BRS1 BRS2 BRS3 BRS4 BRS5 Total BRS1 BRS2 BRS3 BRS4 BRS5 Aconoidasida Babesia Bovis Protozoan Parasite 0 0 59 45 820 0 924 43.8

Total Page:16

File Type:pdf, Size:1020Kb

BRS1 BRS2 BRS3 BRS4 BRS5 Total BRS1 BRS2 BRS3 BRS4 BRS5 Aconoidasida Babesia Bovis Protozoan Parasite 0 0 59 45 820 0 924 43.8 Supplementary Table 1. Mapped DNA sequence reads for environmental- and subsistence-related taxa detected in this study. Statistically-significant ( i.e ., verified ancient) C-T p -values are indicated in bold text. Analyses were performed using high-quality filtered read alignments against NCBI reference genomes. DNA damage estimation analyses was performed using PMDtools (‘C-T p -values’). E-LPC BWA aligned (mapped) sequence reads Mean read C-T p -value Class Taxon Common name reads BRS1 BRS2 BRS3 BRS4 BRS5 Total length (bp) BRS1 BRS2 BRS3 BRS4 BRS5 Aconoidasida Babesia bovis Protozoan parasite 0 0 59 45 820 0 924 43.8 − 0.0273139 0.0314666 0.3810030 − Bacilli Lactococcus lactis Bacterium 0 100 541 340 4818 0 5799 70.6 0.5582629 0.0027567 0.0355133 0.0000015 − Dicotyledonae Ficus sur Cluster fig 0 6 179 59 1171 2 1417 67.0 0.3958356 0.0120650 0.5833718 0.0334960 0.5000000 Secernentea Parastrongyloides trichosuri Nematode parasite 0 11 1281 447 8481 13 10233 65.0 0.5337832 0.0253805 0.2410555 0.0528887 0.5085527 Sordariomycetes Podospora anserina Ascomycete fungus 0 1 16 6 466 2 491 61.4 − 0.1799564 0.5000000 0.3874920 − Sorghum bicolor Sorghum or durra 0 297 371 221 4359 166 5414 70.2 0.1020672 0.0066557 0.9053457 0.0000108 0.8410222 Monocotyledonae Triticum aestivum Common wheat 0 290 335 153 2826 505 4109 64.0 0.4611596 0.2830501 0.1544875 0.4358290 0.5196183 Zea mays Maize or corn 1 81 205 122 2661 0 3070 54.8 0.0718288 0.5123976 0.6440315 0.1234000 − Bos taurus Domestic cattle 0 847 459 281 26215 91 27893 62.8 0.7214745 0.3237143 0.2069171 0.1183520 0.0844617 Canis lupus familiaris Domestic dog 0 0 0 0 0 71 71 51.4 − − − − 0.7881283 Canis mesomelas Black-backed jackal 0 0 0 0 0 0 0 − − − − − − Capra hircus Domestic goat 0 1390 325 238 40118 117 42188 63.4 0.0580973 0.0132379 0.3843594 0.0000900 0.1955150 Caracal caracal Caracal or rooikat 0 0 0 0 0 0 0 − − − − − − Cercopithecus aethiops Vervet monkey 0 0 0 0 0 0 0 − − − − − − Equus caballus Modern horse 0 126 170 68 1395 79 1838 51.2 0.4765005 0.3077120 0.7492095 0.0007678 0.1313032 Mammalia Homo sapiens Human 56 335 270 117 1580 104 2462 61.2 0.6122221 0.0058446 0.7521352 0.0366582 0.1393800 Ictonyx striatus Striped polecat 0 0 0 0 0 0 0 − − − − − − Macaca mulatta Rhesus macaque 0 296 247 114 4593 96 5346 58.0 0.4855835 0.1070172 0.7493560 0.0269014 0.2207390 Mellivora capensis Honey badger 0 0 0 0 0 0 0 − − − − − − Ovis aries Domestic sheep 0 1026 289 206 36490 100 38111 62.6 0.0226299 0.1273375 0.2981717 0.0086748 0.1452299 Pan troglodytes Chimpanzee 0 390 276 111 2346 90 3213 60.6 0.5325693 0.0025637 0.7734403 0.0398303 0.3383619 Panthera pardus Leopard 0 0 0 0 0 0 0 − − − − − − Papio ursinus Chachma baboon 0 0 0 0 0 0 0 − − − − − − Total 57 5196 5023 2528 138339 1436 152579 60.5 − − − − Supplementary Table 2. Information concerning the two direct radiocarbon (14C) Accelerator Mass Spectrometry (AMS) dates generated from two sub-samples taken from within the BRS palaeo-faecal specimen. Sample Lab # 13C pMC pMC_err conv_age age_err BRS1 IT-C-1020 -16.79 94.37 0.524 470.2 44.1 BRS2 IT-C-1077 -16.79 94.39 0.416 460.2 35.0 Supplementary Table 3a. Processing protocol and results for isotope analyses of samples derived from the BRS specimen indicating the relative proportions of C3 and C4 dietary contributions. Sample Weight N peak 15N corr %N C peak 13C corr %C C/N BRS COP 1 0.82 12.66 11.28 1.52% 19.49 -17.93 22.46% 17.20 BRS COP 2 0.89 13.58 11.22 1.53% 20.84 -17.18 22.27% 16.95 BRS COP 3 0.84 13.36 11.45 1.58% 22.03 -17.65 24.78% 18.29 BRS LX 1 0.81 13.86 10.87 1.71% 21.89 -17.01 25.53% 17.44 BRS LX 2 0.84 14.16 10.98 1.69% 21.30 -16.98 23.95% 16.57 BRS LX 3 0.90 14.15 11.18 1.58% 21.69 -17.27 22.85% 16.92 BRS Acid 1 0.89 11.72 10.93 1.26% 23.78 -16.34 25.22% 23.39 BRS Acid 2 0.86 10.74 10.83 1.17% 24.36 -17.63 26.73% 26.69 BRS Acid 3 0.85 11.35 10.92 1.26% 23.14 -16.40 25.63% 23.74 BRS CS 1 1.04 22.14 11.10 2.23% 39.95 -23.08 36.27% 18.96 BRS CS 2 0.88 18.93 11.12 2.21% 33.38 -23.16 35.84% 18.88 BRS CS 3 1.03 21.77 11.05 2.21% 39.73 -23.60 36.52% 19.26 Supplementary Table 3b. Results for isotope analyses (Merck standard) of samples derived from the BRS specimen indicating the relative proportions of C3 and C4 dietary contributions. Weight N peak N C peak C Merck 0.22 29.65 7.82 9.43 -20.28 Merck 0.41 56.33 7.95 17.96 -20.23 Merck 0.60 82.27 7.97 26.34 -20.26 Merck 0.24 34.14 7.81 10.24 -20.27 Merck 0.40 57.99 7.92 17.83 -20.28 Merck 0.60 89.53 7.78 26.13 -20.22 Merck 0.23 36.75 7.91 10.33 -20.27 Merck 0.41 61.18 7.98 18.12 -20.28 Merck 0.64 92.49 7.95 28.44 -20.25 Merck 0.64 92.85 7.80 28.68 -20.26 7.89 -20.26 0.08 0.02 Supplementary Table 3c. Results for isotope analyses (DL-Valine standard) of samples derived from the BRS specimen indicating the relative proportions of C3 and C4 dietary contributions. Weight N peak N C peak C DL-Valine 0.23 24.84 -6.10 12.09 -10.56 DL-Valine 0.41 44.35 -6.22 21.92 -10.53 DL-Valine 0.63 66.39 -6.15 33.12 -10.68 DL-Valine 0.21 24.24 -6.13 11.07 -10.51 DL-Valine 0.44 50.16 -6.09 23.54 -10.54 DL-Valine 0.60 68.98 -6.21 32.72 -10.56 DL-Valine 0.23 29.22 -6.19 12.15 -10.61 DL-Valine 0.42 49.46 -6.12 22.52 -10.63 DL-Valine 0.62 70.56 -6.16 33.30 -10.55 DL-Valine 0.62 70.17 -6.13 32.95 -10.53 -6.15 -10.57 0.04 0.05 Supplementary Table 4. Assignment of abundance of bacterial taxonomic categories to the BRS and ancient (Ötzi) and modern (Italian, Hadza and Malawian) comparative samples based onp -value (p ꞊ <0.05) designation. Group significance assignments were obtained via Qiime v1.9.1. OTU Test-Statistic P BRS_mean Otzi-UPLI_mean Otzi-SI_mean Otzi-LPLI_mean Hadza_mean Malawi_mean Italian_mean Taxonomy ID251698 17.978824 0.006285 1.00 20.50 26.00 5.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__(Pseudomonas) ID47877 17.978824 0.006285 3.00 70.50 94.00 12.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas amygdali ID40215 17.978673 0.006286 2.00 17.00 5.00 2.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter; s__Acinetobacter junii ID162481 17.968966 0.006310 0.00 260.00 191.00 9.00 0.00 0.00 0.00 k__Eukaryota; p__Basidiomycota; c__Microbotryomycetes; o__(Microbotryomycetes); f__(Microbotryomycetes); g__(Microbotryomycetes); s__(Microbotryomycetes) ID288795 17.968966 0.006310 0.00 501.00 248.00 8.00 0.00 0.00 0.00 k__Eukaryota; p__Basidiomycota; c__Microbotryomycetes; o__Microbotryales; f__Microbotryaceae; g__Microbotryum; s__Microbotryum lychnidis-dioicae ID5286 17.968966 0.006310 0.00 218.50 148.00 6.00 0.00 0.00 0.00 k__Eukaryota; p__Basidiomycota; c__Microbotryomycetes; o__Sporidiobolales; f__Sporidiobolaceae; g__Rhodotorula; s__Rhodotorula toruloides ID65741 17.936620 0.006393 3.33 6.00 8.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas knackmussii ID351095 17.929961 0.006410 70.67 1.00 0.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Paucisalibacillus; s__Paucisalibacillus globulus ID109871 17.929961 0.006410 7.33 1.00 0.00 1.00 0.00 0.00 0.00 k__Eukaryota; p__Chytridiomycota; c__Chytridiomycetes; o__Rhizophydiales; f__(Batrachochytrium); g__Batrachochytrium; s__Batrachochytrium dendrobatidis ID40214 17.915592 0.006447 4.67 346.50 1.00 106.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter; s__Acinetobacter johnsonii ID1439940 17.915592 0.006447 13.00 3.00 5.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas sp. BAY1663 ID157784 17.915592 0.006447 15.00 4.00 5.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas thermotolerans ID706570 17.914692 0.006449 591.33 1.00 1.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas flexibilis ID5061 17.914692 0.006449 8.00 1.00 1.00 1.00 0.00 0.00 0.00 k__Eukaryota; p__Ascomycota; c__Eurotiomycetes; o__Eurotiales; f__Aspergillaceae; g__Aspergillus; s__Aspergillus niger ID5073 17.914692 0.006449 19.00 1.00 1.00 1.00 0.00 0.00 0.00 k__Eukaryota; p__Ascomycota; c__Eurotiomycetes; o__Eurotiales; f__Aspergillaceae; g__Penicillium; s__(Penicillium) ID37914 17.906736 0.006470 26.00 1.00 0.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Actinobacteria <phylum>; c__Actinobacteria; o__Corynebacteriales; f__Dietziaceae; g__Dietzia; s__(Dietzia) ID558169 17.906736 0.006470 67.67 1.00 0.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Lentibacillus; s__Lentibacillus jeotgali ID694055 17.906736 0.006470 19.00 1.00 0.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Ornithinibacillus; s__Ornithinibacillus contaminans ID403957 17.906736 0.006470 17.33 1.00 0.00 1.00 0.00 0.00 0.00 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Virgibacillus; s__Virgibacillus sp.
Recommended publications
  • Comparative Genomic Analysis of Three Pseudomonas
    microorganisms Article Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster (Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column Ashish Pathak 1, Paul Stothard 2 and Ashvini Chauhan 1,* 1 Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA; [email protected] 2 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-850-412-5119; Fax: +1-850-561-2248 Abstract: The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because Citation: Pathak, A.; Stothard, P.; of their immense metabolic and ecological potential. To obtain a comprehensive understanding on Chauhan, A. Comparative Genomic this aspect, we previously reported on the isolation and preliminary genomic characterization of Analysis of Three Pseudomonas Species three Pseudomonas species isolated from minced oyster tissue (P.
    [Show full text]
  • Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
    Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Structural and Functional Insights Into Apicomplexan Gliding and Its Regulation
    Structural and functional insights into apicomplexan gliding and its regulation Dissertation to obtain the degree of Doctor of Natural Sciences University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences at the Department of Biology by Samuel Pažický from Bratislava, Slovakia Hamburg 2020 Examination commission Examination commission chair Prof. Dr. Jörg Ganzhorn (University of Hamburg) Examination commission members Prof. Jonas Schmidt-Chanasit (Bernhard Nocht Institute for Tropical Medicine and University of Hamburg) Prof. Tim Gilberger (Bernhard Nocht Institute for Tropical Medicine, Centre for Structural Systems Biology and University of Hamburg) Dr. Maria Garcia-Alai (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Dr. Christian Löw (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Date of defence: 29.01.2021 This work was performed at European Molecular Biology Laboratory, Hamburg Unit under the supervision of Dr. Christian Löw and Prof. Tim-Wolf Gilberger. The work was supported by the Joachim Herz Foundation. Evaluation Prof. Dr. rer. nat. Tim-Wolf Gilberger Bernhard Nocht Institute for Tropical Medicine (BNITM) Department of Cellular Parasitology Hamburg Dr. Christian Löw European Molecular Biology Laboratory Hamburg unit Hamburg Prof. Dr. vet. med. Thomas Krey Hannover Medical School Institute of Virology Declaration of academic honesty I hereby declare, on oath, that I have written the present dissertation by my own and have not used other than the acknowledged resources and aids. Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Hamburg, 22.9.2020 Samuel Pažický List of contents Declaration of academic honesty 4 List of contents 5 Acknowledgements 6 Summary 7 Zusammenfassung 10 List of publications 12 Scientific contribution to the manuscript 14 Abbreviations 16 1.
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic
    IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. Leydy Paola González Camacho Universidad Nacional de Colombia Facultad de ciencias, Instituto de Biotecnología IBUN Bogotá, Colombia 2019 IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. Leydy Paola González Camacho Tesis o trabajo de investigación presentada(o) como requisito parcial para optar al título de: Magister en Microbiología. Director (a): Ph.D MSc Nubia Estela Matta Camacho Codirector (a): Ph.D MSc Mario Vargas-Ramírez Línea de Investigación: Biología molecular de agentes infecciosos Grupo de Investigación: Caracterización inmunológica y genética Universidad Nacional de Colombia Facultad de ciencias, Instituto de biotecnología (IBUN) Bogotá, Colombia 2019 IV IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. A mis padres, A mi familia, A mi hijo, inspiración en mi vida Agradecimientos Quiero agradecer especialmente a mis padres por su contribución en tiempo y recursos, así como su apoyo incondicional para la culminación de este proyecto. A mi hijo, Santiago Suárez, quien desde que llego a mi vida es mi mayor inspiración, y con quien hemos demostrado que todo lo podemos lograr; a Juan Suárez, quien me apoya, acompaña y no me ha dejado desfallecer, en este logro. A la Universidad Nacional de Colombia, departamento de biología y el posgrado en microbiología, por permitirme formarme profesionalmente; a Socorro Prieto, por su apoyo incondicional. Doy agradecimiento especial a mis tutores, la profesora Nubia Estela Matta y el profesor Mario Vargas-Ramírez, por el apoyo en el desarrollo de esta investigación, por su consejo y ayuda significativa con esta investigación.
    [Show full text]
  • "Plasmodium". In: Encyclopedia of Life Sciences (ELS)
    Plasmodium Advanced article Lawrence H Bannister, King’s College London, London, UK Article Contents . Introduction and Description of Plasmodium Irwin W Sherman, University of California, Riverside, California, USA . Plasmodium Hosts Based in part on the previous version of this Encyclopedia of Life Sciences . Life Cycle (ELS) article, Plasmodium by Irwin W Sherman. Asexual Blood Stages . Intracellular Asexual Blood Parasite Stages . Sexual Stages . Mosquito Asexual Stages . Pre-erythrocytic Stages . Metabolism . The Plasmodium Genome . Motility . Recent History of Plasmodium Research . Evolution of Plasmodium . Conclusion Online posting date: 15th December 2009 Plasmodium is a genus of parasitic protozoa which infect Introduction and Description of erythrocytes of vertebrates and cause malaria. Their life cycle alternates between mosquito and vertebrate hosts. Plasmodium Parasites enter the bloodstream after a mosquito bite, Parasites of the genus Plasmodium are protozoans which and multiply sequentially within liver cells and erythro- invade and multiply within erythrocytes of vertebrates, and cytes before becoming male or female sexual forms. When are transmitted by mosquitoes. The motile invasive stages ingested by a mosquito, these fuse, then the parasite (merozoite, ookinete and sporozoite) are elongate, uni- multiplies again to form more invasive stages which are nucleate cells able to enter cells or pass through tissues, transmitted back in the insect’s saliva to a vertebrate. All using specialized secretory and locomotory organelles.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Plasmodium Vivax
    PLASMODIUM VIVAX. INTRODUCTION Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to . P. vivax is carried by the female Anopheles mosquito; the males do not bite CLINICAL PRESENTATION Pathogenesis results from rupture of infected red blood cells, leading to fever. Infected red blood cells may also stick to each other and to walls of capillaries. Vessels plug up and deprive tissues of oxygen. Infection may also cause the spleen to enlarge. Unlike P. falciparum, P. vivax can populate the bloodstream with sexual-stage parasites—the form picked up by mosquitoes on their way to the next victim— even before a patient shows symptoms. Consequently, prompt treatment of symptomatic patients doesn't necessarily help stop an outbreak, as it does with falciparum malaria, in which fevers occur as sexual stages develop. Even when symptoms appear, because they are usually not immediately fatal, the parasite continues to multiply. Plasmodium vivax can cause a more unusual form of malaria with atypical symptoms. It has been known to debut with hiccups loss of taste, lack of fever, pain while swallowing, cough and urinary discomfort The parasite can go dormant in the liver for days to years, causing no symptoms and remaining undetectable in blood tests. They form what are called hypnozoites, a small stage that nestles inside an individual liver cell.
    [Show full text]
  • Conservation of the Toxoplasma Conoid Proteome in Plasmodium Reveals a Cryptic Conoid Feature That Differentiates Between Blood- and Vector-Stage Zoite
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174284; this version posted June 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Conservation of the Toxoplasma conoid proteome in Plasmodium reveals a cryptic conoid feature that differentiates between blood- and vector-stage zoite Ludek Koreny1, Mohammad Zeeshan2, Konstantin Barylyuk1, Declan Brady2, Huiling Ke1, Rita Tewari2, Ross F. Waller1 1 Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK 2 School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK Abstract The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the Class Aconoidasida. Relatively few conoid proteins have been previously identified making it difficult to address the question of how conserved this feature is throughout the phylum, and whether it is truly missing from some major groups. Moreover, parasites such as Plasmodium species cycle through multiple invasive forms raising the question of differential presence of the conoid between these stages. We have applied spatial proteomics methods and high-resolution microscopy to develop a more complete molecular inventory and organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed conservation of the molecules of all substructures of the conoid throughout Apicomplexa including Plasmodium and even in allied Myzozoa such as Chromera.
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • An Analog to Digital Converter Controls Bistable Transfer Competence
    RESEARCH ARTICLE An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element Nicolas Carraro1, Xavier Richard1,2, Sandra Sulser1, Franc¸ois Delavat1,3, Christian Mazza2, Jan Roelof van der Meer1* 1Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland; 2Department of Mathematics, University of Fribourg, Fribourg, Switzerland; 3UMR CNRS 6286 UFIP, University of Nantes, Nantes, France Abstract Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non- active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation- specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic *For correspondence: strains, highlighting its evolutionary conservation and prime importance to control the behaviour of [email protected] this wide family of conjugative elements.
    [Show full text]
  • Plasmodium Genomics: an Approach for Learning About and Ending Human Malaria
    Parasitology Research (2019) 118:1–27 https://doi.org/10.1007/s00436-018-6127-9 GENETICS, EVOLUTION, AND PHYLOGENY - REVIEW Plasmodium genomics: an approach for learning about and ending human malaria José Antonio Garrido-Cardenas1 & Lilia González-Cerón2 & Francisco Manzano-Agugliaro3 & Concepción Mesa-Valle1 Received: 23 July 2018 /Accepted: 19 October 2018 /Published online: 6 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. ma la ri ae, P. ovale curtisi,andP. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination. Keywords Malaria . Plasmodium falciparum . P.vivax . Vaccine Malaria cases; 7% percent are in Southeast Asia while less than 1% occur in Central and South America. The Eastern Malaria is caused by protozoan parasites belonging to the Mediterranean region accounts for approximately 2% of genus Plasmodium.
    [Show full text]