Living Cells in Wood. 1. Absence, Scarcity and Histology of Axial

Total Page:16

File Type:pdf, Size:1020Kb

Living Cells in Wood. 1. Absence, Scarcity and Histology of Axial bs_bs_banner Botanical Journal of the Linnean Society, 2015, 177, 291–321. With 13 figures Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function Downloaded from https://academic.oup.com/botlinnean/article-abstract/177/3/291/2416378 by guest on 15 November 2018 SHERWIN CARLQUIST FMLS* Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93105, USA Received 22 September 2014; revised 15 December 2014; accepted for publication 16 December 2014 The diversity of expression in axial parenchyma (or lack of it) in woods is reviewed and synthesized with recent work in wood physiology, and questions and hypotheses relative to axial parenchyma anatomy are offered. Cell shape, location, abundance, size, wall characteristics and contents are all characteristics for the assessment of the physiological functions of axial parenchyma, a tissue that has been neglected in the consideration of how wood histology has evolved. Axial parenchyma occurrence should be considered with respect to mechanisms for the prevention and reversal of embolisms in tracheary elements. This mechanism complements cohesion–tension-based water movement and root pressure as a way of maintaining flow in xylem. Septate fibres can substitute for axial parenchyma (‘axial parenchyma absent’) and account for water movement in xylem and for the supply of carbohydrate abundance underlying massive and sudden events of foliation, flowering and fruiting, as can fibre dimorphism and the co-occurrence of septate fibres and axial parenchyma. Rayless woods may or may not contain axial parenchyma and are informative when analysing parenchyma function. Interconnections between ray and axial parenchyma are common, and so axial and radial parenchyma must be considered as complementary parts of a network, with distinctive but interactive functions. Upright ray cells and more numerous rays per millimetre enhance interconnection and are more often found in woods that contain tracheids. Vesselless woods in both gymnosperms and angiosperms have axial parenchyma, the distribution of which suggests a function in osmotic water shifting. Water and photosynthate storage in axial parenchyma may be associated with seasonal changes and with succulent or subsucculent modes of construction. Apotracheal axial parenchyma distribution often demon- strates storage functions that can be read independently of osmotic water shifting capabilities. Axial parenchyma may serve to both enhance mechanical strength or, when parenchyma is thin-walled, as a tissue that adapts to volume change with a change in water content. Other functions of axial parenchyma (contributing resistance to pathogens; a site for the recovery of physical damage) are considered. The diagnostic features of axial parenchyma and septate fibres are reviewed in order to clarify distinctions and to aid in cell type identification. Systematic listings are given for particular axial parenchyma conditions (e.g. axial parenchyma ‘absent’ with septate fibres substituting). A knowledge of the axial parenchyma information presented here is desirable for a full understand- ing of xylem function. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177, 291–321. ADDITIONAL KEYWORDS: conductive safety – embolism reduction – osmotic water shifting – rays – septate fibres – water storage – wood evolution – wood physiology. INTRODUCTION the conducting cells of wood (vessel elements and tracheids, both with prominent bordered pits) and the Ray and axial parenchyma are often considered as the mechanically important fibrous cells (fibre-tracheids two living types of cell in woods and are figured in and libriform fibres), which are mostly dead at matu- textbooks, but their functions and diversity are rity, are linked in textbooks to conductive functions, mostly left unexplored in such sources. By contrast, and therefore have been the topic, if only indirectly, of much physiological experimentation. Septate fibres, which are mostly libriform fibres with prolonged lon- *E-mail: [email protected] gevity, are a type of living cell in wood that has been © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177, 291–321 291 292 S. CARLQUIST little studied: one must reach back to the papers of impression, if only indirectly, that ‘primitive’ woods Wolkinger (1969, 1970a, b) to find even condensed are inefficient at conduction, whereas ‘advanced’ consideration. The phenomenon of fibre dimorphism woods excel at conduction, and that plants with (Carlquist, 1958, 1961, 2014), in which libriform ‘primitive’ woods are evolutionarily limited by their fibres of two sorts (narrower, thicker walled vs. wider, wood formulae and are marginalized by plants with thinner walled, often alive at maturity) are present in more efficient, upgraded, wood anatomy. However, a given wood, has been noticed by only a small plants with putatively plesiomorphic wood features number of workers, despite its conspicuous occur- coexist with those that have apomorphic wood fea- rence in such familiar woods as maple, Acer L. Even tures, so that both patterns must be entirely func- Downloaded from https://academic.oup.com/botlinnean/article-abstract/177/3/291/2416378 by guest on 15 November 2018 criteria for the recognition of the cell types mentioned tional, although in plants with different ecology and above are not easily located in wood anatomical lit- growth form. The present article takes the point of erature. The monographs of Wolkinger cover ‘leb- view that the various anatomical formulae of wood enden Fasern’, but we do not have a clear idea of how anatomy must be understood as varied but effective long ‘living fibres’ live. Septate fibres are assumed to ways of dealing with water economy. We cannot be ‘living fibres’, but some may not live much longer understand how xylem works by studying only Zea L. than non-septate libriform fibres. We have little infor- or Helianthus L., convenient though they may be. mation because wood anatomy is still largely based on Although wood physiology seems to be drifting away dried rather than liquid-preserved specimens. from the study of wood anatomical diversity, ulti- There is growing interest in axial parenchyma mately the two must coalesce. The present article among wood physiologists (Spicer, 2014), because of does not form such a bridge, but it does indicate the the conviction that such a commonly present cell complexity of axial parenchyma, a complexity which type, often distributed adjacent to vessels and trac- therefore must ultimately be explained in evolution- heids, must perform some function related to the ary and physiological terms. conductive process. The ‘osmotic water shifting’ ideas In order to satisfy the needs of descriptive wood of Braun (1970) proposed that the development of anatomy, Kribs (1935, 1937) and Metcalfe & Chalk higher osmotic pressures, chiefly through the conver- (1950) categorized types of ray and axial parenchyma sion of starch into sugar (both found in axial paren- on the basis of histological features. In the case of chyma as well as in rays), could draw water from one axial parenchyma, location with respect to vessels or cell into another and thus function in the conductive to growth rings, grouping and abundance were the process. This was formalized into a theory of com- main criteria used by Kribs (1937). Both Kribs (1937) pensating pressure by Canny (1995, 1998), although and Metcalfe & Chalk (1950) recognized an axial these ideas have been met with scepticism parenchyma type, ‘Absent’, which seems paradoxical (Comstock, 1999). However, there are other ways in at first glance. If axial parenchyma is absent, what which differential solute concentrations in axial substitutes for its functions? In turn, this raises the parenchyma may be achieved and function in con- question, what are the functions of axial parenchyma duction, as exemplified by Holbrook & Zwieniecki when it is present? These questions were asked vir- (1999) and Zwieniecki & Holbrook (2000, 2009). Wood tually not at all in the mid-20th century, in which physiologists currently express interest in, and offer accurate anatomical description of the woods of the varied hypotheses on, the function of axial paren- world was seen as the task at hand, and in which chyma. Several are of the opinion that no clear questions pertaining to wood evolution in a functional understanding of how parenchyma contributes to the context went unasked and therefore unanswered. conductive process exists. A consensus on exactly how Despite the obvious and pervasive modes of cell pres- axial parenchyma may function in the prevention or ence and diversity in woods, hypotheses about func- countering of embolisms has not yet been reached, tion were often considered as ‘speculative’ instead of but the current state of this field is discussed below. the legitimate hypotheses that they were, and thus The presence, absence, scarcity, distribution within a wood physiology was deprived of some pertinent ques- wood and histology of axial parenchyma are not inde- tions. For example, do all manifestations of axial pendent of wood physiology. Rather, they must even- parenchyma have the same function? The role of axial tually be integrated into any interpretations of parenchyma in the conductive process was probably parenchyma with relation to conduction in plants. also ignored because laboratory equipment, although The patterns described in this article are offered in easily connected
Recommended publications
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Lições Das Interações Planta – Beija-Flor
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA JÉFERSON BUGONI REDES PLANTA-POLINIZADOR NOS TRÓPICOS: LIÇÕES DAS INTERAÇÕES PLANTA – BEIJA-FLOR PLANT-POLLINATOR NETWORKS IN THE TROPICS: LESSONS FROM HUMMINGBIRD-PLANT INTERACTIONS CAMPINAS 2017 JÉFERSON BUGONI REDES PLANTA-POLINIZADOR NOS TRÓPICOS: LIÇÕES DAS INTERAÇÕES PLANTA – BEIJA-FLOR PLANT-POLLINATOR NETWORKS IN THE TROPICS: LESSONS FROM HUMMINGBIRD-PLANT INTERACTIONS Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutor em Ecologia. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Ecology. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO JÉFERSON BUGONI E ORIENTADA PELA DRA. MARLIES SAZIMA. Orientadora: MARLIES SAZIMA Co-Orientador: BO DALSGAARD CAMPINAS 2017 Campinas, 17 de fevereiro de 2017. COMISSÃO EXAMINADORA Profa. Dra. Marlies Sazima Prof. Dr. Felipe Wanderley Amorim Prof. Dr. Thomas Michael Lewinsohn Profa. Dra. Marina Wolowski Torres Prof. Dr. Vinícius Lourenço Garcia de Brito Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. DEDICATÓRIA À minha família por me ensinar o amor à natureza e a natureza do amor. Ao povo brasileiro por financiar meus estudos desde sempre, fomentando assim meus sonhos. EPÍGRAFE “Understanding patterns in terms of the processes that produce them is the essence of science […]” Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology 73:1943–1967. AGRADECIMENTOS Manifestar a gratidão às tantas pessoas que fizeram parte direta ou indiretamente do processo que culmina nesta tese não é tarefa trivial.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Trends in Flower Symmetry Evolution Revealed Through Phylogenetic and Developmental Genetic Advances
    Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances Lena C. Hileman rstb.royalsocietypublishing.org Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instan- Review ces of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular Cite this article: Hileman LC. 2014 Trends in phylogenetic research and studies of character evolution as well as detailed flower symmetry evolution revealed through flower developmental genetic studies in a few model species (e.g. Antirrhinum phylogenetic and developmental genetic majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better under- advances. Phil. Trans. R. Soc. B 369: 20130348. standing of where during flowering plant diversification transitions from http://dx.doi.org/10.1098/rstb.2013.0348 radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme One contribution of 14 to a Theme Issue largely dependent on the functional action of the CYCLOIDEA gene is necess- ‘Contemporary and future studies in plant ary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both speciation, morphological/floral evolution the parallel recruitment of a CYC-dependent developmental programme and polyploidy: honouring the scientific during independent transitions to bilateral flower symmetry, and the modifi- contributions of Leslie D.
    [Show full text]
  • Chapter One 1.0 Introduction and Background to The
    CHAPTER ONE 1.0 INTRODUCTION AND BACKGROUND TO THE STUDY Loganiaceae is a family of flowering plants classified in the Order Gentianales (Bendre, 1975). The family was first suggested by Robert Brown in 1814 and validly published by von Martius in 1827 (Nicholas and Baijnath, 1994). Members habits are in form of trees, shrubs, woody climbers and herbs. Some are epiphytes while some members are furnished with spines or tendrils (Bendre, 1975). They are distributed mainly in the tropics, subtropics and a few in temperate regions (Backlund et al., 2000). Earlier treatments of the family have included up to 30 genera, 600 species (Leeuwenberg and Leenhouts, 1980; Mabberley, 1997) but were later reduced to 400 species in 15 genera, with some species extending into temperate Australia and North America (Struwe et al., 1994; Dunlop, 1996; Backlund and Bremer, 1998). Morphological studies have demonstrated that this broadly defined Loganiaceae was a polyphyletic assemblage and numerous genera have been removed from it to other families (sometimes to other Orders), e.g. Gentianaceae, Gelsemiaceae, Plocospermataceae, Tetrachondraceae, Buddlejaceae, and Gesneriaceae (Backlund and Bremer, 1998; Backlund et al., 2000). The family has undergone numerous revisions that have expanded and contracted its circumscription, ranging from one genus at its smallest (Takhtajan, 1997; Smith et al., 1997) to 30 at its largest (Leeuwenberg and Leenhouts, 1980). One of the current infrafamilial classifications contains four tribes: Antonieae Endl., Loganieae Endl., Spigelieae Dum. (monotypic), and Strychneae Dum. (Struwe et al., 1994). The tribes Loganieae and Antonieae are supported by molecular data, but Strychneae is not (Backlund et al., 2000).
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]
  • Staminodes: Their Morphological and Evolutionary Significance Author(S): L
    Staminodes: Their Morphological and Evolutionary Significance Author(s): L. P. Ronse Decraene and E. F. Smets Source: Botanical Review, Vol. 67, No. 3 (Jul. - Sep., 2001), pp. 351-402 Published by: Springer on behalf of New York Botanical Garden Press Stable URL: http://www.jstor.org/stable/4354395 . Accessed: 23/06/2014 03:18 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Botanical Review. http://www.jstor.org This content downloaded from 210.72.93.185 on Mon, 23 Jun 2014 03:18:32 AM All use subject to JSTOR Terms and Conditions THE BOTANICAL REVIEW VOL. 67 JULY-SEPTEMBER 2001 No. 3 Staminodes: Their Morphological and Evolutionary Signiflcance L. P. RONSEDECRAENE AND E. F. SMETS Katholieke UniversiteitLeuven Laboratory of Plant Systematics Institutefor Botany and Microbiology KasteelparkArenberg 31 B-3001 Leuven, Belgium I. Abstract........................................... 351 II. Introduction.................................................... 352 III. PossibleOrigin of Staminodes........................................... 354 IV. A Redefinitionof StaminodialStructures .................................. 359 A. Surveyof the Problem:Case Studies .............. .................... 359 B. Evolutionof StaminodialStructures: Function-Based Definition ... ......... 367 1. VestigialStaminodes ........................................... 367 2. FunctionalStaminodes ........................................... 368 C. StructuralSignificance of StaminodialStructures: Topology-Based Definition .
    [Show full text]
  • The Foxgloves (Digitalis) Revisited*
    Reviews The Foxgloves (Digitalis) Revisited* Author Wolfgang Kreis Affiliation Supporting information available online at Lehrstuhl Pharmazeutische Biologie, Department Biology, http://www.thieme-connect.de/products FAU Erlangen-Nürnberg, Erlangen, Germany ABSTRACT Key words Digitalis, Plantaginaceae, cardiac glycosides, plant biotech- This review provides a renewed look at the genus Digitalis. nology, biosynthesis, plant tissue culture, phylogeny Emphasis will be put on those issues that attracted the most attention or even went through paradigmatic changes since received March 17, 2017 the turn of the millennium. PubMed and Google Scholar were “ ” “ ” revised April 27, 2017 used ( Digitalis and Foxglove were the key words) to iden- accepted May 8, 2017 tify research from 2000 till 2017 containing data relevant enough to be presented here. Intriguing new results emerged Bibliography from studies related to the phylogeny and taxonomy of the DOI https://doi.org/10.1055/s-0043-111240 genus as well as to the biosynthesis and potential medicinal Published online May 23, 2017 | Planta Med 2017; 83: 962– uses of the key active compounds, the cardiac glycosides. 976 © Georg Thieme Verlag KG Stuttgart · New York | Several Eastern and Western Foxgloves were studied with re- ISSN 0032‑0943 spect to their propagation in vitro. In this context, molecular biology tools were applied and phytochemical analyses were Correspondence conducted. Structure elucidation and analytical methods, Prof. Dr. Wolfgang Kreis which have experienced less exciting progress, will not be Department Biology, FAU Erlangen-Nürnberg considered here in great detail. Staudtstr. 5, 91058 Erlangen, Germany Phone:+4991318528241,Fax:+4991318528243 [email protected] Taxus species is a prime example [4].
    [Show full text]
  • Isoplexis Canariensis Katie Noren Taxonomy
    Isoplexis canariensis Katie Noren Taxonomy Scientific Name: Isoplexis canariensis (L.) Loudon Synonyms: Callianassa canariensis (L.) Webb & Berthel, Digitalis canariensis L., Digitalis lurida Sailsb. Common Name(s): Canary Island Foxglove, Tenerife Shrub Foxglove Family: Veronicaceae ex. Scrophulariaceae Photo: http://3.bp.blogspot.com/_sfvS6qSSxkA/TAbDFc- pW_I/AAAAAAAAAwM/NIub45BYGUg/s1600/Digitalis+canariensis.JPG Geographic Distribution & Native Habitat Continent(s): Africa, Europe Country(-ies): Isolated locations in Spain, Sweden, Turkey State(s)/Provence(s)/Region(s): Native to the Canary Islands, specifically Gomera, La Palma, and Tenerife Latitudinal Range(s): 28°N(Canary Is.) to 60°N (Sweden) Altitude: Approx. 4000m above sea level General Climactic Conditions: The canary islands are very high in altitude and the climate there is influenced greatly by the stratocumulus sheet of clouds. The land is mostly a Laurel forest, or laurisilva which is a subtropical forest found in areas of high humidity and mild temperatures. Many of these tree and undergrowth species are endemisms which are not found elsewhere in the world, unless planted and cared for directly. Tendency to naturalize or become invasive: There is no evidence of its invasive nature and would likely not be invasive due to it being an endemism and it having such a distinct natural habitat. Photo: http://euromed.luomus.fi/euromed_map.php?taxon=309832&size=medium Taxonomic Description Overall Plant Habit/Description: 3-4’ high x 3’ wide, clumping and erect shrub with terminal spikes of inflorescences (similar to that of the foxglove) Root System Type: Fibrous Presence/Type of Underground Storage Organs: None Leaves: Dark green linear, lanceolate leaves, alternate on stalk Flower: Apricot to Yellow, on spikes Season of Bloom: Dependent on location: varies from late spring to early autumn.
    [Show full text]
  • Global Variation in the Thermal Tolerances of Plants
    Global variation in the thermal tolerances of plants Lesley T. Lancaster1* and Aelys M. Humphreys2,3 Proceedings of the National Academy of Sciences, USA (2020) 1 School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom. ORCID: http://orcid.org/0000-0002-3135-4835 2Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden. 3Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden. ORCID: https://orcid.org/0000-0002-2515-6509 * Corresponding author: [email protected] Significance Statement Knowledge of how thermal tolerances are distributed across major clades and biogeographic regions is important for understanding biome formation and climate change responses. However, most research has concentrated on animals, and we lack equivalent knowledge for other organisms. Here we compile global data on heat and cold tolerances of plants, showing that many, but not all, broad-scale patterns known from animals are also true for plants. Importantly, failing to account simultaneously for influences of local environments, and evolutionary and biogeographic histories, can mislead conclusions about underlying drivers. Our study unravels how and why plant cold and heat tolerances vary globally, and highlights that all plants, particularly at mid-to-high latitudes and in their non-hardened state, are vulnerable to ongoing climate change. Abstract Thermal macrophysiology is an established research field that has led to well-described patterns in the global structuring of climate adaptation and risk. However, since it was developed primarily in animals we lack information on how general these patterns are across organisms. This is alarming if we are to understand how thermal tolerances are distributed globally, improve predictions of climate change, and mitigate effects.
    [Show full text]
  • Actinidia Tetramera Rosy Crab-Apple Kiwi
    Top 50 Unusual Plants Unusual or Exotic Plants to add a unique twist to your garden List Curated by Thomas McBride From research data collected and collated at the National Botanic Garden of Wales NB: Butterflies and Moths are not studied at the NBGW so any data on nectar plants beneficial for them is taken from Butterfly Conservation 51 Map Maps depict the native area of the plant (in green) Guide to using these pages: They also show areas the plant is naturalised (in purple) Latin Binomial All maps shown Name are derived from ‘Plants of the Common World Online’; English courtesy of Kew Name Gardens Flowering Period Photograph (this is when it is good of the plant for pollinators!) in flower Plant Family Insect groups known to Growing habit favour the and mature size nectar of this of the plant plant Useful knowledge or warnings about the plant RHS AGM cultivars of this species (or a related species occasionally) i Key to these Pages Warnings Additional information on these garden plants This plant would The flowers only be suitable for and/or leaves meadow-style have a Pleasant Plant tissue is highly planting scent toxic if ingested The plant has edible parts that are Sap may cause irritation Plant is often used in commonly eaten or (Wash hands after touching traditional Herbal Remedies used in cooking or avoid touching) ii Temperature RHS Hardiness Scale Some of the plants listed in our Top 200 are not fully H1a - Above 15ºC hardy in all or some parts of the United Kingdom.
    [Show full text]
  • The Leipzig Catalogue of Plants (LCVP) ‐ an Improved Taxonomic Reference List for All Known Vascular Plants
    Freiberg et al: The Leipzig Catalogue of Plants (LCVP) ‐ An improved taxonomic reference list for all known vascular plants Supplementary file 3: Literature used to compile LCVP ordered by plant families 1 Acanthaceae AROLLA, RAJENDER GOUD; CHERUKUPALLI, NEERAJA; KHAREEDU, VENKATESWARA RAO; VUDEM, DASHAVANTHA REDDY (2015): DNA barcoding and haplotyping in different Species of Andrographis. In: Biochemical Systematics and Ecology 62, p. 91–97. DOI: 10.1016/j.bse.2015.08.001. BORG, AGNETA JULIA; MCDADE, LUCINDA A.; SCHÖNENBERGER, JÜRGEN (2008): Molecular Phylogenetics and morphological Evolution of Thunbergioideae (Acanthaceae). In: Taxon 57 (3), p. 811–822. DOI: 10.1002/tax.573012. CARINE, MARK A.; SCOTLAND, ROBERT W. (2002): Classification of Strobilanthinae (Acanthaceae): Trying to Classify the Unclassifiable? In: Taxon 51 (2), p. 259–279. DOI: 10.2307/1554926. CÔRTES, ANA LUIZA A.; DANIEL, THOMAS F.; RAPINI, ALESSANDRO (2016): Taxonomic Revision of the Genus Schaueria (Acanthaceae). In: Plant Systematics and Evolution 302 (7), p. 819–851. DOI: 10.1007/s00606-016-1301-y. CÔRTES, ANA LUIZA A.; RAPINI, ALESSANDRO; DANIEL, THOMAS F. (2015): The Tetramerium Lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc Hypothesis for South American seasonally dry Forests. In: American Journal of Botany 102 (6), p. 992–1007. DOI: 10.3732/ajb.1400558. DANIEL, THOMAS F.; MCDADE, LUCINDA A. (2014): Nelsonioideae (Lamiales: Acanthaceae): Revision of Genera and Catalog of Species. In: Aliso 32 (1), p. 1–45. DOI: 10.5642/aliso.20143201.02. EZCURRA, CECILIA (2002): El Género Justicia (Acanthaceae) en Sudamérica Austral. In: Annals of the Missouri Botanical Garden 89, p. 225–280. FISHER, AMANDA E.; MCDADE, LUCINDA A.; KIEL, CARRIE A.; KHOSHRAVESH, ROXANNE; JOHNSON, MELISSA A.; STATA, MATT ET AL.
    [Show full text]