A Preliminary Survey of Marine

Total Page:16

File Type:pdf, Size:1020Kb

A Preliminary Survey of Marine A preliminary survey of marine cave habitats in the Maltese Islands L Knittweis, P Chevaldonné, Alexander Ereskovsky, J Schembri, J.A. Borg To cite this version: L Knittweis, P Chevaldonné, Alexander Ereskovsky, J Schembri, J.A. Borg. A preliminary sur- vey of marine cave habitats in the Maltese Islands. Xjenza Online, 2015, 3 (2), pp.153-164. 10.7423/XJENZA.2015.2.07. hal-01463733 HAL Id: hal-01463733 https://hal.archives-ouvertes.fr/hal-01463733 Submitted on 13 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Knittweis, L., Chevaldonn´e,P., Ereskovsky, A., Schembri, P. J., and Borg, J. A. (2015).Xjenza Online, 3:153{164. Xjenza Online - Journal of The Malta Chamber of Scientists www.xjenza.org DOI: 10.7423/XJENZA.2015.2.07 Research Article A preliminary survey of marine cave habitats in the Maltese Islands L. Knittweis∗1, P. Chevaldonn´e2, A. Ereskovsky2;3, P. J. Schembri1, J. A. Borg1 1Department of Biology, Faculty of Science, University of Malta, Msida MSD 2080, Malta 2Institut M´editerran´eende Biodiversit´eet d'Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille Universit´e,Avignon Universit´e,Station Marine d'Endoume, 13007 Marseille, France 3Faculty of Biology, Saint-Petersburg State University, 7/9 Universitetskaya Emb. St. Petersburg 199034, Russia Abstract. The Mediterranean Sea is a hotspot for mar- 1 Introduction ine biodiversity. Past studies of Mediterranean marine The Mediterranean Sea is a hotspot for marine biod- caves have revealed the unique biocoenotic and ecolo- iversity and ranks among the most important of such gical characteristics of these habitats, which are protec- regions worldwide (Bianchi et al., 2012), although much ted by European Union legislation. The Maltese Islands research remains to be done to assess and monitor the have an abundance of partially and fully submerged biodiversity it supports, and to better understand its marine caves with different geomorphological character- marine ecosystems. Despite numerous national and in- istics, yet there have been no systematic studies on these ternational programs of research on the flora and fauna habitats and their associated species. This study is a of the Mediterranean Sea, its biodiversity still remains first synthesis of existing information on the biotic as- insufficiently studied (Coll et al., 2010). The description semblages and physical characteristics of Maltese mar- of new species, especially of invertebrates from poorly ine caves. The work combines a review of the available known groups or from groups which thrive in habitats information with a preliminary survey of some marine that are difficult to explore such as the deep sea and caves in Gozo, during which several species were recor- marine caves, is an ongoing process and new discoveries ded for the first time for the Maltese Islands. Character- continually add to previous estimates of overall Mediter- istic species recorded from local marine caves are high- ranean species diversity. In particular, increased effort lighted, including several species of red and brown algae, to study the species diversity and the ecology of poorly sessile invertebrates including bryozoans, ascidians and known habitats is required, as are long-term monitoring sponges, and mobile forms including crustaceans and programs of marine species and habitats. fish. A marked zonation from the cave entrance to the Past studies of Mediterranean marine caves have re- inside of the caves was identified: photophilic algae at vealed the unique biocoenotic and ecological charac- the mouth of the cave are progressively replaced by more teristics of these habitats. Sessile benthic species as- sciaphilic species, followed by a middle section domin- sociated with cave habitats typically show a marked ated by sessile invertebrates, and then a completely dark zonation from the cave entrance to the inward end of inner section that is mostly devoid of sessile organisms. the cave: photophilic algae at the mouth of the cave Several species protected by national and international are rapidly replaced by encrusting coralline algae and legislation were found to occur. other more sciaphilic species. Thereafter a middle sec- Keywords: Mediterranean marine caves, sciaphilic, tion tends to be dominated by sessile invertebrates such cave biota, sessile biotic assemblages, species distribu- as sponges, corals, and bryozoans, while the completely tion patterns dark inner section tends to be mostly devoid of sessile organisms (Laborel & Vacelet, 1958; Riedl, 1966). This characteristic zonation is thought to be a consequence of the strong environmental gradients that exist, especially those related to light intensity and water movement, as one proceeds inwards from the cave mouth (Bussotti, *Correspondence to: L. Knittweis ([email protected]) c 2015 Xjenza Online A preliminary survey of marine cave habitats in the Maltese Islands 154 Terlizzi, Fraschetti, Belmonte & Boero, 2006; Gili, Ri- and eastern basins of the Mediterranean. From the era & Zabala, 1986; Harmelin, Vacelet & Vasseur, 1985; point of view of biodiversity research, the location of Riedl, 1966, and references therein). Moreover, some the Maltese Islands is strategic as they lie astride the caves are characterised by unique features because of connection between the western basin, which has gen- their physical structure and location, such as for ex- erally been very well studied, and the eastern one, for ample the `3PP Cave' in France, where true bathyal which there are only fragmented data. Located close and bathyo-abyssal organisms are able to thrive due to to the narrowest part of the channel between Africa and abnormally low and constant temperatures (Harmelin & Europe, the Maltese Archipelago occupies a key location Vacelet, 1997, and references therein). for the study of movement of flora and fauna between In recent decades, systematic surveys of dark lit- the western and eastern Mediterranean. Moreover, the toral submarine caves have received particular attention archipelago lies on the main route of the westward range from the scientific community (e.g. Bakran-Petricioli extension of Erythraean (= Lessepsian) immigrants and et al., 2007; Bianchi, Cattaneo-Vietti, Cinelli, Morri of thermophilic indigenous Mediterranean species (Le- & Pansini, 1996; Bussotti, Denitto, Guidetti & Bel- jeusne, Chevaldonn´e,Pergent-Martini, Boudouresque & monte, 2002; Boxshall & Jaume, 2000; Chevaldonn´e& P´erez,2010), and that of the eastward extension of spe- Lejeusne, 2003; Harmelin & Vacelet, 1997; Hart Jr., cies entering from the Atlantic (Sciberras & Schembri, Manning & Iliffe, 1985; Iliffe, Hart & Manning, 1985; 2007). Consequently, the Islands are ideally situated Vacelet & Boury-Esnault, 1995; Ereskovsky, Kovtun & for understanding the processes underlying the evolu- Pronin, 2015). The particular environmental conditions tion of Mediterranean biodiversity at different spatial of these habitats, including the absence of light, oligo- and temporal scales and for monitoring of the changing trophy, and reduced hydrodynamic action, make dark biogeography of the central Mediterranean. The latter is submarine caves enclave mesocosms of the deep aphotic necessary as surface hydrographical conditions change, zone in shallow coastal areas (Harmelin et al., 1985). In such as for example the ongoing northward displacement this respect, marine caves mimic the deep sea. Marine of the `15 ◦C divide' that is allowing west to east and east caves therefore conveniently serve as natural laborat- to west passage of thermophilic species (Bianchi et al., ories, and render unique opportunities for researchers 2012). to access organisms and processes that are otherwise The Maltese Islands, being almost entirely composed very difficult to study (Bakran-Petricioli et al., 2007; of limestones of Oligo-Miocene age, have an abundance Calado, Chevaldonn´e& dos Santos, 2004; Harmelin & of partially submerged (hereafter `emergent') and sub- Vacelet, 1997; Janssen, Chevaldonn´e& Arbizu, 2013; merged marine caves with different geomorphological Vacelet, Boury-Esnault & Harmelin, 1994). Further- characteristics. Caves may arise by the direct action more, marine caves harbour rare species that are unique of the sea on the limestone rock at sea-level, where the to such habitats. Due to their relatively small size and force of the waves develops fissures in the rock into clefts, ease of accessibility, environmental stability, and pres- which eventually become caves and tunnels. This ef- ence of communities of endemic and specialized species fect is enhanced if the water carries abrasive suspended (Harmelin et al., 1985), dark submarine caves are ex- material. Other caves originated on land due to karst- cellent model habitats to address important ecological fluvial processes and then became totally or partially and evolutionary questions such as the influence of life submerged due to changes in sea-level or due to tectonic cycle and habitat fragmentation on gene flow (Cheval- movement. Some such caves continue above
Recommended publications
  • Reef Sponges of the Genus Agelas (Porifera: Demospongiae) from the Greater Caribbean
    Zootaxa 3794 (3): 301–343 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:51852298-F299-4392-9C89-A6FD14D3E1D0 Reef sponges of the genus Agelas (Porifera: Demospongiae) from the Greater Caribbean FERNANDO J. PARRA-VELANDIA1,2, SVEN ZEA2,4 & ROB W. M. VAN SOEST3 1St John's Island Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, Singapore 119227. E-mail: [email protected] 2Universidad Nacional de Colombia, Sede Caribe, Centro de Estudios en Ciencias del Mar—CECIMAR; c/o INVEMAR, Calle 25 2- 55, Rodadero Sur, Playa Salguero, Santa Marta, Colombia. E-mail: [email protected] 3Netherlands Centre for Biodiversity Naturalis, P.O.Box 9517 2300 RA Leiden, The Netherlands. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 301 Introduction . 302 The genus Agelas in the Greater Caribbean . 302 Material and methods . 303 Classification . 304 Phylum Porifera Grant, 1835 . 304 Class Demospongiae Sollas, 1875 . 304 Order Agelasida Hartman, 1980 . 304 Family Agelasidae Verrill, 1907 . 304 Genus Agelas Duchassaing & Michelotti, 1864 . 304 Agelas dispar Duchassaing & Michelotti, 1864 . 306 Agelas cervicornis (Schmidt, 1870) . 311 Agelas wiedenmayeri Alcolado, 1984. 313 Agelas sceptrum (Lamarck, 1815) . 315 Agelas dilatata Duchassaing & Michelotti, 1864 . 316 Agelas conifera (Schmidt, 1870). 318 Agelas tubulata Lehnert & van Soest, 1996 . 321 Agelas repens Lehnert & van Soest, 1998. 324 Agelas cerebrum Assmann, van Soest & Köck, 2001. 325 Agelas schmidti Wilson, 1902 .
    [Show full text]
  • Stomatopoda of Greece: an Annotated Checklist
    Biodiversity Data Journal 8: e47183 doi: 10.3897/BDJ.8.e47183 Taxonomic Paper Stomatopoda of Greece: an annotated checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡§, Nicolas Bailly , Costas Dounas‡ ‡ Hellenic Center for Marine Recearch (HCMR), Heraklion, Greece § WorldFish Center, Los Baños, Philippines Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Eva Chatzinikolaou Received: 09 Oct 2019 | Accepted: 15 Mar 2020 | Published: 26 Mar 2020 Citation: Koulouri P, Gerovasileiou V, Bailly N, Dounas C (2020) Stomatopoda of Greece: an annotated checklist. Biodiversity Data Journal 8: e47183. https://doi.org/10.3897/BDJ.8.e47183 Abstract Background The checklist of Stomatopoda of Greece was developed in the framework of the LifeWatchGreece Research Infrastructure (ESFRI) project, coordinated by the Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) of the Hellenic Centre for Marine Research (HCMR). The application of the Greek Taxon Information System (GTIS) of this project has been used in order to develop a complete checklist of species recorded from the Greek Seas. The objectives of the present study were to update and cross-check all the stomatopod species that are known to occur in the Greek Seas. Inaccuracies and omissions were also investigated, according to literature and current taxonomic status. New information The up-to-date checklist of Stomatopoda of Greece comprises nine species, classified to eight genera and three families. Keywords Stomatopoda, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • An Annotated Checklist of the Shorefishes of the Canary Islands
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2824, pp. 1-49, figs. 1-5 August 7, 1985 An Annotated Checklist of the Shorefishes of the Canary Islands JAMES K. DOOLEY,' JAMES VAN TASSELL,2 AND ALBERTO BRITO3 ABSTRACT The inshore canarian fish fauna includes 217 The fish fauna contains elements from the Med- species from 67 families. Fifteen new records (in- iterranean-Atlantic and West African areas, but cluding two undescribed species) and numerous does not exhibit any clear transition. Three en- rare species have been included. The number of demic species of fishes have been confirmed. The fishes documented from the Canary Islands and families with the greatest diversification include: nearby waters total approximately 400 species. Sparidae (21 species), Scorpaenidae (1 1), Gobiidae This figure includes some 200 pelagic, deepwater, (1 1), Blenniidae (10), Serranidae (9), Carangidae and elasmobranch species not treated in this study. (9), Muraenidae (7), and Labridae (7). RESUMEN La fauna ictiologica de las aguas costeras se las en el presente trabajo. La fauna contiene elemen- Islas Canarias comprende 217 especies de 67 fa- tos de las regiones Atlantico-Mediterranea y Oeste milias. Se incluyen quince citas nuevas (incluyen Africana, pero no muestra una clara transicion. dos especies no describen) y numerosas especies Tres especie endemica existe. Las familias con ma- raras. El nu'mero de peces de las aguas canarias se yor diversificacion son: Sparidae (21 especies), eleva aproximadamente a 400 especies. Este nui- Scorpaenidae (1 1), Gobiidae (1 1), Blenniidae (10), mero incluye casi 200 especies pelagicas, de aguas Serranidae (9), Carangidae (9), Muraenidae (7), y profundas y elasmobranquios que no se discuten Labridae (7).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Abundance and Ecological
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Miriam Chanita Goldstein Committee in charge: Professor Mark D. Ohman, Chair Professor Lihini I. Aluwihare Professor Brian Goldfarb Professor Michael R. Landry Professor James J. Leichter 2012 Copyright Miriam Chanita Goldstein, 2012 All rights reserved. SIGNATURE PAGE The Dissertation of Miriam Chanita Goldstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: PAGE _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION For my mother, who took me to the tidepools and didn’t mind my pet earthworms. iv TABLE OF CONTENTS SIGNATURE PAGE ................................................................................................... iii DEDICATION ............................................................................................................. iv TABLE OF CONTENTS ............................................................................................. v LIST OF FIGURES
    [Show full text]
  • 72 Distributions and Length-Weight Relationships of Some Lessepsian
    Acta Aquatica Turcica E-ISSN: 2651-5474 17(1), 72-77 (2021) DOI:https://doi.org/10.22392/actaquatr.755915 Distributions and Length-Weight Relationships of Some Lessepsian Cardinalfishes (Apogonid species) in the Northeastern Mediterranean (Antalya, Turkey) Turhan KEBAPÇIOĞLU1* , Cenkmen Ramazan BEĞBURS2 1Akdeniz University Manavgat Tourism Faculty Department of Recreation Management, Antalya, Turkey 2 Akdeniz University Fisheries Faculty Department of Fisheries Technology, Antalya, Turkey *Corresponding author: [email protected] Research Article Received 22 June 2020; Accepted 27 October 2020; Release date 01 March 2021. How to Cite: Kebapçıoğlu, T., & Beğburs, C. R. (2021). Distributions and length-weight relationships of some lessepsian Cardinalfishes (Apogonid species) in the Northeastern Mediterranean (Antalya, Turkey). Acta Aquatica Turcica, 17(1), 72- 77. https://doi.org/10.22392/actaquatr.755915 Abstract The distributions and length-weight relationships of three cardinalfishes, namely Broadbanded cardinalfish Ostorhinchus fasciatus (White, 1790), Spotfin cardinalfish Jaydia queketti (Gilchrist, 1903), and Smith's cardinalfish Jaydia smithi Kotthaus, 1970 caught as discards in bottom trawl fisheries in the Northeastern Mediterranean (Gulf of Antalya and Finike Bay) were investigated. A total of 607 specimens were sampled with 108 trawl hauls carried out in 3 stations at a depth of 20- 200 m seasonally. Ostorhinchus fasciatus was the most abundant species with 552 specimens, contributing 90.9% of the total sampling. Total amounts of Jaydia smithi and Jaydia queketti species had fewer sample numbers like 31 (5.1%) and 24 (4%), respectively. All three species were sampled the most in the summer season. The length-weight relationships were significant (p > 0.001), with values of r2 ranging from 0.90 to 0.94.
    [Show full text]
  • Systema Brachyurorum: Part I
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Mediterranean Sea
    OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi MEDITERRANEAN The IUCN Red List of Threatened Species™ – Regional Assessment OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi The IUCN Red List of Threatened Species™ – Regional Assessment Compilers: Dania Abdul Malak Mediterranean Species Programme, IUCN Centre for Mediterranean Cooperation, calle Marie Curie 22, 29590 Campanillas (Parque Tecnológico de Andalucía), Málaga, Spain Suzanne R. Livingstone Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, c/o Conservation International, Arlington, VA 22202, USA David Pollard Applied Marine Conservation Ecology, 7/86 Darling Street, Balmain East, New South Wales 2041, Australia; Research Associate, Department of Ichthyology, Australian Museum, Sydney, Australia Beth A. Polidoro Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Annabelle Cuttelod Red List Unit, IUCN Species Programme, 219c Huntingdon Road, Cambridge CB3 0DL,UK Michel Bariche Biology Departement, American University of Beirut, Beirut, Lebanon Murat Bilecenoglu Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydin, Turkey Kent E. Carpenter Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Bruce B.
    [Show full text]
  • Primer Hallazgo De Apiomithrax Violaceus (A. Milne-Edwards) (Brachyura: Epialtidae: Pisinae) Para El Caribe
    Bol . Invest . Mar . Cost . 39 (2) 417-425 ISSN 0122-9761 Santa Marta, Colombia, 2010 PRIMER HALLAZGO DE APIOMITHRAX VIOLACEUS (A. MILNE-EDWARDS) (BRACHYURA: EPIALTIDAE: PISINAE) PARA EL CARIBE Carlos Lira, Juan Bolaños, Gonzalo Hernández, Jesús Hernández y Régulo López Universidad de Oriente, Núcleo Nueva Esparta, Grupo de Investigación en Carcinología, Isla de Margarita, Venezuela. Apartado Postal 658, Porlamar 6301. [email protected] RESUMEN Hasta ahora, la subfamilia Pisinae Dana, 1851 estaba representada en las costas caribeñas de Venezuela por seis especies [Chorinus heros (Herbst, 1790); Libinia ferreirae Brito Capello, 1871; Herbstia depressa Stimpson, 1870; Sphenocarcinus corrosus A . Milne-Edwards, 1878; Pelia mutica (Gibbes, 1850) y Nibilia antilocapra (Stimpson, 1871)], que representan 38 % de los cangrejos de esta subfamilia señalados para el mar Caribe . Durante una revisión de material pendiente de identificar perteneciente a la colección de crustáceos del Laboratorio de Carcinología de la Universidad de Oriente, Isla de Margarita, Venezuela, fueron hallados nueve especímenes (seis machos y tres hembras) de Apiomithrax violaceus (A . Milne-Edwards, 1868) . La distribución hasta ahora conocida de este Pisinae estaba circunscrita a Mauritania hasta Angola en el Atlántico oriental, Isla Ascensión en el Atlántico central, Brasil y el Delta del Orinoco en el Atlántico occidental . Todos los ejemplares fueron colectados en aguas marinas venezolanas en las siguientes localidades: Isla de Margarita: Playa Valdés, península de Macanao; Estado Sucre (área continental): Guayacán . Este es el registro más septentrional de la especie y la primera vez en ser señalada para el mar Caribe, incrementando a 17 el número de especies de Pisinae conocidas para esta área .
    [Show full text]