ABC A-Subfamily Transporters: Structure, Function and Disease ⁎ Wolfgang E

Total Page:16

File Type:pdf, Size:1020Kb

ABC A-Subfamily Transporters: Structure, Function and Disease ⁎ Wolfgang E View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1762 (2006) 510–524 http://www.elsevier.com/locate/bba Review ABC A-subfamily transporters: Structure, function and disease ⁎ Wolfgang E. Kaminski a, , Armin Piehler b, Jürgen J. Wenzel c a Institute for Clinical Chemistry, Faculty for Clinical Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany b Department of Clinical Chemistry, Ulleval University Hospital, 0407 Oslo, Norway c Department of Medicine II, Johannes Gutenberg-University Mainz, 55101 Mainz, Germany Received 24 October 2005; received in revised form 30 January 2006; accepted 31 January 2006 Available online 28 February 2006 Abstract ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related “full-size” transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily. © 2006 Elsevier B.V. All rights reserved. Keywords: ABC transporter; Lipid; Atherosclerosis; Retina; Surfactant; Ichthyosis 1. Introduction human family of ABC transporters have been identified which, based on their structural relatedness, are subdivided into 7 ATP-binding cassette (ABC) transporters constitute one of families, designated ABC A–G [1]. the largest known superfamilies of proteins [1].These Functional ABC transporters show a common global evolutionary highly conserved multispan transmembrane mole- organization. So-called full-size ABC transporters are typically cules use the energy of ATP hydrolysis to translocate a broad composed of two tandemly linked functional units [3], each spectrum of molecules across the cell membrane. Substrates that consisting of an ATP binding cassette and a transmembrane are transported by ABC molecules include lipids, peptides, domain complex. Alternatively, they can form homo- or amino acids, carbohydrates, vitamins, ions, glucuronide and heterodimers which consist of two half-size transporters that glutathione conjugates, and xenobiotics [1,2]. In eukaryotes, are encoded by distinct genes [4]. Evidence has accumulated to ABC transporters are located in the plasma membrane, in the suggest that ABC transporters exert their functions as membranes of intracellular compartments such as the Golgi, membrane associated multiunit complexes. Examples include endosome, multivesicular bodies, endoplasmic reticulum, the ABC transporter ABCC8 (SUR1) which is functionally peroxisome, and in mitochondria. To date, 48 members of the associated with the K+ channel KIR6.1 and a potassium- sensitive Ca2+-channel [5,6]. Moreover, the transporter CFTR (ABCC7) binds syntaxin 1A, a member of the syntaxin family of membrane fusion regulators [7], a sodium channel [8] and the ⁎ Corresponding author. Tel.: +49 0621 383 4012; fax: +49 0621 383 3819. endocytic adaptor complex AP-2 [9]. It is thus conceivable that E-mail address: [email protected] full-size ABC transporters, as large components of membrane (W.E. Kaminski). associated multiunit complexes, are not necessarily restricted to 0925-4439/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.bbadis.2006.01.011 W.E. Kaminski et al. / Biochimica et Biophysica Acta 1762 (2006) 510–524 511 serve one defined function but are likely involved in a spectrum cluster on chromosome 17q, it has been suggested that these of biologic activities depending on the specific assembly of the five transporters represent a separate subgroup within the A- functional complex and the biologic activities of their subfamily (“ABCA6-like transporters”) [11,12]. interaction partners. 3. ABC A-subclass transporters causing inherited diseases 2. Structural and evolutionary features of human ABC A-subclass transporters In the 1990s, considerable efforts have been made to study the role of ABC transporters in multidrug resistance in the ABCA1 and ABCA2 (formerly known as ABC1 and context of tumor cell therapy. However, the bona fide biological ABC2, respectively), the prototypic members of the ABC A- functions of most known ABC transporters remained and still subfamily, were initially co-identified by Luciani et al. [10] in remain unclear. In recent years, a series of groundbreaking the mouse. Throughout the past decade, 10 additional studies has dramatically expanded our knowledge of the role of functional genes were discovered. Based on their common ABC molecules in physiology and disease and has led to the structural features, which set them apart from other ABC systematic identification of all members of the human ABC transporters, they were categorized into a distinct subgroup— transporter gene family. the ABC A-subfamily [1]. The known 12 human ABC A- Assessment of the biological role of full-size ABC trans- transporters have been denoted ABCA1–ABCA13. The porters is a difficult task because of the complex architecture of current nomenclature is inconsistent in that since no these large molecules, their strategic position between two functional human “ABCA11” gene exists (a designation that compartments that are separated by lipid bilayers and the fact has originally been erroneously assigned to a pseudogene). that they appear to operate as part of membrane bound Structurally, all ABC A-transporters are full-size transporters multifunction complexes. Most valuable insights into their that range from 1543 to 5058 amino acids (aa) in size. A physiologic functions come from loss of function scenarios as synopsis of their biological features is shown in Table 1. With they occur in human monogenetic diseases and genetically the exception of ABCR, which is selectively expressed in the modified null mutant mice. To date, loss of function mutations retina, and ABCA13, whose expression appears to be limited in 14 ABC transporters have been causatively linked to to a small number of organs, ABC A-transporters have broad Mendelian disorders (Table 3). Interestingly, among human tissue-specificity. ABC transporters outside the A-subfamily a striking tropism Pairwise comparison of the amino acid sequences of all can be observed for diseases that manifest with defective known 12 human ABC A-subfamily members reveals exocrine/endocrine function in the liver–pancreas system. homologies ranging from 28% (ABCA8/ABCA12) to 72% These include disorders associated with dysfunctional bile (ABCA8/ABCA9) (Table 2). Phylogenetic analysis suggests secretion (progressive familial intrahepatic cholestasis types 2 that all ABC A-subclass genes have evolved from a and 3, and Dubin–Johnson syndrome caused by defective primordial ancestor gene and were subsequently dispersed ABCB4, ABCB11, and ABCC2, respectively), cystic fibrosis across the genome (Fig. 1) [1]. Of note, the transporters (CFTR/ABCC7) and familial hyperinsulinism (ABCC8) [13– ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10 share 15]. Moreover, the ABC C-subfamily transporter ABCC6, strikingly high overall amino acid sequence homologies but mutations of which mainly cause a skin phenotype known as differ significantly from other ABC A-subfamily members. pseudoxanthoma elasticum, is strongly expressed in the liver Based on this and the fact that their genes form a compact and calcifications in the pancreas have also been reported [16]. Table 1 Biological features of ABC A-transporters Gene GenBank Chrom. Gene Exons Alt. spliced Cholesterol Amino Molecular accession no. localization size (kb) mRNAs responsiveness acids weight (kDa) ABCA1 NM_005502 9q31.1 147 50 nr + 2261 254 ABCA2 NM_001606 9q34.3 21 48 nr + 2436 270 ABCA3 NM_001089 16p13.3 65 33 nr ? 1704 191 ABCA4 NM_000350 1p22.1 128 50 nr − 2273 256 ABCA5 NM_018672 17q24.3 69 38 nr ? 1642 187 ABCA6 NM_080284 17q24.2–3 63 39 1 + 1617 184 ABCA7 NM_019112 19p13.3 24 46 2 + 2146 235 ABCA8 NM_007168 17q24.2 88 38 nr ? 1581 179 ABCA9 NM_080283 17q24.2 86 39 3 + 1624 184 ABCA10 NM_080282 17q24.3 97 40 4 + 1543 176 ABCA12 NM_173076 2q35 207 53 2 ? 2595 293 ABCA13 NM_152701 7p12.3 449 60 5 ? 5058 576 Accession numbers refer to the NCBI GenBank, chromsomal localizations to the UCSC Genome browser (http://genome.ucsc.edu). Gene sizes and exon numbers were determined on the basis of the respective complete cDNAs using the UCSC Genome browser (NCBI/UCSC Build 35, May 2004) and confirmed by BLAT and SIM4 alignments, respectively. Amino acid numbers and molecular weights were calculated
Recommended publications
  • Targeted Sequence Capture and High-Throughput Sequencing in the Molecular Diagnosis of Ichthyosis and Other Skin Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE providedCA by Elsevier Scott - Publisheret al. Connector Sequence Capture in Molecular Diagnosis of Skin Diseases Immunohistochemical staining indi- 1The Wellcome Trust Center for Human cause of Olmsted syndrome. Am J Hum cated that MBTPS2 is mainly expressed Genetics, Nuffield Department of Clinical Genet 90:558–64 Medicine, University of Oxford, Oxford, UK; Mevorah B, Goldberg I, Sprecher E et al. (2005) in the upper granular layer in normal 2 Centre for Cutaneous Research, The Blizard Olmsted syndrome: mutilating palmo- skin, as previously shown (Aten et al., Institute, Barts & The London School of plantar keratoderma with periorificial 2010); however, in OS skin, MBTPS2 Medicine and Dentistry, Queen Mary keratotic plaques. J Am Acad Dermatol 53: University of London, London, UK; S266–72 was expressed throughout the epi- 3 dermis (Figure 2c). There was no Department of Dermatology, Jundishapur Naiki M, Mizuno S, Yamada K et al. (2012) University of Medical Sciences, Ahvaz, Iran; MBTPS2 mutation causes BRESEK/BRESHECK 4 apparent difference in MBTPS2 locali- Genetic Department, Kerman University of syndrome. Am J Med Genet A 158A:97–102 zation in the skin of a KFSD patient with 5 Medical Sciences, Kerman, Iran and Darwin Oeffner F, Fischer G, Happle R et al. (2009) IFAP the p.N508S mutation (Aten et al., Building, University College London Genetics syndrome is caused by deficiency in MBTPS2, 2010). It is unclear why this is but it Institute, University College London, London, an intramembrane zinc metalloprotease essen- may be because of differences in UK tial for cholesterol homeostasis and ER stress E-mail: [email protected] response.
    [Show full text]
  • The Translational Expression of ABCA2 and ABCA3 Is a Strong Prognostic Biomarker for Multidrug Resistance in Pediatric Acute Lymphoblastic Leukemia
    Journal name: OncoTargets and Therapy Article Designation: Original Research Year: 2017 Volume: 10 OncoTargets and Therapy Dovepress Running head verso: Aberuyi et al Running head recto: ABCA2/A3 transporters and multidrug-resistant ALL open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S140488 Open Access Full Text Article ORIGINAL RESEARCH The translational expression of ABCA2 and ABCA3 is a strong prognostic biomarker for multidrug resistance in pediatric acute lymphoblastic leukemia Narges Aberuyi1 Purpose: The aim of this work was to study the correlation between the expressions of the Soheila Rahgozar1 ABCA2 and ABCA3 genes at the mRNA and protein levels in children with acute lymphoblastic Zohreh Khosravi Dehaghi1 leukemia (ALL) and the effects of this association on multidrug resistance (MDR). Alireza Moafi2 Materials and methods: Sixty-nine children with de novo ALL and 25 controls were Andrea Masotti3,* enrolled in the study. Mononuclear cells were isolated from the bone marrow. The mRNA Alessandro Paolini3,* levels of ABCA2 and ABCA3 were measured by real-time polymerase chain reaction (PCR). Samples with high mRNA levels were assessed for respective protein levels by Western blot- 1 Department of Biology, Faculty ting. Following the first year of treatment, persistent monoclonality of T-cell gamma receptors of Science, University of Isfahan, 2Department of Pediatric- or immunoglobulin H (IgH) gene rearrangement was assessed and considered as the MDR. Hematology-Oncology, Sayed-ol- The tertiary structure of ABCA2 was predicted using Phyre2 and I-TASSER web systems Shohada Hospital, Isfahan University and compared to that of ABCA3, which has been previously reported.
    [Show full text]
  • EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies
    Focusing on Personalised Medicine EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies Extended carrier screening is an important tool for prospective parents to help them determine their risk of having a child affected with a heritable disease. In many cases, parents aren’t aware they are carriers and have no family history due to the rarity of some diseases in the general population. What is covered by the screening? Genomics For Life offers a comprehensive Extended Carrier Screening test, providing prospective parents with the information they require when planning their pregnancy. Extended Carrier Screening has been shown to detect carriers who would not have been considered candidates for traditional risk- based screening. With a simple mouth swab collection, we are able to test for over 419 genes associated with inherited diseases, including Fragile X Syndrome, Cystic Fibrosis and Spinal Muscular Atrophy. The assay has been developed in conjunction with clinical molecular geneticists, and includes genes listed in the NIH Genetic Test Registry. For a list of genes and disorders covered, please see the reverse of this brochure. If your gene of interest is not covered on our Extended Carrier Screening panel, please contact our friendly team to assist you in finding a gene test panel that suits your needs. Why have Extended Carrier Screening? Extended Carrier Screening prior to pregnancy enables couples to learn about their reproductive risk and consider a complete range of reproductive options, including whether or not to become pregnant, whether to use advanced reproductive technologies, such as preimplantation genetic diagnosis, or to use donor gametes.
    [Show full text]
  • Examining the Role of ABC Lipid Transporters in Pulmonary Lipid Homeostasis and Inflammation Amanda B
    Chai et al. Respiratory Research (2017) 18:41 DOI 10.1186/s12931-017-0526-9 REVIEW Open Access Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation Amanda B. Chai1, Alaina J. Ammit2,3* and Ingrid C. Gelissen1 Abstract Respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD) are characterised by excessive and persistent inflammation. Current treatments are often inadequate for symptom and disease control, and hence new therapies are warranted. Recent emerging research has implicated dyslipidaemia in pulmonary inflammation. Three ATP-binding cassette (ABC) transporters are found in the mammalian lung – ABCA1, ABCG1 and ABCA3 – that are involved in movement of cholesterol and phospholipids from lung cells. The aim of this review is to corroborate the current evidence for the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Here, we summarise results from murine knockout studies, human diseases associated with ABC transporter mutations, and in vitro studies. Disruption to ABC transporter activity results in lipid accumulation and elevated levels of inflammatory cytokines in lung tissue. Furthermore, these ABC-knockout mice exhibit signs of respiratory distress. ABC lipid transporters appear to have a crucial and protective role in the lung. However, our knowledge of the underlying molecular mechanisms for these benefits requires further attention. Understanding the relationship between cholesterol and inflammation in the lung, and the role that ABC transporters play in this may illuminate new pathways to target for the treatment of inflammatory lung diseases. Keywords: ABC transporters, ABCA1, ABCG1, ABCA3, Lipids, Surfactant, Pulmonary inflammation Background lung tissue of patients with COPD [5].
    [Show full text]
  • Genotyping of Breech Flystrike Resource – Update
    Project No: ON-00515 Contract No: PO4500010753 AWI Project Manager: Bridget Peachey Contractor Name: CSIRO Agriculture and Food Prepared by: Dr Sonja Dominik Publication Date: July 2019 Genotyping of breech flystrike resource – update Published by Australian Wool Innovation Limited, Level 6, 68 Harrington Street, THE ROCKS, NSW, 2000 This publication should only be used as a general aid and is not a substitute for specific advice. To the extent permitted by law, we exclude all liability for loss or damage arising from the use of the information in this publication. AWI invests in research, development, innovation and marketing activities along the global supply chain for Australian wool. AWI is grateful for its funding, which is primarily provided by Australian woolgrowers through a wool levy and by the Australian Government which provides a matching contribution for eligible R&D activities © 2019 Australian Wool Innovation Ltd. All rights reserved. Contents Executive Summary .................................................................................................................... 3 1 Introduction/Hypothesis .................................................................................................... 5 2 Literature Review ............................................................................................................... 6 3 Project Objectives .............................................................................................................. 8 4 Success in Achieving Objectives ........................................................................................
    [Show full text]
  • Alternating Hypoglycemia and Hyperglycemia in a Toddler with a Homozygous P.R1419H ABCC8 Mutation: an Unusual Clinical Picture
    J Pediatr Endocr Met 2015; 28(3-4): 345–351 Patient report Open Access Shira Harel, Ana S.A. Cohen, Khalid Hussain, Sarah E. Flanagan, Kamilla Schlade-Bartusiak, Millan Patel, Jaques Courtade, Jenny B.W. Li, Clara Van Karnebeek, Harley Kurata, Sian Ellard, Jean-Pierre Chanoine and William T. Gibson* Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture Abstract Results: A 16-month-old girl of consanguineous descent manifested hypoglycemia. She had dysregulation of Background: Inheritance of two pathogenic ABCC8 alleles insulin secretion, with postprandial hyperglycemia fol- typically causes severe congenital hyperinsulinism. We lowed by hypoglycemia. Microarray revealed homozygo- describe a girl and her father, both homozygous for the sity for the regions encompassing KCNJ11 and ABCC8. Her same ABCC8 mutation, who presented with unusual father had developed diabetes at 28 years of age. Sequenc- phenotypes. ing of ABCC8 identified a homozygous missense mutation, Methods: Single nucleotide polymorphism microarray p.R1419H, in both individuals. Functional studies showed and Sanger sequencing were performed. Western blot, absence of working KATP channels. rubidium efflux, and patch clamp recordings interrogated Conclusion: This is the first description of a homozygous the expression and activity of the mutant protein. p.R1419H mutation. Our findings highlight that homozy- gous loss-of-function mutations of ABCC8 do not neces- sarily translate into early-onset severe hyperinsulinemia. *Corresponding author: William T. Gibson, Child and Family Research Institute, Department of Medical Genetics, British Keywords: ABCC8; diabetes; hyperglycemia; hyperinsu- Columbia Children’s Hospital, 950 West 28th Avenue, Vancouver, linism; hypoglycemia. BC, V5Z 4H4, Canada, Phone: +1-604-875-2000 ext.
    [Show full text]
  • Genome-Wide Analysis of ATP-Binding
    Tian et al. BMC Genomics (2017) 18:330 DOI 10.1186/s12864-017-3706-6 RESEARCH ARTICLE Open Access Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci Lixia Tian1, Tianxue Song2, Rongjun He1, Yang Zeng1, Wen Xie1, Qingjun Wu1, Shaoli Wang1, Xuguo Zhou3* and Youjun Zhang1* Abstract Background: ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. Results: A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r =0.684,p <0.01). Conclusions: It is the first genome-wide analysis of the entire repertoire of ABC transporters in B.
    [Show full text]
  • Molecular Characterization and Structural Implications of 25 New ABCB4 Mutations in Progressive Familial Intrahepatic Cholestasis Type 3 (PFIC3)
    European Journal of Human Genetics (2007) 15, 1230–1238 & 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00 www.nature.com/ejhg ARTICLE Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3) Dario Degiorgio1, Carla Colombo2, Manuela Seia1, Luigi Porcaro1, Lucy Costantino1, Laura Zazzeron2, Domenico Bordo3 and Domenico A Coviello*,1 1Laboratorio di Genetica Medica, Fondazione IRCCS, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy; 2Centro Fibrosi Cistica, Universita` degli Studi di Milano, Fondazione IRCCS, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy; 3Bioinformatica e Proteomica Strutturale, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy Progressive familial intrahepatic cholestasis type 3 (PFIC3) is an autosomal-recessive disorder due to mutations in the ATP-binding cassette, subfamily B, member 4 gene (ABCB4). ABCB4 is the liver-specific membrane transporter of phosphatidylcholine, a major and exclusive component of mammalian bile. The disease is characterized by early onset of cholestasis with high serum c-glutamyltranspeptidase activity, which progresses into cirrhosis and liver failure before adulthood. Presently, about 20 distinct ABCB4 mutations associated to PFIC3 have been described. We report the molecular characterization of 68 PFIC3 index cases enrolled in a multicenter study, which represents the largest cohort of PFIC3 patients screened for ABCB4 mutations to date. We observed 31 mutated ABCB4 alleles in 18 index cases with 29 distinct mutations, 25 of which are novel. Despite the lack of structural information on the ABCB4 protein, the elucidation of the three-dimensional structure of bacterial homolog allows the three-dimensional model of ABCB4 to be built by homology modeling and the position of the mutated amino-acids in the protein tertiary structure to be located.
    [Show full text]
  • Datasheet: MCA2682A647 Product Details
    Datasheet: MCA2682A647 Description: RAT ANTI MOUSE ABCA2:Alexa Fluor® 647 Specificity: ABCA2 Other names: ATP BINDING CASSETTE 2 Format: ALEXA FLUOR® 647 Product Type: Monoclonal Antibody Clone: 9A2-51.3 Isotype: IgG2a Quantity: 100 TESTS/1ml Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry (1) Neat - 1/10 Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. (1)Membrane permeabilisation is required for this application. Bio-Rad recommends the use of Leucoperm™ (Product Code BUF09) for this purpose. Target Species Mouse Product Form Purified IgG conjugated to Alexa Fluor® 647- liquid Max Ex/Em Fluorophore Excitation Max (nm) Emission Max (nm) Alexa Fluor®647 650 665 Preparation Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin Approx. Protein IgG concentration 0.05mg/ml Concentrations Immunogen ABCA2 transfected HeLa cells. External Database UniProt: Links Page 1 of 3 P41234 Related reagents Entrez Gene: 11305 Abca2 Related reagents Synonyms Abc2 Specificity Rat anti Mouse ABCA2 antibody, clone 9A2-51.3 recognizes murine adenosine triphosphate (ATP) binding cassette transporter 2 (ABCA2).
    [Show full text]
  • 5' Untranslated Region Elements Show High Abundance and Great
    International Journal of Molecular Sciences Article 0 5 Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes Pavel Dvorak 1,2,* , Viktor Hlavac 2,3 and Pavel Soucek 2,3 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; [email protected] (V.H.); [email protected] (P.S.) 3 Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-377593263 Received: 7 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 50 untranslated regions (50UTR) known to have the potential to regulate translation, such as the length of 50UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 50UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s.
    [Show full text]
  • Molecular Structure of a Novel Cholesterol-Responsive a Subclass ABC Transporter, ABCA9
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Regensburg Publication Server BBRC Biochemical and Biophysical Research Communications 295 (2002) 408–416 www.academicpress.com Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9 Armin Piehler,1 Wolfgang E. Kaminski,1 Juurgen€ J. Wenzel, Thomas Langmann, and Gerd Schmitz* Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93042, Regensburg, Germany Received 25 May 2002 Abstract We recently identified a novel ABC A subclass transporter, ABCA6, in human macrophages. Here, we report the molecular cloning of an additional ABC A subfamily transporter from macrophages denoted ABCA9. The identified coding sequence is 4.9 kb in size and codes for a 1624 amino acid protein product. In accordance with the proposed nomenclature, the novel transporter was designated ABCA9. The putative full-length ABC transporter polypeptide consists of two transmembrane domains and two nu- cleotide binding folds and thus conforms to the group of full-size ABC transporters. We identified alternative ABCA9 mRNA variants in human macrophages that predict the existence of three truncated forms of the novel transporter. Among the human ABC A subfamily transporters, ABCA9 exhibits the highest amino acid sequence homology with ABCA8 (72%) and ABCA6 (60%), respectively. The striking amino acid sequence similarity between these transporter molecules supports the notion that they represent an evolutionary more recently emerged subgroup within the family of ABC A transporters, which we refer to as ‘‘ABCA6-like transporters.’’ ABCA9 mRNA is ubiquitously expressed with the highest mRNA levels in heart, brain, and fetal tissues.
    [Show full text]
  • ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT
    [Show full text]