Entomology Newsletter 2009-2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mosquito Species Identification Using Convolutional Neural Networks With
www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1. -
Following the Cold
Systematic Entomology (2018), 43, 200–217 DOI: 10.1111/syen.12268 Following the cold: geographical differentiation between interglacial refugia and speciation in the arcto-alpine species complex Bombus monticola (Hymenoptera: Apidae) BAPTISTE MARTINET1 , THOMAS LECOCQ1,2, NICOLAS BRASERO1, PAOLO BIELLA3,4, KLÁRA URBANOVÁ5,6, IRENA VALTEROVÁ5, MAURIZIO CORNALBA7,JANOVE GJERSHAUG8, DENIS MICHEZ1 andPIERRE RASMONT1 1Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Mons, Belgium, 2Research Unit Animal and Functionalities of Animal Products (URAFPA), University of Lorraine-INRA, Vandoeuvre-lès-Nancy, France, 3Faculty of Science, Department of Zoology, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czech Republic, 4Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Entomology, Ceskéˇ Budejovice,ˇ Czech Republic, 5Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic, 6Faculty of Tropical AgriSciences, Department of Sustainable Technologies, Czech University of Life Sciences, Prague, Czech Republic, 7Department of Mathematics, University of Pavia, Pavia, Italy and 8Norwegian Institute for Nature Research, Trondheim, Norway Abstract. Cold-adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high-latitude and high-altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter-refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter-refugia differentiation and potential speciation among populations of one of the most common arcto-alpine bumblebee species in European mountains, Bombus monticola Smith, 1849. -
Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R. -
Abou-Shaara, Hossam I Am Assistant Lecturer at Faculty of Agriculture
Abou‐Shaara, Hossam I am assistant lecturer at Faculty of Agriculture, Department of Pest Control and Environmental Protection, Alexandria University,Damanhour Branch, Egypt. The title of my Master’s thesis is “Morphometric, Biological, Behavioral studies on some honey bee races at El‐Behera governorate.” I currently have four papers in preparation for publication and I have patented seven beekeeping inventions. I maintain my own apiary in Damanhour city and I am a member in Beekeeping association Alexandria governorate, Egypt. Dept. of Pest Control & Environmental Protection, Faculty of Agriculture, Damanhour Branch, Alexandria University, El‐Goumhoria St., PO Box 22516, Damanhour, El‐Behra Governorate, EGYPT Phone: 002‐019‐634‐9607, Fax: 002‐045‐331‐6535, Email: [email protected] Adams, Eldridge S. Dept. Ecol. and Evol. Biol., University of Connecticut, 75 N. Eagleville Rd., U‐43, Storrs, CT 06269‐3043, USA Phone: 860‐486‐5894, Fax: 860‐486‐6364, Email: [email protected] Homepage: http://hydrodictyon.eeb.uconn.edu/people/adams/ Adams, Rachelle M.M. My research interests encompass the integration of three fields, chemical ecology, behavioral ecology and evolutionary biology. Using the Megalomyrmex ant genus as a model system, I study the evolution of social parasitic behavior and colony infiltration strategies. Centre for Social Evolution, Department of Biology, University of Copenhagen Universitetsparken 15 DK‐ 2100 Copenhagen, Denmark Smithsonian Institute, PO Box 37012, MRC 188, Washington, DC, 20013‐7012, USA Phone: 202‐633‐1002, Email: [email protected] Homepage: http://www1.bio.ku.dk/english/research/oe/cse/ and http://entomology.si.edu/StaffPages/AdamsRMM.html Al‐Ghamdi, Ahmad Al Khazim Bee Research Unit, Plant Protection Department, Faculty of Science of Food and Agriculture, King Saud University, P.O. -
Young Adult Realistic Fiction Book List
Young Adult Realistic Fiction Book List Denotes new titles recently added to the list while the severity of her older sister's injuries Abuse and the urging of her younger sister, their uncle, and a friend tempt her to testify against Anderson, Laurie Halse him, her mother and other well-meaning Speak adults persuade her to claim responsibility. A traumatic event in the (Mature) (2007) summer has a devastating effect on Melinda's freshman Flinn, Alexandra year of high school. (2002) Breathing Underwater Sent to counseling for hitting his Avasthi, Swati girlfriend, Caitlin, and ordered to Split keep a journal, A teenaged boy thrown out of his 16-year-old Nick examines his controlling house by his abusive father goes behavior and anger and describes living with to live with his older brother, his abusive father. (2001) who ran away from home years earlier under similar circumstances. (Summary McCormick, Patricia from Follett Destiny, November 2010). Sold Thirteen-year-old Lakshmi Draper, Sharon leaves her poor mountain Forged by Fire home in Nepal thinking that Teenaged Gerald, who has she is to work in the city as a spent years protecting his maid only to find that she has fragile half-sister from their been sold into the sex slave trade in India and abusive father, faces the that there is no hope of escape. (2006) prospect of one final confrontation before the problem can be solved. McMurchy-Barber, Gina Free as a Bird Erskine, Kathryn Eight-year-old Ruby Jean Sharp, Quaking born with Down syndrome, is In a Pennsylvania town where anti- placed in Woodlands School in war sentiments are treated with New Westminster, British contempt and violence, Matt, a Columbia, after the death of her grandmother fourteen-year-old girl living with a Quaker who took care of her, and she learns to family, deals with the demons of her past as survive every kind of abuse before she is she battles bullies of the present, eventually placed in a program designed to help her live learning to trust in others as well as her. -
Catálogo De Las Abejas Del Género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) De Guatemala
Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Catálogo de las abejas del género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) de Guatemala Catalogue of the bees of the genus Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) in Guatemala María J. Dardón1, Carmen L. Yurrita 2 y Mabel Vásquez 3 1 Instituto de Investigaciones Químicas y Biológicas 2 Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, 3Centro de Estudios Conservacionistas, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala (USAC) [email protected], [email protected] Recibido: enero, 2016 . Aceptado: marzo, 2016 Resumen Este catálogo contiene un inventario actualizado de las especies del género Bombus que han sido citadas para Guatemala. Se presentan los datos taxonómicos, incluyendo sinonimias, de un total de 13 especies. Además, para cada especie se indica su distribución geográfica y las regiones bióticas de Guatemala en las que se ha recolectado. Este trabajo es la base para la posterior revisión del género Bombus en Guatemala. Palabras clave: Abejorros, biomas, taxonomía, Neotropical. Abstract This catalog contains an updated list of the species of the genus Bombus registered for Guatemala. Taxonomic data are presented for a total of 13 species, including synonyms and their geographical distribution, with emphasis in Guatemala. This work is the basis for the subsequent revision of the genus Bombus in Guatemala. Keywords: Bumblebees, biomes, taxonomy, Neotropical. Revista Científica| Vol. 26 No. 1 | Año 2016 9 Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Introducción Las abejas del género Bombus Latreille, 1802 se espera mayor información para determinar se encuentran distribuidas principalmente su estatus (Williams, 2016). -
Masondentinger Umn 0130E 1
The Nature of Defense: Coevolutionary Studies, Ecological Interaction, and the Evolution of 'Natural Insecticides,' 1959-1983 A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Rachel Natalie Mason Dentinger IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Mark Borrello December 2009 © Rachel Natalie Mason Dentinger 2009 Acknowledgements My first thanks must go to my advisor, Mark Borrello. Mark was hired during my first year of graduate school, and it has been my pleasure and privilege to be his first graduate student. He long granted me a measure of credit and respect that has helped me to develop confidence in myself as a scholar, while, at the same time, providing incisive criticism and invaluable suggestions that improved the quality of my work and helped me to greatly expand its scope. My committee members, Sally Gregory Kohlstedt, Susan Jones, Ken Waters, and George Weiblen all provided valuable insights into my dissertation, which will help me to further develop my own work in the future. Susan has given me useful advice on teaching and grant applications at pivotal points in my graduate career. Sally served as my advisor when I first entered graduate school and has continued as my mentor, reading nearly as much of my work as my own advisor. She never fails to be responsive, thoughtful, and generous with her attention and assistance. My fellow graduate students at Minnesota, both past and present, have been a huge source of encouragement, academic support, and fun. Even after I moved away from Minneapolis, I continued to feel a part of this lively and cohesive group of colleagues. -
Insecta: Psocodea: 'Psocoptera'
Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder. -
MOSQUITOES of the SOUTHEASTERN UNITED STATES
L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No. -
Volume 2, Chapter 12-5: Terrestrial Insects: Hemimetabola-Notoptera
Glime, J. M. 2017. Terrestrial Insects: Hemimetabola – Notoptera and Psocoptera. Chapter 12-5. In: Glime, J. M. Bryophyte Ecology. 12-5-1 Volume 2. Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-5 TERRESTRIAL INSECTS: HEMIMETABOLA – NOTOPTERA AND PSOCOPTERA TABLE OF CONTENTS NOTOPTERA .................................................................................................................................................. 12-5-2 Grylloblattodea – Ice Crawlers ................................................................................................................. 12-5-3 Grylloblattidae – Ice Crawlers ........................................................................................................... 12-5-3 Galloisiana ................................................................................................................................. 12-5-3 Grylloblatta ................................................................................................................................ 12-5-3 Grylloblattella ............................................................................................................................ 12-5-4 PSOCOPTERA – Booklice, Barklice, Barkflies .............................................................................................. 12-5-4 Summary ......................................................................................................................................................... -
Diptera: Culicidae) in RELATION to EPIZOOTIC TRANSMISSION of EASTERN EQUINE ENCEPHALITIS VIRUS in CENTRAL FLORIDA
SEASONAL CHANGES IN HOST USE AND VECTORIAL CAPACITY OF Culiseta melanura (Diptera: Culicidae) IN RELATION TO EPIZOOTIC TRANSMISSION OF EASTERN EQUINE ENCEPHALITIS VIRUS IN CENTRAL FLORIDA By RICHARD G. WEST A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Richard G. West 2 ACKNOWLEDGMENTS I would like to thank my advisor Nathan Burkett-Cadena for his invaluable guidance and instruction and Derrick Mathias and Jonathan Day for serving on my committee and sharing their expertise and helpful input. I would like to thank the following for their assistance with mosquito sampling: Carl Boohene, Jackson Mosley, Hugo Ortiz Saavedra, and Roger Johnson at Polk County Mosquito Control District; Kelly Deutsch, Rafael Melendez, and others at Orange County Mosquito Control District; and Sue Bartlett, Miranda Tressler, Hong Chen, Drake Falcon, Tia Vasconcellos, and Brandi Anderson at Volusia County Mosquito Control District. This study could not have been done without their cooperation and hard work. I would also like to thank Carolina Acevedo for help with bloodmeal analysis, Erik Blosser for help with mosquito identifications, Diana Rojas and Annsley West for helping with field collections, and to all the faculty, staff, and students at FMEL for their support and encouragement. Finally, I thank my wife Annsley for her faithful encouragement and love and for my Lord Jesus and family for their support. This research is supported by the CDC Southeast Gateway Center of Excellence and the University of Florida. 3 TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................. -
Morphology of Psocomorpha (Psocodea: 'Psocoptera')
Title MORPHOLOGY OF PSOCOMORPHA (PSOCODEA: 'PSOCOPTERA') Author(s) Yoshizawa, Kazunori Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 62, 1- Citation 44 Issue Date 2005-12 Doc URL http://hdl.handle.net/2115/10524 Type bulletin (article) File Information Yoshizawa-62.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 62: 1–44 DECEMBER 2005 MORPHOLOGY OF PSOCOMORPHA (PSOCODEA: 'PSOCOPTERA') By KAZUNORI YOSHIZAWA Abstract YOSHIZAWA, K. 2005. Morphology of Psocomorpha (Psocodea: 'Psocoptera'). Ins. matsum. n. s. 62: 1–44, 24 figs. Adult integumental morphology of the suborder Psocomorpha (Psocodea: 'Psocoptera') was examined, and homologies and transformation series of characters throughout the suborder and Psocoptera were discussed. These examinations formed the basis of the recent morphology-based cladistic analysis of the Psocomorpha (Yoshizawa, 2002, Zool. J. Linn. Soc. 136: 371–400). Author's address. Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan. E-mail. [email protected]. 1 INTRODUCTION Psocoptera (psocids, booklice or barklice) are a paraphyletic assemblage of non-parasitic members of the order Psocodea (Lyal, 1985; Yoshizawa & Johnson, 2003, 2005; Johnson et al., 2004), containing about 5500 described species (Lienhard, 2003). They are about 1 to 10 mm in length and characterized by well-developed postclypeus, long antennae, pick-like lacinia, reduced prothorax, well-developed pterothorax, etc. Phylogenetically, Psocoptera compose a monophyletic group (the order Psocodea) with parasitic lice ('Phtiraptera': biting lice and sucking lice) (Lyal, 1985; Yoshizawa & Johnson, 2003, in press; Johnson et al., 2004). The order is related to Thysanoptera (thrips) and Hemiptera (bugs, cicadas, etc.) (Yoshizawa & Saigusa, 2001, 2003, but see also Yoshizawa & Johnson, 2005).