this #!# genus using morphological characters and phylogenetic pale brown to brown exudate in T. cacti). <V “V\ ƒ / et al. 2007, !!$!*!!**!*!*#!*‡!*`/ Toxicocladosporium cacti J.D.P. Bezerra, C.M. & Groenewald 2011). VŒ'@ /sp. nov. MycoBank MB820264 Toxicocladosporium banksiae Crous et al., Persoonia (Fig. 4) 25: 147 (2010). Etymology|+ Type: Australia: Queensland| + + ] which it was isolated. 26o#‡R*‡!PV* #o4’21.6”E, on leaves of Banksia *# July 2009, P.W. Crous et al./;VŽ'!‡$`M{/]/ Diagnosis: Differs from T. banksiae in its slightly smaller and *_"*/]/*_"!—/;V*"* ME' less septate microconidiophores and conidia, and by its pale grey to grey colonies. Description and illustration: Crous et al. (2010). Type: Brazil: Pernambuco| / + ] Substrate and distribution: On leaves of Banksia sp. ":#`R# RRV #_:*‡R‡!RRJ (Proteaceae), Australia (Crous et al. 2010b). Pilosocereus gounellei subsp. gounellei, V !*# J.D.P. Bezerra\A@$!!`"M{\A@_‡"$—/;V*‡* #$ Notes: According to Crous et al !*! <V ME' LSU sequences of T. banksiae are close to those of T. chlamydosporum and T. irritans <V ƒ Other material examined: Brazil: Pernambuco| / + of T. banksiae also differ from those of T. protearum. ] ":#`R# RRV#_:*‡R‡!RRJ Morphologically, T. banksiae differs from these three species Pilosocereus gounellei subsp. gounellei, V!*# J.D.P. Bezerra

88 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil ARTICL E

Fig. 4. Toxicocladosporium cacti \A@_‡"$—/;V*‡* #$ME'A. Colony sporulating on PDA. B. Colony sporulating on OA. C. Colony sporulating on MEA. D–H. Conidiophores and conidia. I. Ramoconidia and conidia. Bars = 10 )

\A@_‡$!—/;V*‡* #"*""Z;*$*Z;*$Z;*$ 'Z; % `M$ & M# 3 Small terminal Z;#*Z;# Z;#`Z;`Z;`*'Z; conidia '% M`&M ){! M*) Description: Mycelium consisting of branched, septate, M ) { Culture characteristicss' /#| becoming dark brown and thickened with age. Conidiophores Colonies on MEA are slightly folded and sulcate, velvety, pale dimorphic. Macroconidiophores solitary, arising from grey to grey with a pale grey rim, reverse dark grey, reaching #!{„z\ %%\E sparse to moderate aerial mycelium, smooth, surface and *#! & M# ) M`' Microconidiophores reverse pale grey to grey, to 29 mm; and on PDA surface and reduced to conidiogenous cells, rarely with one supporting reverse olivaceous grey, to 25 mm. Exudate pale brown to * M#‡ brown observed on cultures growing on MEA and PDA. & M ) !M*' Conidiogenous cells integrated, *#M*`&M# ) Substrate and distribution: An endophytic fungus isolated proliferating sympodially with 1–2 apical loci; scars from the cactus Pilosocereus gounellei subsp. gounellei *M* )Conidia (Cactaceae), Brazil. catenate in branched or unbranched chains, pale brown, ' Notes: Toxicocladosporium cacti is phylogenetically verruculose. Primary ramoconidia % related to T. banksiae but differs morphologically from it in !M*' *!M*‡M! & ŒÆ* M#‡ &M ) M# ){ secondary ramoconidia % !M*' vs. *!M‡! & M‡ 3Ç !M*' _M*!M*‡ & M# *!M! & M# ) vs. *‡M & M‡ 3 ){ ! M*). Intercalary `M$ & M# 3 vs. *!M! & M# 3 conidia ' !M*' M`&M )vs. _M**&M#3

V O LUME 8 · NO . 1 89 BezerraBe erra ettl al .

Furthermore, the culture characteristics are different from differentiate it from T. irritans. Toxicocladosporium chlamy- those of T. banksiae, colonies pale grey to grey, growing to dosporum differs from other species in the genus in the LE #!#ET. presence of larger ramoconidia, and longer, narrower C cacti vs. colonies olivaceous grey reaching up to 7 mm diam intercalary conidia, and in that it forms chlamydospores

RTI after 2 wk in T. banksiae. and sclerotial bodies in culture. Toxicocladosporium velox

A was isolated from the same leaf spot (Crous et al. 2009a). Toxicocladosporium chlamydosporum Crous & Based on the limited nucleotide differences and their M.J. Wingf., Persoonia 22: 90 (2009). morphological similarity, we consider T. velox a synonym of T. Synonym: Toxicocladosporium velox Crous & M.J. Wingf., chlamydosporum. A revised description is provided to enable Persoonia 22: 92 (2009); as ‘veloxum’. T. chlamydosporum in its expanded circumscription to be Types: Madagascar: Morondavo, on leaf of Eucalyptus closely related to T. protearum which differs from it mainly in camaldulensis, Aug. 2007, +>+ ?!! /;V Ž'!*$# M the size and degree of septation of its conidiophores [20–60 holotype of T. chlamydosporum; CPC 15709 = CBS 124157 )&#M )*M‡'T. chlamydosporum vs. #!M"! ME'{ibid/;VŽ'!*$`MT. velox; 3 & #M‡ 3 *M"' T. protearum], ramoconidia /]/* _#`—/;V*‡* $ME' * M*"& M‡) vs.* M!& M# 3 "M**&#M# )vs. $M*`&M#3 Description: Mycelium consisting of branched, septate, M# ) Ž$†,#$#;*_${'$@,J& [#,",*` Crous & A.R. Wood, '*) Persoonia 31|*$*!*# Conidiophores dimorphic. Macroconidiophores solitary, erect, Type: South Africa: Western Cape Province: Brackenfell, ' /; + A% % Ficinia %!M`!)#M ) indica (Cyperaceae), 18 Aug. 2012, A.R. Wood (CBS *M‡' Œ Ž'*‡*#M{/]/*"#/]/*"—/;V*#`‡!` Microconidiophores * ) ME' ) !M*' Conidiogenous cellss terminal, integrated, subcylindrical, straight, medium Description and illustration: Crous et al.!*# *!M & #M‡ ) %{ \ Substrate and distribution: On leaves of Ficinia indica ! M*M ) Conidia in (Cyperaceae), South Africa (Crous et al.!*# % ' Primary ramoconidia rarely Notes: #! is phylogenetically % !M*' ' related to T. posoqueriae which differs in conidiophore size * M*`M*_M*"& M#M‡ ) Secondary ramoconidia Æ*!M‡!&#M )*M* ' vs. 50–200 !M*' ' $M*!M*‡M*`& M#M‡ &‡M_)*M#' T. posoqueriae], and sizes of the )Intercalary conidia!M*''"M$M M* & M‡) vs. *!M!&‡M_) **M*& M#M# )Small terminal conidia aseptate, * M# &#M‡) vs. M* &‡M ) '`M*!&M M#) _M$& M#)vs. ‡M_&#M‡) and verruculose on MEA) (based on Crous et al. 2009a). Toxicocladosporium hominis V%'X et al., Culture characteristics (in the dark, at 25 °C after 1 mo): Persoonia 36: 421 (2016). Colonies on MEA erumpent, spreading, with sparse aerial mycelium; surface folded, irregular and sectored, with Type: USA: Florida: Daytona Beach, from human % ' % % \ D.A. Sutton H@A Ž'*#$_ M black, outer region olivaceous grey to greyish sepia; reverse {/;VŽ'##*M{H@A*#$_—\ŽV/Vz ' { ; X<'*#'*_—/;V*‡!`$‡ME' sclerotial bodies on MEA, consisting of an agglomeration of '{% Description and illustration: Crous et al. (2016). resemble hollow fruiting bodies, although they lack an ostiole „ „z \ Substrate and distribution: From human bronchoalveolar % { ' %\\Vz/ et al. 2016). %'{ #!/et al. 2009a). Notes: Toxicocladosporium hominis is phylogenetically related and morphologically similar to T. strelitziae (Crous et al. Substrate and distribution: On leaves of Eucalyptus 2012b), but differs from T. strelitziae in the production of larger camaldulensis (Myrtaceae), Madagascar (Crous et al. 2009a). *#M#! & #M‡ 3 vs. *!M* & M# 3$M*`&#M‡3 vs. *!M*&M Notes: Crous et al. (2009a) described this species using μm). In addition, the latter species has smooth to verruculose <V “V\ ƒ ramoconidia, secondary ramoconidia and intercalary conidia,

90 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil ARTICL E

Fig. 5. Toxicocladosporium immaculatum \A@_‡$*—/;V*‡* ‡!ME' A. Colony sporulating on PDA. B. Colony sporulating on OA. C. Colony sporulating on MEA. D. Conidiophores. E–G. Conidiophores and conidia. H. /*V+z ° C. I. Ramoconidia and conidia. Bars = 10 )

without constrictions in the medial portion or at the septum inamoenaV!*#J.D.P. Bezerra (URM 90069 – holotype; (Crous et al. 2016). Phylogenetically, this species is a distinct \A@_‡$*—/;V*‡* ‡!ME' taxon closely related to T. strelitziae (Fig. 2). Description: Mycelium V+z Toxicocladosporium immaculatum J.D.P. Bezerra, % M#) /@ VŒ'@ / sp. nov. MycoBank wide hyphae. Conidiophores dimorphic, arising from MB820265 (Fig. 5) % \E Macroconidiophores *!!&M# ) M ' Etymology| + '% Microconidiophores sometimes reduced to conidiogenous penicillate conidiophores. % \E *M & M# ) !M*' Diagnosis: Differs from most Toxicocladosporium species Conidiogenous cells integrated, polyblastic, terminal and by its red to dark red pigmented colonies when grown on lateral, smooth, becoming verruculose, brown, 10–14 OA. Different from #+ mainly by the larger and less & M# ){ septate conidiophores with shorter primary and secondary * M) Primary ramoconidia ramoconidia. Distinguished from T. posoqueriae by the % !M*' *‡ M & M‡ slightly reduced conidiophores and conidia, and from T. )Secondary ramoconidia giving rise to branched chains of rubrigenum by its less septate macroconidiophores, shorter % microconidiophores and somewhat larger conidia. !M*' _M"M*‡M*" & M# ){ ! M*). Intercalary conidia subcylindrical Type: Brazil: Pernambuco: Itaíba, Curral Velho Farm, 9o '%% !""$ V#_o 12.069 W, as endophyte from cactus Tacinga ** M*#& M#) Small terminal conidia '

V O LUME 8 · NO . 1 91 BezerraBe erra ettl al .

%"M*!M**&M#){ Portugal (Mesquita et al. 2009); associated with patients ! M*) with atopic dermatitis, Japan (Zhang et al. 2011); colonizing LE tattoo inks, Italy (Bonadonna et al. 2014); on parchment C Culture characteristicss' /#| manuscripts, Italy (Piñar et al. 2015); from human blood and

RTI Coloniess on MEA are folded and sulcate, velvety, pale grey to \VzV%'X et al. 2015); on Adansonia

A %'%% digitata, South Africa (Cruywagen et al. 2015); and on ##{„z\ equipment used in the International Space Station or Space moderate aerial mycelium, smooth, surface olive, with a light Shuttle, Japan (Satoh et al. 2016). grey rim, reverse dark brown, red to dark red pigmentation ## { ]Xz Notes: Crous et al. (2007) described Toxicocladosporium olivaceous to olivaceous yellowish, reverse dark green, with irritanss as producing volatile metabolites, which cause ## a skin rash within minutes of opening an inoculated diam. Exudate pale brown to brown on MEA and PDA. dish for microscopic examination. Morphologically and phylogenetically it is very similar to Cladosporium s. str., and Substrate and distribution: As an endophyte isolated from the produces dimorphic conidiophores, which is also a feature cactus Tacinga inamoena (Cactaceae), Brazil. commonly observed in that genus. It is distinct in having dark, ' Notes: Toxicocladosporium immaculatum is phylogenetically typical coronate Cladosporium scar type (David 1997, Crous closely related to #+#+@ and T. rubrigenum et al. 2007). In our phylogenetic analyses (Fig. 2), T. irritans (Fig. 2). It differs morphologically from #+in conidiophore forms a lineage related to T. rubrigenum and T. hominis. It Œ Æ *!! & M# ) M ' vs. differs from T. rubrigenum in the size and septation of the *!M‡!&#M )*M* '#+ ], conidiogenous Æ#!M`! & ‡M` ) M_' vs. to 100 *!M*‡& M# ) vs. M* & M‡) #+), ) & M‡ ) *M"'Ç _M* & Œ*‡ M &M‡) #M‡ ) vs. * M! & M# ) _M* & #M _M*" &M#)vs. * M# &#M‡) )vs. *#M*`& M# )$M*‡& *M!& M#) #+) and intercalary conidia (11.5– M# ) M*! & #M ) vs. 4–7 *#& M#) vs. $M**& M#) #+). It differs &M )< T. hominis in conidiophore size from T. posoqueriae in the size of the conidiophores [to 100 _!M**#&#M# )*#M#!&#M‡) &M# )M ' vs. !M!!&‡M_)*M#' * M#&M‡)**M* in T. posoqueriaeÇ*!M*‡& M# ) & M‡)$M*`&#M‡) vs. *!M!&‡M_) in T. posoqueriae), ramoconidia (primary *‡ M &M‡)_M*" &M#) vs. 5–15 Toxicocladosporium pini Crous & Y. Zhang ter, &‡M )T. posoqueriae"M**&M# Persoonia 32: 269 (2014). ) vs. ‡M_&#M‡) T. posoqueriae). Toxicocladosporium rubrigenum differs in the size of the conidiophores Type: China: Beijing, Badaling, 40o!R‡ *P+**`o!!R‡"#PU Æ *!! & M# ) M ' vs. on needles of Pinus sp. (Pinaceae*V!*#P.W. Crous *!! ) & M‡ ) *M"' T. rubrigenum and & Y. Zhangg/;VŽ'*_*$M{/]/#`#$—/;V *M & M# ) vs. #!&M# *#"!! ME' ) T. rubrigenumÇ*!M*‡& M# ) vs. * M! & M# ) T. rubrigenum), ramoconidia Description and illustration: Crous et al. (2014). *‡ M & M‡ ) _M*" & M# )vs. *#M*` & M# ) $M*‡ & Substrate and distribution: On needles of Pinus sp. M# )T. rubrigenum** M*#& (Pinaceae), China (Crous et al. 2014). M#) vs. _M$&M )T. rubrigenum), and terminal "M**&M#) vs. ‡M_&M ) T. rubrigenum). Notes: According to Crous et al. (2014), Toxicocladosporium Furthermore, T. immaculatum also differs from these species pini is morphologically similar to T. pseudovelox (ramoconidia in colony colour, the presence of a red to dark red pigmentation !M*'"M* & M‡ in OA medium, and slower growth rates. ){`M**&M#) and T. protearum !M*' Toxicocladosporium irritans Crous & U. Braun, Stud. * M! & M# ){ Mycol. 58|#$!!_ '$M*`&M#) Based on conidial dimensions, T. pinii can be distinguished Type: Suriname: Paramaribo: isolated from mouldy paint, from T. protearum, but because of its morphological similarity Feb. 1958, M.B. Schol-Schwarzz/;VŽ'*$"$M{ to T. pseudovelox it can only be distinguished from that /;V*" "ME' X+z ] positioned as a distinct lineage between T. protearum and T. Description and illustration: Crous et al. (2007). strelitziae (Fig. 2).

Substrate and distribution: Isolated from mouldy paint, Toxicocladosporium posoqueriae Crous & R.G. Suriname (Crous et al.!!_{' Shivas, Persoonia 29: 181 (2012).

92 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

Type: Australia: Northern Territory: Darwin, on leaves of P.W. Crouss /;V Ž'! # M { /]/ *" _ — /;V ARTICL Posoqueria latifolia (Rubiaceae), 12 Apr. 2011, R.G. Shivas *"__ ME' /;V Ž'*!"` M { /]/ *$#! — /;V *## "# M E' Description and illustration: Crous & Groenewald (2011). E Description and illustration: Crous et al. (2012b). Substrate and distribution: On leaf bracts of Phaenocoma prolifera (), South Africa (Crous & Groenewald Substrate and distribution: On leaves of Posoqueria latifolia 2011). (Rubiaceae), Australia (Crous et al. 2012b). Notes: Crous & Groenewald (2011) showed that Toxico- Notes: According to Crous et al. (2012b), Toxicocladosporium cladosporium pseudovelox was similar to T. chlamydosporum posoqueriae differs from other members of the genus in that and other Toxicocladosporium species, but has shorter it has whorls of conidiogenous cells, resembling those of "M* & M‡ ) T. chlamydosporum Parapericoniella asterinae (Heuchert et al. 2005, Bensch * M*" & M‡ ) Toxicocladosporium pseudovelox is et al. !* #+ closely related to T. pini, which has larger conidiophores Œ Æ !M!! & Æ #!M$! & #M‡ ) M"' ‡M_)*M#'vs. *!M‡!&#M )*M* 'Ç *!M*_ & #M‡ )Ç *!M!&‡M_) vs. M* & M‡) M!&#M# )*M*‡&#) M* &‡M )vs. * M# &#M‡) !M*' Toxicocladosporium pseudoveloxx was placed *M! & M# ) $M** & in a basal position at a highly supported node, which clustered M#)‡M_&#M‡)vs. _M$& M# it with T. pini, T. protearum, and T. chlamydosporum (Fig. 2). )< T. immaculatum which differs from in the conidiophores [macroconidiophores Toxicocladosporium rubrigenum Crous & M.J. *!!&M# )M '*M Wingf., Persoonia 22: 91 (2009). & M# )Ç*!M*‡& M# ) *‡ M & M‡ ) Type: Madagascar: Morondavo, on leaf of Eucalyptus _M*" &M#)** M*#& M#) camaldulensis, Aug. 2007, +>+ ?!! /;V Ž'!*$ M "M**&M#) {/]/* _# —/;V*‡* "ME'

Toxicocladosporium protearum Crous & Roets, Description and illustration: Crous et al. (2009a). Persoonia 25|*# !*! Substrate and distribution: On leaf of Eucalyptus camal- Type: South Africa: Western Cape Province: Stellenbosch, dulensis (Myrtaceae), Madagascar (Crous et al. 2009a). J.S. Marais Garden, on leaves of Protea sp., 22 Apr. 2008, F. Roets/;VŽ'!‡$!M{/]/* ‡—/;V*`‡$$ Notes| Toxicocladosporium ME' species in the production of densely branched penicillate conidiophores, and colonies that form a prominent red Description and illustration: Crous et al. (2010a). pigment on OA (Crous et al. 2009a). Toxicocladosporium rubrigenum is phylogenetically related to T. irritans and Substrate and distribution: On leaves of Protea sp. the new species T. immaculatum (Fig. 2). It differs from T. (Proteaceae), South Africa (Crous et al. 2010a). irritanss in having longer and narrower conidiophores and *!!3&M‡3* M!& M# Notes| ; “V\ <V ƒ 3*#M*`& M# 3{ Toxicocladosporium protearum showed that it is closely and from T. immaculatum in the size of the conidiophores related to T. chlamydosporum and T. irritans (Crous et al. Æ *!! & M# ) M ' 2010a). Morphologically it differs from T. chlamydosporum *M & M# )Ç "M**&#M# ) *!M*‡& M# )*‡ M `M*! & M# „ T. & M‡ ) _M*" & M# ) protearum as a distinct lineage between T. chlamydosporum ** M*#& M#)"M**&M# and T. pini #!M$! & ) #M‡ ) *M*‡ & # ) !M*' in the culture medium, production of exudates, and growth "M**& M#)!M*' rates). (Crous et al. 2014). Toxicocladosporium strelitziae Crous, Persoonia 28: 179 (2012). Toxicocladosporium pseudovelox Crous, Persoonia 26: 81 (2011); as ‘pseudoveloxum’. Type: South Africa: Mpumalanga Province: Kruger Game Reserve, Satara Rest Camp, on leaves of Strelitzia reginae Type: South Africa: Western Cape Province: Hermanus, (Strelitziaceae), 11 July 2011, P.W. Crouss/;VŽ'!$_!M H + A% #‡o#R#"PV *$o16’9.7”E, on leaf {/]/*$_`#/]/*$_`—/;V*# # M bracts of Phaenocoma prolifera, 2 May 2010, K.L. Crous & E'

V O LUME 8 · NO . 1 93 BezerraBe erra ettl al .

Description and illustration: Crous et al. (2012b). psis, Rachicladosporium, Toxicocladosporium, and Verruco- cladosporium \ <V “V\ rpb2 sequences from LE Substrates and distribution: On leaves of Strelitzia reginae these genera, from all Toxicocladosporium species and C (Strelitziaceae), South Africa (Crous et al. 2012b). from the other six families in Capnodiales we reconstructed

RTI the phylogenetic relationships of Cladosporiaceae and

A Notes: In a previous phylogenetic analysis, Toxicoclado- determined the phylogenetic position of each genus, sporium strelitziae was placed in close proximity to T. including the newly described genus Neocladosporium (Fig. pseudovelox (Crous et al. 2012b), but in the present analysis 1). Our results are similar to those of Bensch et al. (2012), is placed in a lineage distant from that species with T. hominis who used LSU sequences to verify the relationship among as the closest relative (Fig. 2). Toxicocladosporium strelitziae these genera of the Cladosporiaceae. is distinct from T. pseudoveloxx in having longer, narrower V%'X et al. (2015) studied clinical samples ‡!M_! & M# ) vs. !M !&#M‡ ) from the USA and reported the isolation of Cladosporium T. pseudovelox*M!& and Toxicocladosporium mainly obtained from respiratory M# )vs. "M* & M‡)!M*' T. pseudovelox), and from T. hominis ‡!M_!& % <V “V\ ƒ Toxico- M# ) T. strelitziae vs. _!M**#&#M# )T. hominis), cladosporium species except T. leucadendri, as well as *!M* & M# )T. strelitziae vs. morphological characters to identify two isolates as T. irritans, *#M#!&#M‡)Æ*M!&M# ) *!M*_ & M# ) positioned in a lineage between T. rubrigenum and T. T. strelitziae vs. * M#&M‡)!M' strelitziae < ƒ **M* & M‡ ) !M*' T. hominis], was published as a new species, T. hominis (Crous et al. Æ*!M*&M )T. strelitziae vs. !*`V%'X et al. (2015) may not have included $M*`&#M‡)!M*'T. hominis]. sequences from T. leucadendri in their analyses because this species appeared as a different genus, not belonging to Toxicocladosporium s. str. Toxicocladosporium leucadendri DISCUSSION /]/ *"#* — /;V *#*#*_ / et al. (2011a) based on megablast searches in combination Toxicocladosporium was introduced with culture characteristics, and conidiophore and conidial by Crous et al. (2007) to accommodate fungi similar to z<V Cladosporium species but with different conidiophore LSU sequences showed this strain in a single clade between and conidium morphology and phylogeny. Following this Graphiopsis chlorocephala and Verrucocladosporium dirinae. description, several new species were reported mainly % as epiphytic, saprobic or phytopathogenic fungi from all using the same loci, and also using actA, rpb22 and tub2 continents (Crous et al. 2009a, 2010a, b, 2011a, 2012a, b, sequences. Based on these results, we introduced the !*#!*‡!*`/ =!**Ž% new genus, Neocladosporium,with N. leucadendri as type contrast to Cladosporium, Toxicocladosporium species had species. Furthermore, based on the phylogenetic position and not previously been reported as endophytic fungi (Bensch et the small nucleotide differences between T. chlamydosporum al. 2012, Bezerra et al.!*!*#% and T. velox, Toxicocladosporium species as endophytic fungi from cacti in can be also observed in the phylogenetic reconstruction a tropical dry forest (Caatinga) in Brazil is reported here for published by Crous & Groenewald (2011), where T. velox % and T. chlamydosporum are placed in the same clade with endophytes in different hosts and ecosystems. a high bootstrap support value. In addition, these authors In this study we revisited all currently published species used few morphological characters, such as the colour and of Toxicocladosporium using morphology and phylogenetic size of conidia (darker brown and somewhat larger), absence analyses (including three new loci). Based on these data and/or presence of chlamydospores and growth in culture to we proposed two new species and one new closely related genus. Using a multigene phylogeny to recognise taxa the revised circumscription of T. chlamydosporum presented in Dothideomycetes, Schoch et al. (2006) showed that here. Cladosporium belongs to the family Cladosporiaceae (an % older name for the previously published ). Toxicocladosporium, we generated actA, rpb2 and tub2 “ % ' E ƒ%E' Crous et al. (2007) studied several isolates and proposed endophytic isolates generated in this study (Fig. 2). In our different genera based on their morphology and phylogeny, E<V“V\actA, rpb2 ƒ “V\ X+z < and tub22ƒ*# phylogenetic reconstruction, six new genera were proposed, including the two new species, T. cacti and T. immaculatum. including Rachicladosporium, Toxicocladosporium, and As previously demonstrated in Cladosporium by different Verrucocladosporium as incertae sedis. Bensch et al. (2012) authors (Braun et al.!!#Vet al. 2007b, Zalar et monographed the genus Cladosporium and showed that al. 2007, Bensch et al !*! !* !* V%'X it belongs to the family Cladosporiaceae (Capnodiales, et al.!*`<V“V\ƒ% Dothideomycetes) along with other four genera, Graphio- than actA, rpb22 and tub22 sequences to separate species in

94 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

Toxicocladosporium<X+zƒ ; ‰ = Z[ X‚ Z V'J @ ARTICL very similar among some species, but are useful to separate Andersen B, et al. (2010) Species and ecological diversity within “V\<VzactA the Cladosporium cladosporioides complex (Davidiellaceae, sequences, the third most informative region after rpb22 and Capnodiales). Studies in Mycology 67: 1–94. tub2, respectively, the separation of species was improved. ;‰;\=Z[/]J!* E Sequences of rpb2, followed by tub22 were the best loci to Cladosporium. Studies in Mycology 72: 1–401. recognise species in our analyses. We therefore recommend ;‰=Z[;\X‚ZZŒ' these markers as barcoding targets for species recognition Morales M, et al.!* /|E E<V realm of Cladosporium. Studies in Mycology 82|#M_‡ and actAƒactA, rpb2 Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes and tub2 sequences in our analyses was crucial to facilitate MJS, et al. (2012) Richness of endophytic fungi isolated from the separation of T. cacti from T. banksiae X+z [\! Mill. (Cactaceae) and preliminary screening sequences from endophytic isolates were closely related for enzyme production. World Journal of Microbiology and to T. banksiae, but could not unambiguously resolve both Biotechnology 28: 1989–1995. species. In contrast, the actA, rpb2 or tub22 loci consistently ;ŒZX]V@=V;A+V%ª@“X@@ E et al.!*#HCereus jamacaruu in not shown). A similar situation was observed in Cladosporium ;Œ|Symbiosis 60| #M`# <V Bezerra JDP, Oliveira RJV, Paiva LM, Silva GA, Groenewald JZ, et *'tef1) and actA loci has al. (2017) Bezerromycetaless and Wiesneriomycetaless ord. nov. been adopted in order to separate species within that genus, (class Dothideomycetes), with two novel genera to accommodate <V%; et al. 2012, endophytic fungi from Brazilian cactus. Mycological Progress 16: !* V%'X et al. 2016). $_M#!$ Our study shows that Toxicocladosporium species, as ; “ ; A / z+ H z A z“ et those of Cladosporium (Bensch et al. 2012, Bezerra et al. al. (2014) Valutazione delle caratteristiche microbiologiche di !*!*# inchiostri per tatuaggi in confezioni integre e dopo l’apertura. E Microbiologia Medica 29: 4807. our knowledge about endophytes associated with cacti ;\/]JXH@=Z[Ž=V!!# and highlights the mostly underestimated fungal diversity ] E ' ' including Davidiella gen. nov., the teleomorph of Cladosporium as well as the importance of protecting them in their natural s. str. Mycological Progress 2|#M*" habitats. ;\/]JV‰!!"E% genus Cladosporium s. lat. 8. Reintroduction of Graphiopsis (=Dichocladosporium ' ACKNOWLEDGEMENTS sporioid hyphomycetes. Mycotaxon 103: 207–216. Carbone I, Kohn LM (1999) A method for designing primer sets for J / + X%% / Mycologia 91:  /+]ƒ ] !#*#!*‡'$ / #M ` z ] +% V /z]UV /‰'Ž‰X'//'V‰J@“VZet al.!*`z' H z  / ] \ %% “A‡' Hz/U]U ;Œ J @X""' +H' ; @z]‰ thank Konstanze Bensch and David L. Hawksworth for the valuable ' ;ª Neuro- comments and suggestions to improve the manuscript. We extend chemistry International 95: 55–62. our thanks to the Universidade Federal de Pernambuco and to the Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) UV%'+“z\A@ MycoBank: an online initiative to launch mycology into the 21st Culture Collection, and to Marjan Vermaas, Arien van Iperen and Mieke century. Studies in Mycology 50: 19–22. V'JJ‚H;%<J Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting /=zƒƒ=AŒŒ Cladosporium from morphologically similar genera. Studies in Karla Freire and other students of the Laboratório de Micologia Mycology 58|##M ` Ambiental/UFPE for their technical help and processing of samples. / ]J J @Z = Z[ !!$ + \% Persoonia 22|"#M$‡ REFERENCES Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, et al. (2009b) Phylogenetic lineages in the Capnodiales. Studies in Australian Government Department of Agriculture (2015) Mycology 64: 17–47. Norfolk Island Quarantine Survey 2012–2014. http://www. Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009c) “A%E$

V O LUME 8 · NO . 1 95 BezerraBe erra ettl al .

H]`#Toxicocladosporium banksiae. Persoonia 25: Dark septate endophytic pleosporalean genera from semiarid 146–147. areas. Persoonia 35: 87–100. LE Crous PW, Groenewald, JZ (2011) Why everlastings don’t last. ‰ V V = ‰ !* @U=z_| @ C Persoonia 26: 70–84. Evolutionary Genetics Analysis version 7.0 for bigger datasets.

RTI Crous PW, Summerell BA, Shivas RG, Romberg M, Mel’nik VA, et Molecular Biology and Evolution 33: 1870–1874.

A al. (2011a) Fungal Planet description sheets: 92–106. Persoonia “ @ ª'Z Œ /z +Œ V @ƒŒ “@ !* 27|*#!M*` Diversity and composition of fungal endophytes in semiarid / ]J V ;z V “ X V ZU et al. +ªŒJournal of Arid Environments 85: 46–55. (2011b) Fungal pathogens of Proteaceae. Persoonia 27: 20–45. @'=A‰U*$$`\ /]JV;zV%A=;<X/zet al. among molecular data sets in the tribe Triticeae (Gramineae). (2012a) Fungal Planet description sheets: 107–127. Persoonia Systematic Biology 45: 524–545. 28|*#"M*" McCarthy CB, Diambra LA, Rivera Pomar RV (2011) Metagenomic / ]J V% A= J @Z V ;z A analysis of taxa associated with Lutzomyia longipalpis, vector AY, et al. !* H ] | *"M* # % ' Persoonia 29: 146–201. approach. PLoS Neglected Tropical Diseases 5|*#!‡ /]JJ@Z=Z/A%; @ƒ+]zªVAŒ'U%V; M, et al. !*# H ] | * ‡M*# AML, et al. (2009) Fungal diversity in ancient documentsL a case Persoonia 31: 188–296. study on the Archive of the University of Coimbra. International Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, et Biodeterioration and Biodegradation 63: 626–629. al. (2014) Fungal Planet description sheets: 214–280. Persoonia +½]ª=Žª ÿ]XÛet al. (2011) 32|*"‡M#!` =7çõíăÁ"ã½Í Crous ]JJ@ZAX@“EZZVX et ƒX+zÆ< al. (2016) Fungal Planet description sheets: 400–468. Persoonia X+zÇ#<E%; 36|#*`M‡ " 5|_*#M_*" /U@/]JAEZV;J@Z!* +Zz!!‡MrModeltest. Version 2. Uppsala: Evolutionary Fungi associated with black mould on baobab trees in southern Biology Centre, Uppsala University. Africa. Antonie van Leeuwenhoek 108: 85–95. O’Donnell K, Sutton DA, Rinaldi MG, Sarver BA, Balajee SA, et David JC (1997) A contribution to the systematics of Cladosporium: al. !*! <' X+z ƒ revision of the fungi previously referred to . identifying fusaria from human and animal infections. Journal of Mycological Papers 172: 1–157. Clinical Microbiology 48|#_!"M#_*" Fisher PJ, Sutton BC, Petrini LE, Petrini O (1994) Fungal endophytes ] = V\ ‰ ]Œ H !* \ ' from Opuntia stricta|Nova Hedwigia 59: 195–200. like parchment discoloration: molecular and microanalytical H'=//'XX=UªzV= approach. Environmental Microbiology 17|‡_M‡‡# et al. !*` | ' Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie 'Frontiers in Microbiology 7: 150. AJ, et al. (2014) Introducing the Consolidated Species Concept H ‰“Vz‚ =A ;Œ ZX]; A+ V% X/ª et to resolve species in the Teratosphaeriaceae. Persoonia 33: al. (2015) Fungos endofíticos de [ \! (L.) Mill. 1–40. (Cactaceae) sadia e infestada por Dactylopius opuntiae (Cockerell, Rayner RW. (1970) A Mycological Colour Chart. Kew: Commonwealth 1896) (Hemiptera: Dactylopiidae). Gaia Scientia 9: 104–110. Mycological Institute. = +“ X =/ *$$ X% A AV V ‰; V A= AŒ AZ Ž Z+ designed for use with the PCR to amplify conserved genes !!  Applied and Environmental Science 298: 1581 Microbiology 61|*##M*##! V%'X @ V Xz @'ª z /'“ ZH Heuchert B, Braun U, Schubert K (2005) Morphotaxonomic J + et al. (2015) Cladosporium species recovered revision of fungicolous Cladosporium species (hyphomycetes). from clinical samples in the United States. Journal of Clinical Schlechtendalia 13: 1–78. Microbiology 53|$$!M#!!! Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of V%'X@= ZVXzJ+]/'“ phylogenetic trees. Bioinformatics 17: 754–755. JF, et al.!*`+Cladosporium associated with ‰‰VX@!*#@zHHƒ human and animal infections. Persoonia 36: 281–298. software version 7: improvements in performance and usability. V‰Œ+\z@@et al. Molecular Biology and Evolution 30: 772–780. (2016) Characterization of fungi isolated from the equipment ‰ŽŽUX@]'zzŽZ+%X„ et al. used in the International Space Station or Space Shuttle. (2010) A general suite of fungal endophytes dominate the roots Microbiology and Immunology 60|$ M#! of two dominant grasses in a semiarid grassland. Journal of Arid Schoch C, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Environments 74|# M‡ et al. (2006) A multigene phylogeny of the Dothideomycetes ‰zz+U“‰@!*#] using four nuclear loci. Mycologia 98: 1041–1052. ]/<<X'ƒ Schubert K, Braun U, Groenewald JZ, Crous PW (2007a) Eorhiza arnoldii%'Œ Cladosporium'Paeonia spp. caused fungi during the Eocene. Mycologia 105: 1100–1109. by Dichocladosporium chlorocephalum gen. nov. Studies in Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Mycology 58: 95–104.

96 I MA FUNGUS New Toxicocladosporium species from cacti in Brazil

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink MS, et z / „ V @ A ‰ V et al. (2014) ARTICL al. (2007b) Biodiversity in the complex Molecular characterization of the skin fungal microbiota in (Davidiellaceae, Capnodiales), with standardisation of methods patients with seborrheic dermatitis. Journal of Clinical & for Cladosporium and diagnostics. Studies in Mycology Experimental Dermatology 5|#$ 58: 105–156. Videira SI, Groenewald JZ, Braun U, Shin HD, Crous PW (2016) All E V%'ŽzHJXU//“/%/A][et that glitters is not Ramularia. Studies in Mycology 83|‡$M*`# al. (2015) Diversity and antifungal activity of the endophytic fungi ª A Ž @ *$$! A associated with the native medicinal cactus Opuntia humifusa Œ X+z % (Cactaceae) from the United States. Microbiological Research Cryptococcus species. Journal of Bacteriology 172|‡#"M‡‡` 175: 67–77. JZ ;“ ZZ *$$!z Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic ƒA+z<| 'Bioinformatics PCR Protocols: a guide to methods and applications (Innis MA, 30|*#*M*#*# =XŽVZZJZ|#* M#VX| Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2012) Endophytic Academic Press. fungal community in stems and leaves of plants from desert JZZ*$$"| areas in China. Mycological Progress 11: 781–790. phylogenetic analysis of polymorphic morphological characters V V J V‰ H VŽ !! U in phrynosomatid lizards. Systematic Biology 47: 427–444. fungi associated with cacti in Arizona. Mycological Research [ ] Ž =V V Ž'Z / ]J = Z[ 109|`# M`#$ et al. (2007) Phylogeny and ecology of the ubiquitous saprobe VV@V%+A‚@;= Cladosporium sphaerospermum, with descriptions of seven new Venkatesan G, et al. (2011) Endophytic fungal communities in species from hypersaline environments. Studies in Mycology 58: woody perennials of three tropical forest types of the Western * _M*"# Ghats, southern India. Biodiversity and Conservation 20|$*#M [U‚@A+z et al. (2011) 928. Characterization of the skin fungal microbiota in patients with VX“!!#PAUP*: phylogenetic analysis using parsimony (* atopic dermatitis and in healthy subjects. Microbiology and and other methods). Version 4.0 beta. Sunderland, MA: Sinauer Immunology 55|` M`# Associates.

V O LUME 8 · NO . 1 97