DIPTERA: CALLIPHORIDAE) by Sarah E

Total Page:16

File Type:pdf, Size:1020Kb

DIPTERA: CALLIPHORIDAE) by Sarah E THE GENOMICS OF DEVELOPMENT RATE VARIATION IN COCHLIOMYIA MACELLARIA (DIPTERA: CALLIPHORIDAE) by Sarah E. Lewis A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Chemistry Indianapolis, Indiana August 2018 ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. Christine Picard, Chair Department of Biological Sciences Dr. Aaron Tarone Department of Entomology Dr. Randall Roper Department of Biological Sciences Approved by: Dr. John Goodpaster Head of the Graduate Program iii TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii ABSTRACT ................................................................................................................................. viii 1. INTRODUCTION ................................................................................................................... 1 What is Forensic Entomology? ........................................................................................... 1 1.1.1 Two approaches for estimating PMI............................................................................ 1 How is Forensic Entomology typically used? .................................................................... 2 1.2.1 Blow fly life cycle ....................................................................................................... 3 What data types are used in Forensic Entomology? ........................................................... 4 What contributes to development rate variation? ............................................................... 4 1.4.1 Seasonal temperatures ................................................................................................. 5 1.4.2 Ambient temperature ................................................................................................... 6 1.4.3 Larval masses ............................................................................................................... 7 1.4.4 Type of carrion ............................................................................................................ 8 1.4.5 Toxins present in carrion ............................................................................................. 8 1.4.6 Blow fly species present on carrion ............................................................................. 9 1.4.7 Predation behavior of certain blow fly larvae ............................................................ 10 What about the genetic contribution to development rate variation? ............................... 10 How can the study determine what genetic components influence development rate? .... 12 1.6.1 Pooled sequencing method ........................................................................................ 13 Developmental process and involved genes ..................................................................... 14 1.7.1 Hormones and development ...................................................................................... 14 1.7.2 Nutrient signaling pathways ...................................................................................... 14 1.7.3 Prothoracicotropic hormone signaling pathways ....................................................... 15 1.7.4 Activin signaling pathway ......................................................................................... 15 1.7.5 Nitric oxide pathway .................................................................................................. 16 1.7.6 Two approaches for identifying variants between genomes...................................... 16 The blow fly of interest and related model organism ....................................................... 17 What does this study plan to accomplish? ........................................................................ 18 iv 2. DEVELOPMENT RATE GENETIC MARKERS ................................................................ 19 Introduction ....................................................................................................................... 19 Materials and Methods ...................................................................................................... 21 2.2.1 Identifying variants potentially associated with development rate ............................ 21 2.2.1.1 Amplification and sequencing of developmental genes ....................................... 23 2.2.1.2 DNA amplification ............................................................................................... 24 2.2.1.3 Sequencing amplification and genotyping ........................................................... 24 2.2.2 Wild fly sequencing ................................................................................................... 25 2.2.2.1 Preparing replicates from wild C. macellaria ...................................................... 25 2.2.2.2 Development of wild offspring ............................................................................. 26 2.2.2.3 DNA extraction ..................................................................................................... 26 Results ............................................................................................................................... 27 2.3.1 Selection of genes ...................................................................................................... 27 2.3.2 Wild offspring development and sequencing ............................................................ 28 Discussion ......................................................................................................................... 33 2.4.1 Enzymes in MAPK pathway effect development rate ............................................... 34 2.4.2 Enzymes in activin pathway effect development rate ............................................... 34 2.4.3 Ecdysone-induced proteins effect development rate ................................................. 35 2.4.4 Novel variants identified in sequencing .................................................................... 36 Conclusion ........................................................................................................................ 37 3. GENOMIC REGIONS EFFECTING DEVELOPMENT RATE .......................................... 38 Introduction ....................................................................................................................... 38 Materials and Methods ...................................................................................................... 40 3.2.1 Description of genomes used ..................................................................................... 40 3.2.2 Variant discovery ....................................................................................................... 41 3.2.3 Genome wide association study................................................................................. 41 3.2.4 Functional characterization ........................................................................................ 42 Results ............................................................................................................................... 43 3.3.1 Selection strain genome comparison ......................................................................... 43 3.3.2 Functional characterization of sequences containing significant variants ................. 43 3.3.2.1 Biological processes, molecular functions, and enzyme pathways effected ........ 44 v Discussion ......................................................................................................................... 50 3.4.1 Regulation of RNA polymerase II ............................................................................. 50 3.4.2 Protein dimerization ................................................................................................... 51 3.4.3 Neural development transcription factors .................................................................. 52 3.4.4 Cytochrome P450 genes ............................................................................................ 53 3.4.5 Metabolic pathways ................................................................................................... 54 Conclusion ........................................................................................................................ 54 4. CONCLUSION AND FUTURE STUDIES .......................................................................... 56 REFERENCES ............................................................................................................................. 58 APPENDIX A ............................................................................................................................... 74 APPENDIX B ............................................................................................................................... 76 APPENDIX C ............................................................................................................................... 79 vi LIST OF TABLES Table 1. Drosophila melanogaster genes and their associated involvement in development rate ...........................................................................................................
Recommended publications
  • The Evolution, Diversity, and Host Associations of Rhabdoviruses Ben Longdon,1,* Gemma G
    Virus Evolution, 2015, 1(1): vev014 doi: 10.1093/ve/vev014 Research article The evolution, diversity, and host associations of rhabdoviruses Ben Longdon,1,* Gemma G. R. Murray,1 William J. Palmer,1 Jonathan P. Day,1 Darren J Parker,2,3 John J. Welch,1 Darren J. Obbard4 and Francis M. Jiggins1 1 2 Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, School of Biology, University of Downloaded from St Andrews, St Andrews, KY19 9ST, UK, 3Department of Biological and Environmental Science, University of Jyva¨skyla¨, Jyva¨skyla¨, Finland and 4Institute of Evolutionary Biology, and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, UK *Corresponding author: E-mail: [email protected] http://ve.oxfordjournals.org/ Abstract Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses. These new viruses are poorly characterized and new approaches are needed predict the host species these viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals, and plants. We have discovered thirty-two new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus by guest on December 14, 2015 sequences, and produced the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses beyond the host they were identified from, but our dataset provides a powerful phylogenetic approach to predict which are vector-borne viruses and which are specific to vertebrates or arthropods.
    [Show full text]
  • Diptera: Tephritidae)
    Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) Authors: Doellman, Meredith M., Hood, Glen R., Gersfeld, Jacob, Driscoe, Amanda, Xu, Charles C. Y., et al. Source: Annals of the Entomological Society of America, 113(4) : 246- 256 Published By: Entomological Society of America URL: https://doi.org/10.1093/aesa/saz069 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Entomological-Society-of-America on 29 Aug 2020 Terms of Use: https://bioone.org/terms-of-useAccess provided by University of Notre Dame Annals of the Entomological Society of America, 113(4), 2020, 246–256 doi: 10.1093/aesa/saz069 Advance Access Publication Date: 16 March 2020 Special Collection: Advanced Genetic Analysis of Invasive Arthropods Special Collection Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) 2020 July 23 user on access site OUP by https://academic.oup.com/aesa/article-abstract/113/4/246/5748322 from Downloaded Meredith M.
    [Show full text]
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • Midsouth Entomologist 5: 39-53 ISSN: 1936-6019
    Midsouth Entomologist 5: 39-53 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Insect Succession on Pig Carrion in North-Central Mississippi J. Goddard,1* D. Fleming,2 J. L. Seltzer,3 S. Anderson,4 C. Chesnut,5 M. Cook,6 E. L. Davis,7 B. Lyle,8 S. Miller,9 E.A. Sansevere,10 and W. Schubert11 1Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, e-mail: [email protected] 2-11Students of EPP 4990/6990, “Forensic Entomology,” Mississippi State University, Spring 2012. 2272 Pellum Rd., Starkville, MS 39759, [email protected] 33636 Blackjack Rd., Starkville, MS 39759, [email protected] 4673 Conehatta St., Marion, MS 39342, [email protected] 52358 Hwy 182 West, Starkville, MS 39759, [email protected] 6101 Sandalwood Dr., Madison, MS 39110, [email protected] 72809 Hwy 80 East, Vicksburg, MS 39180, [email protected] 850102 Jonesboro Rd., Aberdeen, MS 39730, [email protected] 91067 Old West Point Rd., Starkville, MS 39759, [email protected] 10559 Sabine St., Memphis, TN 38117, [email protected] 11221 Oakwood Dr., Byhalia, MS 38611, [email protected] Received: 17-V-2012 Accepted: 16-VII-2012 Abstract: A freshly-euthanized 90 kg Yucatan mini pig, Sus scrofa domesticus, was placed outdoors on 21March 2012, at the Mississippi State University South Farm and two teams of students from the Forensic Entomology class were assigned to take daily (weekends excluded) environmental measurements and insect collections at each stage of decomposition until the end of the semester (42 days). Assessment of data from the pig revealed a successional pattern similar to that previously published – fresh, bloat, active decay, and advanced decay stages (the pig specimen never fully entered a dry stage before the semester ended).
    [Show full text]
  • Science Review of the United States Forest Service
    SCIENCE REVIEW OF THE UNITED STATES FOREST SERVICE DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR NATIONAL FOREST SYSTEM LAND MANAGEMENT Summary Report 1255 23 rd Street, NW, Suite 275 Washington, DC 20037 http://www.resolv.org Tel 202-965-6381 | Fax 202-338-1264 [email protected] April 2011 SCIENCE REVIEW OF THE UNITED STATES FOREST SERVICE DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR NATIONAL FOREST SYSTEM LAND MANAGEMENT Summary Report Science Reviewers*: Dr. John P. Hayes, University of Florida Dr. Alan T. Herlihy, Oregon State University Dr. Robert B. Jackson, Duke University Dr. Glenn P. Juday , University of Alaska Dr. William S. Keeton, University of Vermont Dr. Jessica E. Leahy , University of Maine Dr. Barry R. Noon, Colorado State University * Order of authors is alphabetical by last name RESOLVE Staff: Dr. Steven P. Courtney (Project Lead) Debbie Y. Lee Cover photo courtesy of Urban (http://commons.wikimedia.org/wiki/File:Muir_Wood10.JPG). is a non-partisan organization that serves as a neutral, third-party in policy decision-making. One of RESOLVE’s specialties is helping incorporate technical and scientific expertise into policy decisions. Headquartered in Washington, DC, RESOLVE works nationally and internationally on environmental, natural resource, energy, health, and land use planning issues. Visit http://www.resolv.org for more details. Contact RESOLVE at [email protected] . EXECUTIVE SUMMARY The US Forest Service asked RESOLVE to coordinate an external science review of the draft Environmental Impact Statement (DEIS) for National Forest System Land Management Planning. The basic charge of the review process was to ‘evaluate how well the proposed planning rule Draft Environmental Impact Statement (DEIS) considers the best available science.
    [Show full text]
  • Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
    Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa .....................................................
    [Show full text]
  • Diptera: Calliphoridae)
    DIRECT INJURY,MYIASIS,FORENSICS Effects of Temperature and Tissue Type on the Development of Cochliomyia macellaria (Diptera: Calliphoridae) 1 1,2 STACY A. BOATRIGHT AND JEFFERY K. TOMBERLIN J. Med. Entomol. 47(5): 917Ð923 (2010); DOI: 10.1603/ME09206 ABSTRACT The secondary screwworm, Cochliomyia macellaria (Fabricius), was reared on either equine gluteus muscle or porcine loin muscle at 20.8ЊC, 24.3ЊC, and 28.2ЊC. C. macellaria needed Ϸ35% more time to complete development when reared at 20.8 than 28.2ЊC. Furthermore, larval growth and weight over time did not differ between larvae reared on equine versus porcine muscle. This study is the second in the United States to examine the development of C. macellaria and is the Þrst to examine development of this species on muscle tissue from different vertebrate species. These data could provide signiÞcant information regarding time of colonization, including myiasis and neglect cases involving humans and animals. Furthermore, these results in comparison with the only other data set available for this species in North America indicate a fair amount of phenotypic variability as it relates to geographic location, suggesting caution should be taken when applying these data to forensic cases outside the region where this study was conducted. KEY WORDS secondary screwworm, forensic entomology, forensic veterinary medicine, myiasis Forensic entomology is the utilization of insects and though similar development times have been docu- other arthropods as evidence in both civil and criminal mented in pre-existing data sets for a variety of blow investigations (Williams and Villet 2006). The broad ßy species, some variations can be found within spe- scope of this Þeld can be broken down into three cies (Tarone and Foran 2006, Gallagher et al.
    [Show full text]
  • Ketu Mutant Mice Uncover an Essential Meiotic Function for the Ancient, Putative RNA Helicase YTHDC2
    bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ketu mutant mice uncover an essential meiotic function for the ancient, putative RNA helicase YTHDC2 Devanshi Jain1, M. Rhyan Puno2,4, Kathryn V. Anderson3, and Scott Keeney1,4 * 1Molecular Biology Program, 2Structural Biology Program, 3Developmental Biology Program, and 4Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA Running title: Ythdc2 is essential for mouse meiosis Keywords Meiosis, spermatogonia, MEIOC, Bgcn, Bam, RNA binding proteins, gametogenesis *Correspondence: Scott Keeney Howard Hughes Medical Institute Molecular Biology Program Memorial Sloan Kettering Cancer Center 1275 York Ave, Box 97 New York, NY 10065 (212) 639-5182 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Mechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component of this regulation. A screen yielded a mutant, “ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells enter meiosis but proceed prematurely to aberrant metaphase and apoptosis.
    [Show full text]
  • Population Genetics and Gene Variation in Primary and Secondary Screwworm (Diptera : Calliphoridae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 1994 Population Genetics and Gene Variation in Primary and Secondary Screwworm (Diptera : Calliphoridae) David B. Taylor University of Nebraska-Lincoln, [email protected] Richard D. Peterson II University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Taylor, David B. and Peterson, Richard D. II, "Population Genetics and Gene Variation in Primary and Secondary Screwworm (Diptera : Calliphoridae)" (1994). Faculty Publications: Department of Entomology. 204. https://digitalcommons.unl.edu/entomologyfacpub/204 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GENETICS Population Genetics and Gene Variation in Primary and Secondary Screwworm (Diptera : Calliphoridae) DAVID B. TAYLOR AND RICHARD D . PETERSON II Midwest Livestock Insects Research Laboratory, USDA—ARS, Department of Entomology, University of Nebraska, Lincoln, NE 68583 Ann . Entomol . Soc . Am . 87(5) : 626—633 (1994) ABSTRACT Allozyme variation in screwworm, Cochliomyia hominivorax (Coquerel), and secondary screwworm, C. macellaria (F.), populations from northwest Costa Rica was examined . Variability was observed in 11 of 13 enzyme loci and the frequency of the most common allele was <0.95 for 5 loci in screwworm . In secondary screwworm, 12 of 13 loci were variable and the frequency of the most common allele was <0.95 for 6 loci. Expected heterozygosities were 0.149 and 0.160 for screwworm and secondary screwworm, respec- tively.
    [Show full text]
  • Classic House Music and Vocals
    Classic House Music and Vocals More Than Life Jana Stand Still Aubrey Above the Clouds Amber I Will Love Again Lara Fabian I Learned From the Best Whitney Houston My Love is Your Love Whitney Houston Same Script Different Cast Whitney Houston and Deborah Cox Nobody Supposed to Be Here Deborah Cox Deep Kemical Madam Vs. Benny Maze Satisfaction Benny Benasi Better Off Alone Alice Deejay Nite Visions (I wear My sunglasses at night) Sirs and Ma'ams I Turn To You Melanie C. Your Love Is Taking Me Over Knight Breed I Like It Narcotic Thrust Annihilate Major North Make the World Go Round Sandy B. My My My Armand Van Helden You Don't Even Know Me Armand Van Helden Free Ultra Nate Release Me Veronica Let the Sunshine (Jonathan Peter's Mix) Without You Digital Allies Give Me Tonight Shannon All This Time Jonathan Peters No One's Gonna Change You Reina Find Another Woman Reina How Would You Feel David Morales with Lea Lorien Fly Life Basement Jaxx Insomnia Faithless Wish I Didn't Miss You Angie Stone Trippin' Oris Jay GG D'AG Cuba Libre (If you really wanna rock the funky beats...Rock the rock the funky beats) Afrika Plasmic Honey This Joy Junior Vasquez presents Vernessa Mitchell Lola's Theme Shapeshifters Sun is Shining Bob Marley vs. Funkstar De Luxe Remix Boots On the Run Insider Follow Me Space Frog That's the Way Love is Byron Stingley Take Me to the Top Plasmic Honey Ride the Trip Plasmic Honey We Are In the Dark Plasmic Honey Freight Train Robbie Tronco In Your Eyes Luz Divina Unspeakable Joy Kim English Shhh....Be Quiet Jonah Everything Will Flow London Suede Baby Wants to Ride Hani Do It Again Razor N' Guido Moments (In Love) Johnny Vicious and Mindy K Silence Delerium Feat.
    [Show full text]
  • Abstract Book
    92nd Annual Meeting of the Pennsylvania Academy of Science http://www.pennsci.org April 1 – 3, 2016 Abstract Book ABSTRACTS Listed alphabetically by first author’s last name. Adamski, Jonathan*, and Thomas LaDuke East Stroudsburg University, East Stroudsburg, PA 18301. Surveying Disjunct Populations of Two Reptile Species in Northeast Pennsylvania. — Two species of reptile, Carphophis amoenus and Sceloporus undulatus, exist in the Northeastern portion of Pennsylvania as disjunct populations greater than 90 miles from their nearest conspecifics. These species are generally found in the Southern reaches of the state and more commonly in the Southern portion of the country. It has been hypothesized that these species expanded northward during a global warming period in the early Holocene (hypsithermal period) and when they again retreated to the south during a subsequent cooling, these remnant populations were left in areas where suitable habitat remained. We have observed these populations for one field season and will continue to do so for several years. The S.undulatus population appears to be healthy and with each trip to the site, on viable days, several adults and young were seen. The next step in the study will be to expand our search to the surrounding areas to see if any satellite groups can be discovered. C.amoenus has proven to be more difficult to locate. We found none in the locations where they have been observed and reported in previous years. The only individual that has been found was located in the shale barrens habitat that S.undulatus inhabits, several miles away from the mixed forest flood plain habitat they are normally found in.
    [Show full text]
  • Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
    insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species.
    [Show full text]