Austrorossia Antillensis (Voss, 1955) Fig
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
7. Index of Scientific and Vernacular Names
Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54 -
Ommastrephidae 199
click for previous page Decapodiformes: Ommastrephidae 199 OMMASTREPHIDAE Flying squids iagnostic characters: Medium- to Dlarge-sized squids. Funnel locking appara- tus with a T-shaped groove. Paralarvae with fused tentacles. Arms with biserial suckers. Four rows of suckers on tentacular clubs (club dactylus with 8 sucker series in Illex). Hooks never present hooks never on arms or clubs. One of the ventral pair of arms present usually hectocotylized in males. Buccal connec- tives attach to dorsal borders of ventral arms. Gladius distinctive, slender. funnel locking apparatus with Habitat, biology, and fisheries: Oceanic and T-shaped groove neritic. This is one of the most widely distributed and conspicuous families of squids in the world. Most species are exploited commercially. Todarodes pacificus makes up the bulk of the squid landings in Japan (up to 600 000 t annually) and may comprise at least 1/2 the annual world catch of cephalopods.In various parts of the West- ern Central Atlantic, 6 species of ommastrephids currently are fished commercially or for bait, or have a potential for exploitation. Ommastrephids are powerful swimmers and some species form large schools. Some neritic species exhibit strong seasonal migrations, wherein they occur in huge numbers in inshore waters where they are accessable to fisheries activities. The large size of most species (commonly 30 to 50 cm total length and up to 120 cm total length) and the heavily mus- cled structure, make them ideal for human con- ventral view sumption. Similar families occurring in the area Onychoteuthidae: tentacular clubs with claw-like hooks; funnel locking apparatus a simple, straight groove. -
Evolution of the Hectocotylus in Sepiolinae (Cephalopoda: Sepiolidae) and Description of Four New Genera
European Journal of Taxonomy 655: 1–53 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.655 www.europeanjournaloftaxonomy.eu 2020 · Bello G. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:0042EFAE-2E4F-444B-AFB9-E321D16116E8 Evolution of the hectocotylus in Sepiolinae (Cephalopoda: Sepiolidae) and description of four new genera Giambattista BELLO Arion, Via Colombo 34, 70042 Mola di Bari, Italy. [email protected] urn:lsid:zoobank.org:author:31A50D6F-5126-48D1-B630-FBEDA63944D9 …it is impossible to doubt that the [hectocotylized] arm is thereby adapted to some particular purpose, […] because its transformation occurs in so great a number of species of the class, and bears its peculiar characters in each natural genus. Japetus Steenstrup (1857) Abstract. The subfamily Sepiolinae (Mollusca: Cephalopoda: Sepiolidae), currently containing the genera Sepiola Leach, 1817, Euprymna Steenstrup, 1887, Inioteuthis Verrill, 1881, Rondeletiola Naef, 1921 and Sepietta Naef, 1912, is characterized by the hectocotylization of the left dorsal arm, i.e., its transformation into a copulatory organ thanks to modifications of sucker/pedicel elements. The hectocotylus morphology varies to a great extent across genera and species. In particular, one to several pedicels in its proximal third lose their sucker and become highly and diversely modified in shape to constitute a copulatory apparatus. An evolutionary gradient was observed in the copulatory apparatus morphology, from the simple modification into a papilla of just one pedicel from the third element of the ventral sucker row (some nominal species of Euprymna) to a quite complex structure involving several variously modified pedicels from both the ventral and dorsal sucker rows (Inioteuthis). -
Informe Técnico (R. Pesq.) Nº 185-2016
Informe Técnico (R. Pesq.) Nº 185-2016 Establecimiento de veda biológica para el recurso Pulpo del sur (Enteroctopus megalocyathus) en la XIV Región de Los Ríos, X Región de Los Lagos, XI Región de Aysén y XII Región de Magallanes. X Región, Año 2016 Unidad de Recursos Bentónicos División de Administración Pesquera Subsecretaría de Pesca y Acuicultura Valparaíso, Septiembre de 2016 Distribución: • División de Desarrollo Pesquero, Subsecretaría de Pesca y Acuicultura • División Jurídica, Subsecretaría de Pesca y Acuicultura • Archivo Departamento de Pesquerías, Subsecretaría de Pesca y Acuicultura INFORME TÉCNICO (R. PESQ.) Nº 185/2016 2 1. OBJETIVO El objetivo del presente informe técnico es presentar los antecedentes que fundan la recomendación de modificar, el inicio del periodo de veda biológica del pulpo del sur Enteroctopus megalocyathus, en XIV Región de Los Ríos, X Región de Los Lagos, la XI región de Aysén y XII Región de Magallanes, dado que la medida actual, fue implementada en base a la información disponible en el año 1985, la que consideraba la existencia de una única especie a nivel nacional. Cabe señalar que mediante ORD./DZP/X/N° 68 del 30 de agosto de 2016, el Presidente del Comité de Manejo de pulpo del sur, X Región de Los Lagos, informa la recomendación de dicho Comité fundada en los antecedentes aportados por el IFOP, en el marco del Seguimiento de Pesquerías Bentónicas, relativa a establecer una veda biológica para el recurso pulpo del sur, entre el 15 de Octubre y el 15 de marzo, ambas fechas inclusive, a partir de la presente temporada 2016. -
Reproductive Strategies in Female Polar and Deep-Sea Bobtail Squid Genera Rossia and Neorossia (Cephalopoda: Sepiolidae)
Polar Biol (2008) 31:1499–1507 DOI 10.1007/s00300-008-0490-4 ORIGINAL PAPER Reproductive strategies in female polar and deep-sea bobtail squid genera Rossia and Neorossia (Cephalopoda: Sepiolidae) V. V. Laptikhovsky · Ch. M. Nigmatullin · H. J. T. Hoving · B. Onsoy · A. Salman · K. Zumholz · G. A. Shevtsov Received: 7 April 2008 / Revised: 18 June 2008 / Accepted: 30 June 2008 / Published online: 18 July 2008 © Springer-Verlag 2008 Abstract Female reproductive features have been investi- Introduction gated in Wve polar and deep-sea bobtail squid genera Rossia and Neorossia (R. macrosoma, R. moelleri, R. paciWca, CuttleWsh of the family Sepiolidae, commonly known as N.c. caroli and N.c. jeannae). These species are character- “bobtail squid”, inhabit tropical, temperate and polar waters ized by asynchronous ovary maturation, very large eggs of all oceans. The family has three subfamilies including (>10% ML), fecundity of several hundred oocytes, very the oceanic and pelagic Heteroteuthinae and the benthic high reproductive output, and continuous spawning with Sepiolinae and Rossiinae which inhabit continental shelf low batch fecundity. This adaptive complex of reproductive and slope waters. Sepiolinae are common on tropical and traits evolved in these small animals as an optimum strat- temperate shelves and on the upper part of the continental egy for polar and deep-water habitats. slope (down to depths of about 400 m). Rossiinae are gen- erally associated with cold water. They occur on polar Keywords Neorossia · Rossia · Spawning · shelves and in deep seas between 200 and 2,000 m, usually Reproduction · Polar · Deep-sea deeper than 500 m, though not south of the Antarctic Polar Front (Reid and Jereb 2005). -
Phylum: Mollusca Class: Cephalopoda
PHYLUM: MOLLUSCA CLASS: CEPHALOPODA Authors Rob Leslie1 and Marek Lipinski2 Citation Leslie RW and Lipinski MR. 2018. Phylum Mollusca – Class Cephalopoda In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 321-391. 1 South African Department of Agriculture, Forestry and Fisheries, Cape Town 2 Ichthyology Department, Rhodes University, Grahamstown, South Africa 321 Phylum: MOLLUSCA Class: Cephalopoda Argonauts, octopods, cuttlefish and squids Introduction to the Class Cephalopoda Cephalopods are among the most complex and The relative length of the arm pairs, an important advanced invertebrates. They are distinguished from identiication character, is generally expressed as the rest of the Phylum Mollusca by the presence an arm formula, listing the arms from longest to of circumoral (around the mouth) appendages shortest pair: e.g. III≥II>IV>I indicates that the two commonly referred to as arms and tentacles. lateral arm pairs (Arms II and III) are of similar length Cephalopods irst appeared in the Upper Cambrian, and are longer than the ventral pair (Arms IV). The over 500 million years ago, but most of those dorsal pair (Arms I) is the shortest. ancestral lineages went extinct. Only the nautiluses (Subclass Nautiloidea) survived past the Silurian (400 Order Vampyromorpha (Vampire squids) million years ago) and are today represented by only This order contains a single species. Body sac-like, two surviving genera. All other living cephalopods black, gelatinous with one pair (two in juveniles) of belong to the Subclass Coleoidea that irst appeared paddle-like ins on mantle and a pair of large light in the late Palaeozoic (400-350 million years ago). -
Description of Key Species Groups in the East Marine Region
Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................ -
The Trophic Relationships of Several Commercial Finfish Species from the Southwest Atlantic. ICES CM 2002/N:13
Not be cited without prior reference to the authors International Council for the ICES CM 2002/N:13 Exploration of the Sea Theme Session on Environmental Influences on Trophic Interactions The trophic relationships of several commercial finfish species from the southwest Atlantic. G.J. Pierce1, M.B. Santos1, A. Bishop1, S. Desormonts1 & J.M. Portela2 1. Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK. [tel: +44 1224 272459, fax: +44 1224 272396, e-mail: [email protected] 2. J.M. Portela: Instituto Español de Oceanografía (IEO), P.O. Box 1552, 36200, Vigo, SPAIN, [Tel: +34 986 492111, Fax: +34 986 492351, e-mail: [email protected] This study aims to quantify the trophic relationships of seven commercially valuable predatory fish species (Argentine hake Merluccius hubbsi, southern hake Merluccius australis, Patagonian toothfish Dissostichus eleginoides, southern blue whiting Micromesistius australis australis, red cod Salilota australis, kingclip Genypterus blacodes and hoki Macruronus magellanicus) over a two-year period. A total of 1590 stomachs from these species was collected from the high seas of the southwest Atlantic and in the waters around the Falkland Islands. The percentage similarity index shows that all species except southern hake occupy very similar trophic positions, with a high percentage dietary overlap. Despite this, niche breadths were relatively narrow, with the majority of feeding occurring on locally abundant prey items (notothiniid fish and the squids Illex argentinus and Loligo gahi). In the two species for which sample size was largest, Argentine hake and kingclip, geographical differences in diet were found, which may be related to regional variation in prey abundance. -
Recent Cephalopoda Primary Types
Ver. 2 March 2017 RECENT CEPHALOPOD PRIMARY TYPE SPECIMENS: A SEARCHING TOOL Compiled by Michael J. Sweeney Introduction. This document was first initiated for my personal use as a means to easily find data associated with the ever growing number of Recent cephalopod primary types. (Secondary types (paratypes, etc) are not included due to the large number of specimens involved.) With the excellent resources of the National Museum of Natural History, Smithsonian Institution and the help of many colleagues, it grew in size and became a resource to share with others. Along the way, several papers were published that addressed some of the problems that were impeding research in cephalopod taxonomy. A common theme in each paper was the need to locate and examine types when publishing taxonomic descriptions; see Voss (1977:575), Okutani (2005:46), Norman and Hochberg (2005b:147). These publications gave me the impetus to revive the project and make it readily available. I would like to thank the many individuals who assisted me with their time and knowledge, especially Clyde Roper, Mike Vecchione, Eric Hochberg and Mandy Reid. Purpose. This document should be used as an aid for finding the location of types, type names, data, and their publication citation. It is not to be used as an authority in itself or to be cited as such. The lists below will change over time as more research is published and ambiguous names are resolved. It is only a search aid and data from this document should be independently verified prior to publication. My hope is that this document will make research easier and faster for the user. -
5.4. Cephalopods in the Canary Current Large Marine Ecosystem
Cephalopods in the Canary Current Large Marine Ecosystem Item Type Report Section Authors Rocha, Francisco; Cheikh, Inejih Publisher IOC-UNESCO Download date 28/09/2021 07:33:13 Link to Item http://hdl.handle.net/1834/9192 5.4. Cephalopods in the Canary Current Large Marine Ecosystem For bibliographic purposes, this article should be cited as: Rocha, F. and Cheikh, I. 2015. Cephalopods in the Canary Current Large Marine Ecosystem. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés, L. and Déniz‐González, I. (eds). IOC‐ UNESCO, Paris. IOC Technical Series, No. 115, pp. 245‐255. URI: http://hdl.handle.net/1834/9192. The publication should be cited as follows: Valdés, L. and Déniz‐González, I. (eds). 2015. Oceanographic and biological features in the Canary Current Large Marine Ecosystem. IOC‐UNESCO, Paris. IOC Technical Series, No. 115: 383 pp. URI: http://hdl.handle.net/1834/9135. The report Oceanographic and biological features in the Canary Current Large Marine Ecosystem and its separate parts are available on‐line at: http://www.unesco.org/new/en/ioc/ts115. The bibliography of the entire publication is listed in alphabetical order on pages 351‐379. The bibliography cited in this particular article was extracted from the full bibliography and is listed in alphabetical order at the end of this offprint, in unnumbered pages. ABSTRACT This work presents a brief review of cephalopod fauna found in the Canary Current Large Marine Ecosystem waters in terms of biodiversity, ecology and fisheries. This large marine ecosystem presents 139 cephalopod species, including high commercial value groups (Ommastrephids, Loliginids, Octopods and Sepiids), corresponding to a transitional zone between different Atlantic zoogeographic provinces where tropical, temperate and cold water cephalopod species mix. -
Foraging Ecology of Gentoo Penguins Pygoscelis Papua at the Falkland Islands
Foraging ecology of gentoo penguins Pygoscelis papua at the Falkland Islands By: Jonathan Murray Handley Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science at Nelson Mandela University (formerly: Nelson Mandela Metropolitan University) Date: December 2017 Supervisor: Dr. Pierre Pistorius Co-supervisor: Dr. Paul Brickle Be bold, be humble, make a splash upon the world… Declaration I, Jonathan Murray Handley (s212324527), hereby declare that this thesis submitted in the fulfilment of the requirements for the degree, Doctor of Philosophy, is my own work and that it has not previously been submitted for assessment or completion of any postgraduate qualification to another University or for another qualification Jonathan Murray Handley ____________________ ABSTRACT Marine top predators often occupy broad geographical ranges that encompass varied habitats. Therefore, a pre-requisite towards conserving these animals is to determine the components of their realized niche, and investigate whether a species is a specialist or a generalist. For generalist species, it is also necessary to understand if local specialisation occurs. Uncovering these components can allow us to build models of a species realized niche that may then be used to infer habitat use in unsampled locations. However, fully understanding the components of a marine top predators realized niche is challenging owing to the limited opportunity for in situ observations. Overcoming these limitations is a key step in marine top predator research. It will enhance our understanding of trophic coupling in marine systems, and aid in the development of tools to better study these predators in their dynamic environment. -
Translation 3325
7"MCRUP1g41 FISHERIES AND MARINE SERVICE Translation Series_No. 3325 Deep-water inhabitants (of the lower sublittoral and bathyal) which do not r.ise.to the surface - Phylum Rossia by K.N. Nesis Original title: Obitateli glubin.(nizhnei sublitorali i batiali) ne podnimayu-shchiyesya k poverkhnosti - tip Ross la From: Zoology of Invertebrates - Commercial Molluscs,_2(24,23), 1973 Translated by the Translation Bureau(NDE) Multilingual Services Division Department of the Secretary of State of Canada Department of the Environment Fisheries and Marine Service 'Biological Station St. John's, Nfld. 1974 4 pages typescript I -.. DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES DIVISION MULTILINGUES Fr.« 3 c2i aS TRANSLATED FROM - TRADUCTION DE INTO - EN Russian English AUTHOR - AUTEUR TITLE IN ENGLISH - TITRE ANGLAIS Deep-water inhabitants (of the lover sublitt oral and bathyal) 'which do not rise to the surface - Phylum Eossia TITLE IN FOREIGN LANGUAGE (TRANSLITERATE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÉRE (TRANSCRIRE EN CARACTÉRES ROMAINS) Obitateli glubin (nizhnei sublitorali i batiali) ne podnimayu- shchiyesya k poverkhnosti - tip Rossia REFERENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHARACTERS. RÉFÉRENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÉRES ROMAINS. REFERENCE IN ENGLISH - RÉFÉRENCE EN ANGLAIS 'Zoology of Invertebrates - ComLercial PUBLISHER- ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS not available DATE DE PUBLICATION L'ORIGINAL YEAR ISSUE NO. 22, 23 VOLUME PLACE OF PUBLICATION ANNÉE NUMÉRO NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE PAGES USSR DACTYLOGRAPHIÉES 1973 2 4 REQUESTING DEPARTMENT Environment TRANSLATION BUREAU NO.