Musical Narrative As a Tale of the Forest in Sibelius's Op
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4. Non-Heptatonic Modes
Tagg: Everyday Tonality II — 4. Non‐heptatonic modes 151 4. Non‐heptatonic modes If modes containing seven different scale degrees are heptatonic, eight‐note modes are octatonic, six‐note modes hexatonic, those with five pentatonic, while four‐ and three‐note modes are tetratonic and tritonic. Now, even though the most popular pentatonic modes are sometimes called ‘gapped’ because they contain two scale steps larger than those of the ‘church’ modes of Chapter 3 —doh ré mi sol la and la doh ré mi sol, for example— they are no more incomplete FFBk04Modes2.fm. 2014-09-14,13:57 or empty than the octatonic start to example 70 can be considered cluttered or crowded.1 Ex. 70. Vigneault/Rochon (1973): Je chante pour (octatonic opening phrase) The point is that the most widespread convention for numbering scale degrees (in Europe, the Arab world, India, Java, China, etc.) is, as we’ve seen, heptatonic. So, when expressions like ‘thirdless hexatonic’ occur in this chapter it does not imply that the mode is in any sense deficient: it’s just a matter of using a quasi‐global con‐ vention to designate a particular trait of the mode. Tritonic and tetratonic Tritonic and tetratonic tunes are common in many parts of the world, not least in traditional music from Micronesia and Poly‐ nesia, as well as among the Māori, the Inuit, the Saami and Native Americans of the great plains.2 Tetratonic modes are also found in Christian psalm and response chanting (ex. 71), while the sound of children chanting tritonic taunts can still be heard in playgrounds in many parts of the world (ex. -
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings. -
Pitch-Class Set Theory: an Overture
Chapter One Pitch-Class Set Theory: An Overture A Tale of Two Continents In the late afternoon of October 24, 1999, about one hundred people were gathered in a large rehearsal room of the Rotterdam Conservatory. They were listening to a discussion between representatives of nine European countries about the teaching of music theory and music analysis. It was the third day of the Fourth European Music Analysis Conference.1 Most participants in the conference (which included a number of music theorists from Canada and the United States) had been looking forward to this session: meetings about the various analytical traditions and pedagogical practices in Europe were rare, and a broad survey of teaching methods was lacking. Most felt a need for information from beyond their country’s borders. This need was reinforced by the mobility of music students and the resulting hodgepodge of nationalities at renowned conservatories and music schools. Moreover, the European systems of higher education were on the threshold of a harmoni- zation operation. Earlier that year, on June 19, the governments of 29 coun- tries had ratifi ed the “Bologna Declaration,” a document that envisaged a unifi ed European area for higher education. Its enforcement added to the urgency of the meeting in Rotterdam. However, this meeting would not be remembered for the unusually broad rep- resentation of nationalities or for its political timeliness. What would be remem- bered was an incident which took place shortly after the audience had been invited to join in the discussion. Somebody had raised a question about classroom analysis of twentieth-century music, a recurring topic among music theory teach- ers: whereas the music of the eighteenth and nineteenth centuries lent itself to general analytical methodologies, the extremely diverse repertoire of the twen- tieth century seemed only to invite ad hoc approaches; how could the analysis of 1. -
The Lowdown on the Octatonic Scale by Frank Horvat
The Lowdown on the Octatonic Scale By Frank Horvat Within the last year, RCM Examinations has revised its Theory Syllabus. A number of new topics have been added to the course of study. In Grade One Rudiments, scale types such as the octatonic scale are now expected to be part of a student's knowledge base. An octatonic scale includes eight pitches per octave arranged in a pattern of alternating semitones and whole tones (for example: c c# d# e f# g a a# c). Octatonic scales can start on any pitch and do not require a key signature. Although the concept of the octatonic scale might be foreign to some, one does not have to look too far for musical examples. One of the first composers to use this scale was Rimsky-Korsakov who looked to "exotic" non-Western scales as a basis for some of his melodic ideas. It was Rimsky-Korsakov who would introduce it to the next generation of Russian composers including Skryabin & Stravinsky who used it in a variety of their compositions in the early 1900s. Bartok also used the octatonic scale in a number of his works including pieces within the Mikrokosmos. Look to Nos. 101 & 109 for clear examples of usage. Later in the 20th century, Messiaen would use it in works as a basis for his tone rows, as part of his philosophy of integral serialism. In order to help your students grasp this scale, here are a few activities that you can try in your studio: • Draw the scale on manuscript paper assigning a variety of starting notes • Have them sing or play it so they can hear the uniqueness of the set of pitches • Sight read pieces from excerpts of Bartok's Mikrokosmos • Suggest that they compose or improvise a short piece based on a melody constructed from the notes of an octatonic scale. -
SMPC 2011 Attendees
Society for Music Perception and Cognition August 1114, 2011 Eastman School of Music of the University of Rochester Rochester, NY Welcome Dear SMPC 2011 attendees, It is my great pleasure to welcome you to the 2011 meeting of the Society for Music Perception and Cognition. It is a great honor for Eastman to host this important gathering of researchers and students, from all over North America and beyond. At Eastman, we take great pride in the importance that we accord to the research aspects of a musical education. We recognize that music perception/cognition is an increasingly important part of musical scholarship‐‐and it has become a priority for us, both at Eastman and at the University of Rochester as a whole. This is reflected, for example, in our stewardship of the ESM/UR/Cornell Music Cognition Symposium, in the development of several new courses devoted to aspects of music perception/cognition, in the allocation of space and resources for a music cognition lab, and in the research activities of numerous faculty and students. We are thrilled, also, that the new Eastman East Wing of the school was completed in time to serve as the SMPC 2011 conference site. We trust you will enjoy these exceptional facilities, and will take pleasure in the superb musical entertainment provided by Eastman students during your stay. Welcome to Rochester, welcome to Eastman, welcome to SMPC 2011‐‐we're delighted to have you here! Sincerely, Douglas Lowry Dean Eastman School of Music SMPC 2011 Program and abstracts, Page: 2 Acknowledgements Monetary -
Stravinsky and the Octatonic: a Reconsideration
Stravinsky and the Octatonic: A Reconsideration Dmitri Tymoczko Recent and not-so-recent studies by Richard Taruskin, Pieter lary, nor that he made explicit, conscious use of the scale in many van den Toorn, and Arthur Berger have called attention to the im- of his compositions. I will, however, argue that the octatonic scale portance of the octatonic scale in Stravinsky’s music.1 What began is less central to Stravinsky’s work than it has been made out to as a trickle has become a torrent, as claims made for the scale be. In particular, I will suggest that many instances of purported have grown more and more sweeping: Berger’s initial 1963 article octatonicism actually result from two other compositional tech- described a few salient octatonic passages in Stravinsky’s music; niques: modal use of non-diatonic minor scales, and superimposi- van den Toorn’s massive 1983 tome attempted to account for a tion of elements belonging to different scales. In Part I, I show vast swath of the composer’s work in terms of the octatonic and that the rst of these techniques links Stravinsky directly to the diatonic scales; while Taruskin’s even more massive two-volume language of French Impressionism: the young Stravinsky, like 1996 opus echoed van den Toorn’s conclusions amid an astonish- Debussy and Ravel, made frequent use of a variety of collections, ing wealth of musicological detail. These efforts aim at nothing including whole-tone, octatonic, and the melodic and harmonic less than a total reevaluation of our image of Stravinsky: the com- minor scales. -
Towards a Generative Framework for Understanding Musical Modes
Table of Contents Introduction & Key Terms................................................................................1 Chapter I. Heptatonic Modes.............................................................................3 Section 1.1: The Church Mode Set..............................................................3 Section 1.2: The Melodic Minor Mode Set...................................................10 Section 1.3: The Neapolitan Mode Set........................................................16 Section 1.4: The Harmonic Major and Minor Mode Sets...................................21 Section 1.5: The Harmonic Lydian, Harmonic Phrygian, and Double Harmonic Mode Sets..................................................................26 Chapter II. Pentatonic Modes..........................................................................29 Section 2.1: The Pentatonic Church Mode Set...............................................29 Section 2.2: The Pentatonic Melodic Minor Mode Set......................................34 Chapter III. Rhythmic Modes..........................................................................40 Section 3.1: Rhythmic Modes in a Twelve-Beat Cycle.....................................40 Section 3.2: Rhythmic Modes in a Sixteen-Beat Cycle.....................................41 Applications of the Generative Modal Framework..................................................45 Bibliography.............................................................................................46 O1 O Introduction Western -
Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl
Science Arena Publications Specialty Journal of Humanities and Cultural Science ISSN: 2520-3274 Available online at www.sciarena.com 2018, Vol, 3 (4): 9-25 Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl Amir Alavi Lecturer, Tehran Art University, Tehran, Iran. Abstract: Bela Bartok is one of the most influential composers of the twentieth century whose works have been attended by many theorists. Among the most prominent musical theorists focusing on Bartok's works, Erno Lendvai, Jonas Karpati, Burno Nettl, and Milton Babbitt can be mentioned. These scholars have offered great theories by studying hidden, melodic and harmonic relations, and formal structures in the Bartok’s composition. The breadth of Bartok's works, diversity in using pitch organization, and lack of Bartok's personal views on analyzing his works, encouraged theorists to study his work more. The reason for focusing on Bartok in this research can be attributed to his prominent state as a composer in the twentieth century, as well as the way he employs folk melodies as the main component of composing structure. By focusing on tonal aspects, pitch organization, chord relations, and harmonic structures, this study deals with melodic lines and formal principles, and then dissects the theories and indicators in accordance with the mentioned theorists’ views. Keywords: Bartok, Axis System, Pole and Counter Pole, Overtone. INTRODUCTION Bartok's musical structure was initially influenced by the folk music of Eastern Europe. However, he has not provided any explanation with regard to his music. John Vinton's paper titled “Bartok in His Own Music” can be considered as the main source of reflection of Bartok's thoughts. -
Changd75304.Pdf
Copyright by Chia-Lun Chang 2006 The Treatise Committee for Chia-Lun Chang Certifies that this is the approved version of the following treatise: FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION Committee: Elliott Antokoletz, Co-Supervisor Lita Guerra, Co-Supervisor Gregory Allen A. David Renner Rebecca A. Baltzer Reshma Babra Naidoo FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION by Chia-Lun Chang, B.A., M.M. Treatise Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Musical Arts The University of Texas at Austin December, 2006 Dedication To Mom and Dad Acknowledgements I wish to express my sincere gratitude to my academic supervisor, Professor Elliott Antokoletz, for his intelligence, unfailing energy and his inexhaustible patience. This project would not have been possible without his invaluable guidance and assistance. My deepest appreciation goes to my piano teacher, Professor Lita Guerra, whose unconditional support and encouragement gave me strength and faith to complete the treatise. Acknowledgment is gratefully made to the publisher for the use of the musical examples. Credit is given to Alexander Scriabin: Five Preludes, Op. 74 [public domain]. Piano score originally published by the Izdatel’stvo Muzyka [Music Publishing House], Moscow, 1967, reprinted 1973 by Dover Publications, Inc. Minneola, N.Y. v FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION Publication No._____________ Chia-Lun Chang, D.M.A. -
Scale Models of Acoustic Scattering Problems Including Barriers and Sound Absorption
University of Kentucky UKnowledge Theses and Dissertations--Mechanical Engineering Mechanical Engineering 2018 SCALE MODELS OF ACOUSTIC SCATTERING PROBLEMS INCLUDING BARRIERS AND SOUND ABSORPTION Nan Zhang University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0003-2707-8716 Digital Object Identifier: https://doi.org/10.13023/etd.2018.304 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Zhang, Nan, "SCALE MODELS OF ACOUSTIC SCATTERING PROBLEMS INCLUDING BARRIERS AND SOUND ABSORPTION" (2018). Theses and Dissertations--Mechanical Engineering. 119. https://uknowledge.uky.edu/me_etds/119 This Master's Thesis is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Chord-Scale Networks in the Music and Improvisations of Wayne Shorter
Gamut: Online Journal of the Music Theory Society of the Mid-Atlantic Volume 8 Issue 1 Article 7 April 2018 Chord-Scale Networks in the Music and Improvisations of Wayne Shorter Garrett Michaelsen University of Massachusetts, Lowell, [email protected] Follow this and additional works at: https://trace.tennessee.edu/gamut Recommended Citation Michaelsen, Garrett (2018) "Chord-Scale Networks in the Music and Improvisations of Wayne Shorter," Gamut: Online Journal of the Music Theory Society of the Mid-Atlantic: Vol. 8 : Iss. 1 , Article 7. Available at: https://trace.tennessee.edu/gamut/vol8/iss1/7 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Gamut: Online Journal of the Music Theory Society of the Mid-Atlantic by an authorized editor. For more information, please visit https://trace.tennessee.edu/gamut. CHORD-SCALE NETWORKS IN THE MUSIC AND IMPROVISATIONS OF WAYNE SHORTER GARRETT MICHAELSEN ayne Shorter’s tune “E.S.P.,” first recorded on Miles Davis’s 1965 album of the same Wname , presents a number of fascinating challenges to harmonic analysis. Example 1 gives the tune’s lead sheet, which shows its melody and chord changes. In the first eight-bar phrase, the harmony moves at a slow, two-bar pace, sliding between chords with roots on E, F, and E beneath a repeating fourths-based melody that contracts to an A4–F4 major third in the last two bars. Shorter’s melody quite often emphasizes diatonic and chromatic ninths, elevenths, and thirteenths against the passing harmonies, thereby underscoring the importance of those extensions to the chords. -
GLOSSARY the Following Terms and Concepts Are Studied in Analytical Techniques I and II. in General, the Items in Bold Typeset
GLOSSARY The following terms and concepts are studied in Analytical Techniques I and II. In general, the items in bold typeset are discussed in Analytical Techniques II, while the items in regular typeset are studied in Analytical Techniques I. Aggregates (in 12-tone technique) Allen Forte’s List (set-theory) Altered dominant chords Altered predominant chords Altered transition (in sonata form) Answers: real vs. tonal (in fugue) Ars Antiqua Ars Nova Augmentation (rhythmic) Augmented dominant chords Augmented-sixth chords: 3 types Augmented-sixth chords: voice leading Axis System Baroque period Basso continuo Binary form Bitonality Cadences (in Medieval and Renaissance music) Cadences (in tonal music) Cadence rhyme (in binary form) Cadential episode (in fugue) Cadenza (in classical concerto) Caesura Canon vs. imitation Cantus firmus Cantus firmus mass Centric vs. Tonal music Chaconne Change of mode Changing meter Character pieces (Romantic period) Chorale prelude Chords of addition Chords of omission Chromatic mediants: 3 types Chromatic modulation Chromatic scale Church modes Circle-of-fifths progression Closely related keys Closing (in sonata form) Coda Codetta Color (in isorhythmic technique) Combinatoriality (12-tone) Common-tone augmented chord Common-tone diminished chord Common-tone dominant chord Common-tone modulation Compound melody Compound ternary form Concertato Concerto form Concerto grosso Continuous variation Counter-exposition (in fugue) Counterpoint Counter-reformation Crab canon Cross rhythm Da capo Dance suite (Baroque