A NOTCH Feed-Forward Loop Drives Reprogramming from Adrenergic to Mesenchymal State in Neuroblastoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Watsonjn2018.Pdf (1.780Mb)
UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
SOX11 Interactome Analysis: Implication in Transcriptional Control and Neurogenesis
SOX11 interactome analysis: Implication in transcriptional control and neurogenesis Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Birgit Heim, geb.Kick aus Augsburg Tübingen 2014 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 12.02.2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Olaf Rieß 2. Berichterstatter: Prof. Dr. Marius Ueffing Für meine Familie TABLE OF CONTENTS Table of contents Summary ................................................................................................................ 5 Zusammenfassung ............................................................................................... 7 1. Introduction ...................................................................................... 9 1.1. Adult neurogenesis .................................................................................... 9 1.1.1. Adult neural stem cells and neuronal precursor cells ............................ 9 1.1.2. Neurogenic niches .............................................................................. 11 1.1.3. Regulation of adult neurogenesis ........................................................ 12 1.1.3.1. Extrinsic mechanisms .................................................................. 12 1.1.3.2. Intrinsic mechanisms .................................................................. -
Homeobox Transcription Factor Prox1 in Sympathetic Ganglia of Vertebrate Embryos: Correlation with Human Stage 4S Neuroblastoma
0031-3998/10/6802-0112 Vol. 68, No. 2, 2010 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2010 International Pediatric Research Foundation, Inc. Homeobox Transcription Factor Prox1 in Sympathetic Ganglia of Vertebrate Embryos: Correlation With Human Stage 4s Neuroblastoma JU¨ RGEN BECKER, BAIGANG WANG, HELENA PAVLAKOVIC, KERSTIN BUTTLER, AND JO¨ RG WILTING Department of Anatomy and Cell Biology, University Medicine Goettingen, 37075 Goettingen, Germany ABSTRACT: Previously, we observed expression of the homeobox progression of tumors derived from these tissues has not been transcription factor Prox1 in neuroectodermal embryonic tissues. investigated. We have studied Prox1 expression in the sym- Besides essential functions during embryonic development, Prox1 pathetic nervous system of avian and murine embryos, and in has been implicated in both progression and suppression of malig- childhood tumors derived from this tissue: neuroblastoma nancies. Here, we show that Prox1 is expressed in embryonic sym- (NB). We show that Prox1 is expressed in sympathetic neu- pathetic trunk ganglia of avian and murine embryos. Prox1 protein is rons during early stages of development at similar levels as in localized in the nucleus of neurofilament-positive sympathetic neu- rons. Sympathetic progenitors represent the cell of origin of neuro- lymphatic endothelial cells (LECs), but at greatly reduced blastoma (NB), the most frequent solid extracranial malignancy of levels in human NB cell lines. Studies of primary NB of all children. NB may progress to life-threatening stage 4, or regress stages (stages 1–4s) show significantly higher amounts of spontaneously in the special stage 4s. By qRT-PCR, we show that Prox1 mRNA in stage 4s. -
Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1. -
Phox2b and Motoneuronal Differentiation
Development 127, 1349-1358 (2000) 1349 Printed in Great Britain © The Company of Biologists Limited 2000 DEV1515 Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b Alexandre Pattyn, Marie-Rose Hirsch, Christo Goridis and Jean-François Brunet* Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Univ Méditerranée/AP de Marseille, Luminy Case 907, 13288 Marseille Cedex 9, France *Author for correspondence (e-mail: [email protected]) Accepted 11 January; published on WWW 7 March 2000 SUMMARY Motor neurons are a widely studied model of vertebrate both the generic and subtype-specific programs of neurogenesis. They can be subdivided in somatic, branchial motoneuronal differentiation are disrupted at an early and visceral motor neurons. Recent studies on the stage. Most motor neuron precursors die inside the dorsoventral patterning of the rhombencephalon have neuroepithelium while those that emigrate to the mantle implicated the homeobox genes Pax6 and Nkx2.2 in the layer fail to switch on early postmitotic markers and to early divergence of the transcriptional programme of downregulate neuroepithelial markers. Thus, the loss of hindbrain somatic and visceral motor neuronal function of Phox2b in hindbrain motor neurons exemplifies differentiation. We provide genetic evidence that the a novel control point in the generation of CNS neurons. paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, Key words: Neurogenesis, Motor neuron, Homeobox gene, motor neurons in the hindbrain. In mice lacking Phox2b, Rhombencephalon, Phox2b, Mouse INTRODUCTION of sm neurons has been studied most extensively and some of the transcriptional cascades controlling their differentiation are The specification of neuronal subtype identity in the beginning to be understood. -
The Evolving Genetic Landscape of Hirschprung Disease: an Update and Review
Review Article Clinics in Surgery Published: 11 Oct, 2017 The Evolving Genetic Landscape of Hirschprung Disease: An Update and Review Amit Kumar Yadav* and Gaurav Chopra Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India Abstract Hirschsprung Disease (HD) is a developmental disorder characterized by the complete absence of ganglion cells in the distal gastrointestinal tract. It is the most common cause of functional intestinal obstruction in neonates and children. The aganglionosis is believed to be either due to failure of neural crest cells to migrate, proliferate, differentiate or survive during gut development in the embryonic stage. The incidence of HD is estimated at 1/5000 live births and shows a male predominance. It is usually sporadic, although it can be familial and may be inherited as autosomal dominant or autosomal recessive. In 70% of cases, HD occurs as an isolated trait and in the other 30% it is associated with other congenital malformation syndromes. HD has a complex multifactorial etiology, and genetic factors play a key role in its pathogenesis. Several gene loci appear to be involved. Many of these have been identified by conducting Genome Wide Association (GWAS) studies and recently by Next Generation Sequencing (NGS). These genes encode for receptors, ligands (especially those participating in the RET, EDNRB and Semaphorin signaling pathways), transcriptional factors (PHOX2B & SOX10). These genes are involved in the neural crest cell development and migration that give rise to ganglion cells. Overall, the RET proto-oncogene is considered the major disease causing gene in HD. A greater understanding of the genetic landscape of this disease might pave way for genetic counseling, prenatal and preimplantation diagnosis in the management of HD. -
1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A -
Phox2a Defines a Developmental Origin of the Anterolateral System in Mice And
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144659; this version posted June 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Phox2a defines a developmental origin of the anterolateral system in mice and 2 humans 3 4 Authors: R. Brian Roome1,2, Farin B. Bourojeni1,2, Bishakha Mona3, Shima Rastegar- 5 Pouyani1,2, Raphael Blain4, Annie Dumouchel1, Charleen Salesse1, W. Scott Thompson1, 6 Megan Brookbank1, Yorick Gitton4, Lino Tessarollo5, Martyn Goulding6, Jane E. 7 Johnson3,7, Marie Kmita1,9, Alain Chédotal4 and Artur Kania1,2,8,9,#,* 8 9 Affiliations : 10 1Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, 11 Canada 12 2Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, 13 Canada 14 3Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, 15 United States 16 4Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, 17 75012, France 18 5Neural Development Section, Mouse Cancer Genetics Program, National Cancer 19 Institute, Frederick, MD, 21702, United States 20 6Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, 21 CA, 92037, United States 22 7Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, 23 United States 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144659; this version posted June 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
Genome-Wide Expression Analysis Ofptf1a- and Ascl1-Deficient Mice
The Journal of Neuroscience, April 24, 2013 • 33(17):7299–7307 • 7299 Development/Plasticity/Repair Genome-Wide Expression Analysis of Ptf1a- and Ascl1-Deficient Mice Reveals New Markers for Distinct Dorsal Horn Interneuron Populations Contributing to Nociceptive Reflex Plasticity Hendrik Wildner,1 Rebecca Das Gupta,2 Dominique Bro¨hl,3 Paul A. Heppenstall,4 Hanns Ulrich Zeilhofer,1,2* and Carmen Birchmeier3* 1Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland, 2Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland, 3Department of Neuroscience, Max Delbru¨ck Center for Molecular Medicine, D-13125 Berlin, Germany, and 4Mouse Biology Unit, European Molecular Biology Laboratory, I-00015 Monterotondo, Italy Inhibitoryinterneuronsofthespinaldorsalhornplaycriticalrolesintheprocessingofnoxiousandinnocuoussensoryinformation.They form a family of morphologically and functionally diverse neurons that likely fall into distinct subtypes. Traditional classifications rely mainly on differences in dendritic tree morphology and firing patterns. Although useful, these markers are not comprehensive and cannot be used to drive specific genetic manipulations targeted at defined subsets of neurons. Here, we have used genome-wide expres- sion profiling of spinal dorsal horns of wild-type mice and of two strains of transcription factor-deficient mice (Ptf1aϪ/Ϫ and Ascl1/ Mash1Ϫ/Ϫ mice) to identify new genetic markers for specific subsets of dorsal horn inhibitory interneurons. Ptf1aϪ/Ϫ mice lack all inhibitory interneurons in the dorsal horn, whereas only the late-born inhibitory interneurons are missing in Ascl1Ϫ/Ϫ mice. We found 30 genes that were significantly downregulated in the dorsal horn of Ptf1aϪ/Ϫ mice. Twenty-one of those also showed reduced expression in Ascl1Ϫ/Ϫ mice.