Vita Albert C

Total Page:16

File Type:pdf, Size:1020Kb

Vita Albert C VITA ALBERT C. REYNOLDS PROFESSIONAL POSITIONS Research Professor of Petroleum Engineering and Mathematics, The Univer- sity of Tulsa, Tulsa, Oklahoma. 2016{present. McMan Chair in Petroleum Engineering, The University of Tulsa, Tulsa, Okla- homa, 2003{2016. Professor of Petroleum Engineering and Mathematics, The University of Tulsa, Tulsa, Oklahoma, 1985{present. Chairman, Department of Petroleum Engineering, The University of Tulsa, Tulsa, Oklahoma, 1990{1992. Director of TU Petroleum Reservoir Exploitation Projects, The University of Tulsa, Tulsa, Oklahoma, 1990{present. Associate Graduate Dean and Associate Director of Research, The University of Tulsa, Tulsa, Oklahoma, 1986{1990. Associate Professor of Petroleum Engineering and Mathematics, The Univer- sity of Tulsa, Tulsa, Oklahoma, 1980{1985. Associate Professor of Mathematics, The University of Tulsa, Tulsa, Oklahoma, 1976{1980. Assistant Professor of Mathematics, The University of Tulsa, Tulsa, Oklahoma, 1970{1976. EDUCATION BA Mathematics University of New Hampshire, Durham, NH, 1964{1966 MS Mathematics Case Institute of Technology, Cleveland, OH, 1966{1968 PhD Mathematics Case Western Reserve University, Cleveland, OH, 1968{1970 PROFESSIONAL MEMBERSHIPS Society of Petroleum Engineers. European Association of Geoscientists and Engineers. International Association of Mathematical Geology. Society for Industrial and Applied Mathematics. Albert C. Reynolds 2 MAJOR HONORS Phi Beta Kappa National Honor Society, 1966. Phi Kappa Phi National Honor Society, 1966. Society of Petroleum Engineers Distinguished Achievement Award for Petroleum Engineering Faculty, 1983. Society of Petroleum Engineers Distinguished Member, 1999. Society of Petroleum Engineers Reservoir Description and Dynamics Award, 2003. McMan Chair in Petroleum Engineering, 2003. Society of Petroleum Engineers Formation Evaluation Award, 2005. Society of Petroleum Engineers Outstanding Technical Editor, 2008. Chevron/University of Tulsa Fellowship, 2013. Society of Petroleum Engineers John Franklin Carll Award, 2013. Society of Petroleum Engineers Honorary Member, 2014. Chevron/University of Tulsa Fellowship, 2015. Society of Petroleum Engineers Outstanding Technical Editor Award, 2015. Chevron/University of Tulsa Fellowship, 2016. Society of Petroleum Engineers Outstanding Technical Editor Award, 2017. BOOKS R. Burden, D. Faires and A. Reynolds: Numerical Analysis, Prindle, Webber and Schmidt, Inc., Boston, Massachusetts (ix + 579 pages) 1978. D. Oliver, A. Reynolds and N. Liu: Inverse Theory for Petroleum Reservoir Character- ization and History Matching, (ix + 360 pages) Cambridge University Press, May 2008. BOOK Chapters C´ıntia Machado and Albert C. Reynolds: \Application of the Method of Matched Asymptotic Expansions to Solve a Non-Linear Pseudo-Parabolic Equation: The Sat- uration Convection-Dispersion Equation" Chapter 7 of Perturbation Methods with Applications in Science and Engineering, published by InTechOpen ( 117-139. Reynolds, Albert C., He, Nanqun and Oliver Dean S.: \Reducing Uncertainty in Geo- statistical Description With Well-Testing Pressure Data," in Recent Advances in Reservoir Characterization, AAPG Memoir 71, eds. R. Schatzinger and J. Jordan (1999) Albert C. Reynolds 3 REFEREED TECHNICAL PAPERS Zhenyu Guo and Albert C. Reynolds: \Robust Life-Cycle Production Optimization with an SVR Proxy," SPE Journal, accepted for publication May 2018. C´ıntia Machado and Albert C. Reynolds: \Application of the Method of Matched Asymptotic Expansions to Solve a Non-Linear Pseudo-Parabolic Equation: The Sat- uration Convection-Dispersion Equation" accepted for Perturbation Methods, pub- lished by InTech. Bailian Chen and Albert C. Reynolds: \CO2 Water-Alternating-Gas Injection for En- hanced Oil Recovery: Optimal Well Controls and Half-Cycle Lengths," Computers and Chemical Engineering, Computers and Chemical Engineering (2018) 44-56. Zhenyu Guo and Albert C. Reynolds: \Waterflooding Optimization with the INSIM- FT Data-Driven Model," Computational Geosciences, Vol. 22, Issue 3 (June 2018) 745-761. C´ıntia G. Machado and Albert C. Reynolds: \Approximate Semi-Analytical Solution for Injection-Falloff-Production Well Test: An Analytical Tool for the In-situ Estimation of Relative Permeability Curves," Transport in Porous Media (Jan. 2018), Vol. 11, issue 1, 207-231. C´ıntia G. Machado, Mohammadreza M. Firoozabad and Albert C. Reynolds: \CO2 Effects on Wellbore Pressure Response during Injection-Falloff Test," SPE Journal, Vol. 23, issue 3, (June 2018) 919-936, doi:10.2118/185824-PA. Ranran Lu, Fahim Forouzanfar and Albert C. Reynolds: \An Efficient Adaptive Al- gorithm for Robust Control Optimization using StoSAG," Journal of Petroleum Sci- ence and Engineering, Vol. 159, 314-330 (Nov. 2017), doi:10.1016/j.petrol.2017.09.002. Javad Rafiee and Albert C. Reynolds: \Theoretical and Efficient Practical Procedures for the Generation of Inflation Factors for ES-MDA," Inverse Problems, Vol. 33, No. 11, 28 pages (Oct. 2017). Reza Mohammadnia, Albert C. Reynolds and Fahim Forouzanfar: \Monotonicity Con- ditions for MPFA Methods for a Numerical Well Testing Reservoir Simulator," Jour- nal of Petroleum Science and Engineering, Vol. 158, 707-728 (Sept. 2017), doi: 10.1016/j.petrol.2017.08.047. Zhenyu Guo and Albert C. Reynolds and Hui Zhao: \A Physics-Based Data-Driven Model for History-Matching, Prediction and Characterization of Waterflooding Per- formance," SPE Journal, Vol. 23, Issue 2, 367-395 (April 2018) doi:10.2118/182660- PA. Albert C. Reynolds 4 Bailian Chen, Jincong He, Xian-Huan Wen, Wen Chen and Albert C. Reynolds: \Un- certainty Quantification and Value of Information Assessment using Proxies and Markov Chain Monte Carlo for a Pilot Project," Journal of Petroleum Science and Engineering, Vol. 157 (August 2017), 328-339. Bailian Chen, Rahul M. Fonseca, Olwijn Leeuwenburgh and Albert C. Reynolds: \Mini- mizing the Risk in the Robust Life-Cycle Production Optimization using Stochastic Simplex Approximate Gradient," Journal of Petroleum Science and Engineering, Vol. 153, 331-344, 2017. Yang Zhang, Ranran Lu, Fahim Forouzanfar and Albert C. Reynolds: \Well Placement and Control Optimization for WAG/SAG Processes using Ensemble-based Meth- ods," Computers & Chemical Engineering, Vol. 49, 193-209, June 2017. Xin Liu and Albert C. Reynolds: \Robust Gradient-Based Multiobjective Optimiza- tion for the Generation of Well Controls to Maximize the Net-Present-Value of Pro- duction Under Geological Uncertainty," Mathematical Geosciences, Vol. 49, Issue 3 (April 2017) 361-394. Rahul M. Fonseca, Bailian Chen, Jan Dirk Jansen and Albert C. Reynolds: \A Stochas- tic Simplex Approximate Gradient (StoSAG) for Optimization Under Uncertainty," International Journal for Numerical Methods in Engineering, Vol. 109, No. 13, 1756-1176, March 2017. Bailian Chen and Albert C. Reynolds: \Optimal Control of ICV's and Well Operating Conditions for the Water-Alternating-Gas Process," Journal of Petroleum Science and Engineering, Vol. 149, 623-640, January 2017. Yu Zhao, Fahim Forouzanfar and Albert C. Reynolds: \Assisted History Matching for Multi-facies Channelized Reservoir Using ES-MDA with Common Basis DCT" Computational Geosciences, Online (Dec. 2016). Hui Zhao, Zhijiang Kang, Xiansong Zhang, Haitao Sun, Lin Cao and Albert C. Reynolds: \A Physics-Based Data-Driven Numerical Model for Reservoir History Matching and Prediction with a Field Application," SPE Journal Vol. 21, No. 6 (Dec. 2016) 2175-2194. Duc H. Le, Alexandre A. Emerick and Albert C. Reynolds: \An Adaptive Ensemble Smoother with Multiple Data Assimilation for Assisted History Matching," SPE Journal Vol. 21, No. 6 (Dec. 2016) 2195-2207. Xin Liu and Albert C. Reynolds: \Augmented Lagrangian Method for Maximizing Expectation and Minimizing Risk for Optimal Well Control Problems with Nonlinear Constraints," SPE Journal, Vol. 21, Issue 5 (Oct. 2016) 1830-1842. Albert C. Reynolds 5 Xin Liu and Albert C. Reynolds: \Gradient-Based Multiobjective Optimization for Maximizing Expectation and Minimizing Uncertainty or Risk with Application to Optimal Well Control Problems with only Bound Constraints," SPE Journal, Vol. 21, Issue 5 (Oct. 2016) 1813-1829. Rahul M. Fonseca, Albert C. Reynolds and Jan Dirk Jansen, \Generation of a Pareto Front for a Bi-objective Water Flooding Optimization Problem using Approximate Ensemble Gradients," Journal of Petroleum Science and Engineering, Vol. 147, 249-260 (2016). DOI: 10.1016/j.petrol.2016.06.009. Xin Liu and Albert C. Reynolds: \Gradient-Based Multiobjective Optimization with Application to Waterflooding Optimization," Computational Geosciences Vol. 20, No. 3, 677-693 (June 2016), Special Issue: \Selected contributions from the 14th European Conference on the Mathematics of Oil Recovery (ECMOR XIV)." Hui Zhao, Ying Li, Shjuyue Cui, Genhua Shang, Albert C. Reynolds, Zhenyu Guo, and Huazhou A. Li: \History Matching and Production Optimization of Water Flooding Based on a Data-Driven Interwell Numerical Simulation Model," Journal of Natural Gas Science & Engineering (2016) vol. 31, 48-66(2016). Xin Liu and Albert C. Reynolds: \A Multiobjective Steepest Descent Method with Applications to Optimal Well Control," Computational Geosciences, Vol. 20, Issue 2, April 2016, 355-374. Fahim Forouzanfar, Walter Poquioma and Albert C. Reynolds: \Simultaneous and Se- quential Estimation of Optimal Placement and Controls of Wells With a Covariance Matrix Adaptation Algorithm," SPE Journal (April 2016) 501-521. Bailian Chen and Albert C. Reynolds: \Ensemble-Based
Recommended publications
  • Coal and Oil: the Dark Monarchs of Global Energy – Understanding Supply and Extraction Patterns and Their Importance for Futur
    nam et ipsa scientia potestas est List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Höök, M., Aleklett, K. (2008) A decline rate study of Norwe- gian oil production. Energy Policy, 36(11):4262–4271 II Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behaviour. Natural Resources Research, 18(1):39–56 III Höök, M., Hirsch, R., Aleklett, K. (2009) Giant oil field decline rates and their influence on world oil production. Energy Pol- icy, 37(6):2262–2272 IV Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809–4818 V Höök M, Söderbergh, B., Aleklett, K. (2009) Future Danish oil and gas export. Energy, 34(11):1826–1834 VI Aleklett K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B. (2010) The Peak of the Oil Age - analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3):1398–1414 VII Höök M, Tang, X., Pang, X., Aleklett K. (2010) Development journey and outlook for the Chinese giant oilfields. Petroleum Development and Exploration, 37(2):237–249 VIII Höök, M., Aleklett, K. (2009) Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3):201–216 IX Höök, M., Aleklett, K. (2010) Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Re- sources Research, 19(3):189–208 X Höök, M., Zittel, W., Schindler, J., Aleklett, K.
    [Show full text]
  • Norwegian Petroleum Technology a Success Story ISBN 82-7719-051-4 Printing: 2005
    Norwegian Academy of Technological Sciences Offshore Media Group Norwegian Petroleum Technology A success story ISBN 82-7719-051-4 Printing: 2005 Publisher: Norwegian Academy of Technological Sciences (NTVA) in co-operation with Offshore Media Group and INTSOK. Editor: Helge Keilen Journalists: Åse Pauline Thirud Stein Arve Tjelta Webproducer: Erlend Keilen Graphic production: Merkur-Trykk AS Norwegian Academy of Technological Sciences (NTVA) is an independent academy. The objectives of the academy are to: – promote research, education and development within the technological and natural sciences – stimulate international co-operation within the fields of technology and related fields – promote understanding of technology and natural sciences among authorities and the public to the benefit of the Norwegian society and industrial progress in Norway. Offshore Media Group (OMG) is an independent publishing house specialising in oil and energy. OMG was established in 1982 and publishes the magazine Offshore & Energy, two daily news services (www.offshore.no and www.oilport.net) and arranges several petro- leum and energy based conferences. The entire content of this book can be downloaded from www.oilport.net. No part of this publication may be reproduced in any form, in electronic retrieval systems or otherwise, without the prior written permission of the publisher. Publisher address: NTVA Lerchendahl gaard, NO-7491 TRONDHEIM, Norway. Tel: + (47) 73595463 Fax: + (47) 73590830 e-mail: [email protected] Front page illustration: FMC Technologies. Preface In many ways, the Norwegian petroleum industry is an eco- passing $ 160 billion, and political leaders in resource rich nomic and technological fairy tale. In the course of a little oil countries are looking to Norway for inspiration and more than 30 years Norway has developed a petroleum guidance.
    [Show full text]
  • Annual Report 2019 the 2019 Partners
    THE NATIONAL IOR CENTRE OF NORWAY Annual report 2019 The 2019 partners ConocoPhillips Observers Contents Management Team 4 Board Members 4 Technical Committee 5 Scientific Advisory Committee 5 About 6 Research Themes 7 Greetings from the Director 8 Greetings from the Chairman of the Board 9 Consortium Partners 10 Activity Highlights On the use of thermo-thickening polymers for in-depth mobility control – large scale testing 12 Developing the ensemble Kalman filter based approach for history matching 15 Coordinating Upscaling Workflow 16 Interpore – 3rd National Workshop on Porous Media 17 New management team 18 Great expectations from the Research Council of Norway 19 Researcher Profiles Mehul Vora 20 André Luís Morosov 21 Micheal Oguntola 21 Tine Vigdel Bredal 22 Arun Selvam 22 Panagiotis Aslanidis 23 William Chalub Cruz 23 Nisar Ahmed 24 Aleksandr Mamonov 24 Juan Michael Sargado 25 Runar Berge 25 Highlights from the PhD Defences PhD Defences 2019 26 Core scale modelling of EOR transport mechanisms 27 Smart Water for EOR from Seawater and Produced Water by Membranes 27 Wettability estimation by oil adsorption 28 CO2 Mobility Control with Foam for EOR and Associated Storage 28 Interaction between two calcite surfaces in aqueous solutions … 29 Research Dissemination, Conferences & Awards Lundin Norway shares all data from one field 30 PhD student Mehul Vora presented at OG21 31 Selected Papers 32 Media Contributions 2019 35 Who are we? 36 Publications 37 3 Management Team Ying Guo Tina Puntervold Randi Valestrand Centre Director Assistant
    [Show full text]
  • Petroleum Production and Exploration
    To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809-4818 II Jakobsson, K., Bentley, R., Söderbergh, B., Aleklett, K. (2011) The end of cheap oil. Bottom-up economic and geologic model- ing of aggregate oil production curves. Energy Policy, in press III Jakobsson, K., Söderbergh, B., Snowden, S., Aleklett, K. (2011) Bottom-up modeling of oil production. Review and sensitivity analysis. Manuscript. IV Jakobsson, K., Söderbergh, B., Snowden, S., Li, C.-Z., Aleklett, K. (2011) Oil exploration and perceptions of scarcity. The falla- cy of early success. Energy Economics, in press V Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) European energy security. The future of Norwegian natural gas produc- tion. Energy Policy, 37(12):5037-5055 VI Söderbergh, B., Jakobsson, K., Aleklett, K. (2010) European energy security. An analysis of future Russian natural gas pro- duction and exports. Energy Policy, 38(12):7827-7843 VII Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behavior. Natural Resources Research, 18(1):39-56 Reprints were made with permission from the respective publishers. The author’s contribution to the papers: Papers I-IV: principal authorship and major contribution to model- ing Papers V and VI: contribution to modeling Paper VII: minor contribution to modeling Complementary paper not included in the thesis: Aleklett, K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söder- bergh, B.
    [Show full text]
  • Evaluating Some Aspects of Gas Geochemistry of Some North Sea Oil Fields
    ienc Sc es al J c o i u m r e n a Nwaogu, Chem Sci J 2015, 6:2 h l C Chemical Sciences Journal DOI: 10.4172/2150-3494.100093 ISSN: 2150-3494 Research Article Article OpenOpen Access Access Evaluating Some Aspects of Gas Geochemistry of some North Sea Oil Fields Chukwudi Nwaogu1*,Selegha Abrakasa2, Hycienth Nwankwoala2, Mmaduabuchi Uzoegbu2 and John Nwogu3 1Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 21 Suchdol, Praque 6, Czech Republic. 2Department of Geology, University of Port Harcourt, Rivers State. Nigeria. 3Rivers State College of Health Technology, Port-Harcourt, Rivers State, Nigeria. Abstract Gas geochemistry, an integral part of petroleum geosciences, has been used for evaluating source rocks potential for shale gas and in conventional exploration as a guide for determining potential productive formations. However, in contemporary times, new concepts of gas geochemistry have been applied in delineating the effectiveness of caprocks. Caprock is a vital element of a petroleum system, the volumes of rocks overlaying reservoirs are responsible for the configuration on which the accumulation sits and fosters essential preservation. In this study headspace gas served the purpose of delineating leakage and determining migration pathways, mechanism and discriminating gas types in the formations overlaying the reservoirs. Keywords: Gas geochemistry; Caprocks; Leakage; Thermogenic gas; lithology of the formations were modelled using Genesis 4.8. Thermogenic signature Methodology Introduction This study is part of a wider study on regional leakage evaluation of Gas geochemistry – a new comer in the series of geochemistry has the North Sea. Data for this study were sourced from well completion proved vital in delineating caprock leakage employing headspace gas.
    [Show full text]
  • The Earth Tide Effects on Petroleum Reservoirs
    THE EARTH TIDE EFFECTS ON PETROLEUM RESERVOIRS Preliminary Study A THESIS SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF ENGINEER by Patricia C. Axditty May 197T" Approved for the Department: t-^ 7 Approved for the University Committee on Graduate Studies: Dean of Graduate Studies ii To my husband iii ACKNOWLEDGEMENT The author is indebted to Professor Amos N. Nur and Professor H. J. Ramey, Jr., who suggested the research and provided help and advice throughout the project. The field data used in this work were made available by personnel of many different oil companies. The author wishes to acknowledge Dr. G. F. Kingelin from Gult Research and Development Company, Dr. C. C. Mattax and D. A. Pierce from Exxon, Dr. S. C. Swift from Cities Service Company, George B. Miller of Occidental Research Corporation, and many others who contributed to this study. Computer time was provided by Stanford University. This work was supported partly by the Stanford LBL Contract #167-3500 for the Department of Petroleum Engineering, and by the Stanford Rock Physics Project //2-BCZ-903 for the Department of Geophysics. iv TABLE OF CONTENTS ACKNOWLEDGEMENT iv ABSTRACT 1 1. INTRODUCTION 3 2. SOME BACKGROUND ON THE STRESS-STRAIN THEORY AND THE EARTH TIDE MECHANISM 4 2.1 Stress-Strain Theory 4 2.2 General Information on Tides 14 3. THE EFFECTS OF EARTH TIDES ON OPEN WELL-AQUIFER SYSTEMS: STATE OF THE ART 22 3.1 Static Solution 24 3.2 Dynamic Solution 27 4.
    [Show full text]
  • Microbiology of Petroleum Reservoirs
    u Antonie van Leeuwenhoek 77: 103-116,2000. 103 qv O 2000 Kluwer Academic Publishers. Printed in the Netherlands. Microbiology of petroleum reservoirs Michel Magot',", Bernard Ollivier2 & Bharat K.C. Pate13 'SANOFI Recherche, Centre de Labège, BP 132, F31676Labège, France 2Laboratoire ORSTOM de Microbiologie des Anaérobies, Université de Provence, CESB-ESIL, Case 925, 163 Avenue de Luminy, F13288 Marseille Cedex 9, France e 3Faculty of Science and Technology, Griffìth Universi@ Nathan, Brisbane, Australia 4111 (*Authorfor correspondence) d Key words: fermentative bacteria, indigenous microflora, iron-reducing bacteria, methanogens, oil fields, sulphate- reducing bacteria Abstract Although the importance of bacterial activities in oil reservoirs was recognized a long time ago, our knowledge of the nature and diversity of bacteria growing in these ecosystems is still poor, and their metabolic activities in situ ) largely ignored. This paper reviews our current knowledge about these bacteria and emphasises the importance of the petrochemical and geochemical characteristics in understanding their presence in such environments. Microbiology of oil reservoirs: concerns and organisms inhabit aquatic as well as oil-bearing deep questions subsurface environments.This review focuses on indi- genous as well as exogenous bacteria in subterranean Since the beginning of commercial oil production, oil fields. almost 140 years ago, petroleum engineers have faced problems caused by micro-organisms. Sulphate- reducing bacteria (SRB) were rapidly recognised as Physico-chemicalcharacteristics of oil reservoirs responsible for the production of H2S, within reser- voirs or top facilities, which reduced oil quality, cor- The possibility for living organisms to survive or roded steel material, and threatened workers' health thrive in oil field environments depends on the phys- due to its high toxicity (Cord-Ruwich et al.
    [Show full text]
  • The Petroleum Industry: Exploration and Production of Hydrocarbons
    PETROLEUM ENGINEERING – UPSTREAM - The petroleum upstream industry: hydrocarbons exploration and production - P. Macini and E. Mesini THE PETROLEUM UPSTREAM INDUSTRY: HYDROCARBONS EXPLORATION AND PRODUCTION P. Macini and E. Mesini Department of Civil, Environmental and Materials Engineering, University of Bologna, 40131 Italy Keywords: Crude oil, natural gas, exploration and production, drilling, oil wells, gas wells, reservoir rock, porous media, petrophysics, well logging, hydrocarbon reservoir, reservoir modeling, petroleum production, unconventional hydrocarbons, artificial lift, enhanced oil recovery Contents 1. Oil and Gas Reserves 1.1. Origin and Migration of Petroleum Fluids 1.2. Geological Traps 1.3. Reservoir Rocks 1.4. Phase Behavior and Reservoir Distribution of Petroleum Fluids 2. Oil Well Drilling Engineering and Formation Evaluation 2.1. Well Classification 2.2. Oil Well Drilling Techniques 2.3. Well Logging 2.4. Well Testing 3. Reservoir Engineering 3.1. Estimation of Oil and Gas Volumes 3.2. Reservoir Drive Mechanisms 3.3. Reservoir Fluids Displacement 3.4. Numerical Models of Hydrocarbon Reservoirs 3.5. Enhanced and Assisted Oil Recovery Processes 4. Production Engineering 4.1. Well Completion 4.2. Artificial Lift 4.3. Surface Treatment of Natural Gas 4.4. Surface Treatment of Crude Oil 5. Unconventional Hydrocarbons 5.1. UnconventionalUNESCO Oil – EOLSS 5.2. Unconventional Gas 5.3. Methane Hydrates 6. ConclusionsSAMPLE CHAPTERS Summary The oil industry deals with the global processes of exploration, production, transportation, refining and marketing of natural hydrocarbons (crude oil and natural gas). Hydrocarbons, besides being the basic raw materials of the chemical industry (plastics, textiles, dyes, medicines, solvents, fertilizers, pesticides, etc.) represent the largest source of energy on the planet.
    [Show full text]
  • Spwla Today Newsletter
    ISSUE 1 | VOL 2 | JANUARY 2019 THE SPWLA TODAY NEWSLETTER INSIDE THIS EDITION Calendar of Events................... 2 From the President ...................3 From the Editor ......................... 4 Up Next.....................................6 Regional Understandings.........7 Learning Opportunities ...........12 2019 SPWLA International Paper Contest..................................13 Stand By Your Science ..........17 Great Moments in Formation Evaluation, Part 4.................20 A Diamond is Forever ............21 New Solutions in Develop- ment for Geosteering and Well Placement.............................23 Overview of Education in Well Logging, Formation Evaluation, and Petrophysics in China.......27 Estimating In-Situ Relative Permeability and Capillary Pressure from Wireline Measurements....................... 30 SPWLA Houston Chapter Software Show ........................36 SPWLA Boston Workshop on Digital Rocks and Unconvention- al Petrophysics ..................... 37 Chapter News.........................39 The Bridge..............................55 New Members........................57 In Memoriam ........................58 Petrophysical Data-Driven Analytics............................60 The Society of Petrophysicists and Well Log Analysts Board of Directors 2018–2019 CALENDAR OF EVENTS President VP Finance Zhipeng “Z” Liu Jennifer Market January 10, 2019 Kinder Morgan Lloyd’s Register New Technology Seminar Houston, TX, USA Houston, TX, USA (+1) 713-369-8059 (+1) 713-302-8325 London Petrophysical Society (LPS) [email protected]
    [Show full text]
  • Basalt Alteration and Implications – from Mars to the UK Continental Shelf
    Basalt Alteration and Implications – From Mars to the UK Continental Shelf Christian Sætre Faculty of Mathematics and Natural Sciences Department of Geosciences University of Oslo Norway A thesis submitted for the degree of Philosophiae Doctor (PhD) March 2019 © Christian Sætre, 2019 Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo No. 2123 ISSN 1501-7710 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Hanne Baadsgaard Utigard. Print production: Reprosentralen, University of Oslo. Preface This thesis entitled “Basalt Alteration and Implications – From Mars to the UK Continental Shelf” has been submitted to the Department of Geosciences at the University of Oslo in accordance with the dissertation requirements for the degree of Philosophiae Doctor (PhD) in Geosciences. Paper I was a result of a bilateral collaboration project “Earth-Mars Analogues: Origination and Distribution of Clay Minerals in Impact Crater Environments” between Department of Geosciences and The Centre for Earth Evolution and Dynamics (CEED) at UiO, and Université Paris-Sud. Paper I was funded by the Research Council of Norway (NFR), European Union’s Horizon 2020 Research and Innovation Programme and AURORA PHC. Papers II and III were supported by the Department of Geosciences and the Norwegian Ministry of Education and Research (KD). The main objectives of this thesis were to study basalt alteration and formation of secondary phases and their implications on Mars (Paper I), and potential consequences for petroleum reservoirs influenced by the presence of mafic lithologies (Papers II and III).
    [Show full text]
  • Master's Thesis
    FACULTY OF SCIENCE AND TECHNOLOGY MASTER’S THESIS Study program/Specialization: Spring semester, 2018 Petroleum Engineering / Natural Gas Technology Open Author: ………………………………………… Alisher Narzulloyev (signature of author) Internal supervisor: Dag Chun Standnes External supervisors: Ingun Skjevrak (Equinor ASA) Knut Kristian Meisingset (Equinor ASA) Title of master’s thesis: Dashboard for visualization, evaluation and modeling of wellbore and field H2S production Credits (ECTS): 30 Key words: Spotfire Dashboard Number of Pages: 83 Data Visualization and Analysis Reservoir Souring + supplemental material/other Hydrogen Sulfide None Sulfate-Reducing Bacteria Seawater Stavanger, June 15/ 2018 Ion Analysis Title for Master’s Thesis Faculty of Science and Technology I dedicate this work to my parents, to the memory of my grandparents, and my wonderful brothers, Bekhruz and Akobir. Acknowledgments I would first like to express my profound gratitude to my supervisors, Dr. Ingun Skjevrak and Dr. Knut Kristian Meisingset, for their continuous guidance, technical and administrative support as well as readiness to help. I would also like to thank my co-supervisor, Dr. Dag Chun Standnes, for his valuable comments and discussions in the review of my thesis. I am privileged and grateful for the opportunity of working under their supervision. I take this opportunity to express my gratitude to all of the Department of Remaining Resources Recovery in Stavanger (ST RRR) at Equinor, including Thibaut Forest, Jørgen Bergsagel Møller, Øystein Lie, Martin Iding, Øystein Tesaker, Kjersti Håland for their kind help and support. I would like extend my thanks to my fellow student, Mr. Andrew Mburu for a wonderful semester and productive discussions on the subject.
    [Show full text]
  • Geotimes — October 2005 — Making Sense of Middle Eastern Petroleum
    Geotimes — October 2005 — Making Sense of Middle Eastern Petr... http://www.geotimes.org/oct05/feature_MidEastOil.html Feature Making Sense of Middle Eastern Petroleum Rasoul Sorkhabi Another stream, smelling less of sulphur but more of oil, burst from under the rocks a little further on, and it is near here that attempts have been made in the past to tap the petroleum reservoir which probably exists somewhere beneath the ground. Some day a happy man may hit the right spot, and then his fortune is made; but it is a speculative business. Half a dozen inches to the right or left, and you are, as Fate may decide, a pauper or a millionaire. E. C. Williams An English traveler, in Across Persia (1907) People have been using petroleum and bitumen in the Middle East for 5,000 years. But it was not until the 20th century that the Middle East entered the consciousness of the “Hydro-carbon Man” as the petroleum repository of the world, as Daniel Yergin describes in his 1992 book The Prize: The Epic Quest for Oil, Money, and Power. This transition took place over several decades, as modern drilling for oil, beginning in Iran in 1908, in Iraq in 1927, in Bahrain in 1932, and in Kuwait and Saudi Arabia in 1938, proved successful. An offshore rig drills for petroleum in the Abu Sa’fah oil field of Saudi Arabia in the Persian Gulf. The Abu Sa’fah field was discovered in 1963 and has been in operation since 1966. Courtesy of Saudi Aramco. With soaring prices of oil, natural gas and gasoline in recent years, and continuing violence in the Middle East, this region’s petroleum geopolitics remains a major focus of international relations today.
    [Show full text]