Estimation of the Flash Points of Saturated and Unsaturated Hydrocarbons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale
Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale Dhrubajyoti D. Dasa,1, Peter St. Johnb,1, Charles S. McEnallya,∗, Seonah Kimb, Lisa D. Pfefferlea aYale University, Department of Chemical and Environmental Engineering, New Haven CT 06520 bNational Renewable Energy Laboratory, Golden CO 80401 Abstract Soot from internal combustion engines negatively affects health and climate. Soot emissions might be reduced through the expanded usage of appropriate biomass-derived fuels. Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, making an accurate measurement or prediction of their sooting tendency difficult. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveraging the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. -
Analysis of Trace Hydrocarbon Impurities in 1,3-Butadiene Using Optimized Rt®-Alumina BOND/MAPD PLOT Columns by Rick Morehead, Jan Pijpelink, Jaap De Zeeuw, Tom Vezza
Petroleum & Petrochemical Applications Analysis of Trace Hydrocarbon Impurities in 1,3-Butadiene Using Optimized Rt®-Alumina BOND/MAPD PLOT Columns By Rick Morehead, Jan Pijpelink, Jaap de Zeeuw, Tom Vezza Abstract Identifying and quantifying trace impurities in 1,3-butadiene is critical in producing high quality synthetic rubber products. Stan- dard analytical methods employ alumina PLOT columns which yield good resolution for low molecular weight hydrocarbons, but suffer from irreproducibility and poor sensitivity for polar hydrocarbons. In this study, Rt®-Alumina BOND/MAPD PLOT columns were used to separate both common light polar contaminants, including methyl acetylene and propadiene, as well as 4-vinylcy- clohexene, which is a high molecular weight impurity that normally requires a second test on an alternative column. By using an extended temperature program that employs the full thermal range of the column, 4-vinylcyclohexene, as well as all of the typical low molecular weight impurities in 1,3-butadiene, can be analyzed in a single test. Introduction 1,3-butadiene is typically isolated from products of the naphtha steam cracking process. Prior to purification, 1,3-butadiene can be contaminated with significant amounts of isobutene as well as other C4 isomers. In addition to removing these C4 isomeric contaminants during purification, it is also important that 1,3-butadiene be free of propadiene and methyl acetylene, which can interfere with catalytic polymerization. Alumina PLOT columns are the most commonly used GC column for this application, but the determination of polar hydrocarbon impurities at trace levels can be quite challenging and is highly dependent on the deactiva- tion of the alumina surface. -
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
Cyclobutene Photochemistry. Steric Effects on the Photochemical Ring Opening of Alkylcyclobutenes
1688 J. Am. Chem. SOC.1995,117, 1688-1694 Cyclobutene Photochemistry. Steric Effects on the Photochemical Ring Opening of Alkylcyclobutenes William J. Leigh* and J. Albert0 Postigo Contribution ffom the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada US4Ml Received August 19, 1994@ Abstract: Quantum yields for photochemical ring opening and cycloreversion in hydrocarbon solution have been determined for the direct photolysis (214 nm) of six 1,2-dimethylcyclobutenederivatives which contain methyl groups at C3 and C4 in numbers varying from zero to four. As the hydrogens on C& of the parent compound (1,2- dimethylcyclobutene)are replaced with increasing numbers of methyl groups, the total quantum yield for ring opening increases to a maximum of -0.3 and then decreases with further methyl substitution. The quantum yields for ring opening (&tal) of hexamethylcyclobutene and 1,2-dimethylcyclobuteneare nearly the same, and the lowest in the series. The maximum occurs with trans- 1,2,3,4-tetramethylcyclobutene;q5tod for the cis-isomer is significantly lower, but both yield an approximate 1:l mixture of formally allowed and forbidden diene isomers. A similar trend is observed in the relative quantum yields for ring opening and cycloreversion throughout the series. The results are interpreted in terms of a combination of bond strength and steric effects on the efficiency of the ring-opening process. Increasing methyl substitution causes an increase in @total through the first three members of the series owing to progressive weakening of the C3-C4 bond. Compounds containing cis-dimethyl substitution exhibit substantially reduced quantum yields for ring opening, relative to what would be expected based on bond strength effects alone. -
Mechanistic Study of Methylbenzene Dealkylation in Methanol-To-Olefins
Journal of Catalysis 369 (2019) 86–94 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34 ⇑ Andrew Hwang, Blake A. Johnson, Aditya Bhan Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA article info abstract Article history: Methylbenzenes entrained within the cavities of silicoaluminophosphate zeotype HSAPO-34 react with Received 14 June 2018 methanol in H+-mediated dealkylation to give ethylene and propylene in methanol-to-olefins catalysis. Revised 1 August 2018 Methylbenzenes dealkylation on solid acids is proposed to occur either via the side-chain mechanism, Accepted 14 October 2018 where an exocyclic C@C undergoes successive methylation prior to CAC cleavage for olefin elimination, or the paring mechanism, where ring contraction to a bicyclohexenyl cation precedes CAC cleavage for olefin elimination. Distinct dealkylation mechanisms prescribe distinct combinations of C atoms—from Keywords: aromatic methyl, aromatic ring, and methanol/dimethyl ether—to comprise the olefin product. Site- Methanol-to-olefins specific isotope tracing that distinguishes between isotope labels in aromatic methyl and aromatic ring Methylbenzenes dealkylation Isotope tracing positions for each methylbenzene shows that tetramethylbenzene gives ethylene via the side-chain Site-specific mechanism and penta- and hexamethylbenzene give propylene via the paring mechanism. The ratio of Quantitative 13C NMR propylene selectivity to ethylene selectivity increases in methanol reactions on HSAPO-34 entrained with HSAPO-34 a distribution of methylbenzenes deliberately manipulated towards increasing fractions of penta- and Methylbenzene flash chromatography hexamethylbenzene, corroborating the conclusion that aromatic precursors and dealkylation mecha- nisms for ethylene diverge from those for propylene. -
Cyclobutene Photochemistry. Identification of the Excited States Responsible for the Ring-Opening and Cycloreversion Reactions of Alkylcyclobutenes
J. Am. Chem. SOC.1991, 113,4993-4999 4993 Cyclobutene Photochemistry. Identification of the Excited States Responsible for the Ring-Opening and Cycloreversion Reactions of Alkylcyclobutenes W. J. Leigh,*?" K. Zheng,= N. Nguyen, N. H. Werstiuk, and J. Ma" Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada US4Ml. Received November 28, 1990. Revised Manuscript Received March 7, 1991 Abstract: Two substituted bicyclic cyclobutene derivatives-7-methyl- and 7-(trifluoromethyl)bicyclo[4.2.0]oct-7-enehave been prepared. Gas- and solution-phase UV absorption and He1 UV photoelectron spectra have been recorded for the two compounds as well as for the parent hydrocarbon bicyclo[4.2.0]oct-7-ene. The gas-phase spectra suggest that the a,R(3s) state is the lowest energy state in bicyclo[4.2.0]octene and the 7-methyl derivative but is raised to higher energies than the *,A* state in the 7-trifluoromethylderivative. Direct photolysis of the three compounds in hydrocarbon solution with monochromatic far-UV (1 93 and 214 nm) light leads to competitive ring opening to the corresponding cis,cis- and cis,trans-l,3-cyclooctadiene derivatives, as well as fragmentation to cyclohexene and alkyne in all three cases. Product quantum yields (193-nm excitation) have been measured for both substituted derivatives relative to those for the parent compound. The quantum yields of fragmentation products are highest for the methyl- and unsubstituted compounds, suggesting that these products arise from a Rydberg-like excited state. In contrast, ring opening is most efficient for the trifluoromethyl-substituted compound, although the diene distributions obtained from the reaction do not vary throughout the series. -
Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis Of
The Astrophysical Journal, 889:3 (26pp), 2020 January 20 https://doi.org/10.3847/1538-4357/ab616c © 2020. The American Astronomical Society. All rights reserved. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Acetylene (C2H2) and D2-acetylene (C2D2) Ices Exposed to Ionizing Radiation via Ultraviolet–Visible Spectroscopy, Infrared Spectroscopy, and Reflectron Time-of-flight Mass Spectrometry Matthew J. Abplanalp1,2 and Ralf I. Kaiser1,2 1 W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA 2 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2019 October 4; revised 2019 December 7; accepted 2019 December 10; published 2020 January 20 Abstract The processing of the simple hydrocarbon ice, acetylene (C2H2/C2D2), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles penetrating solid matter, was carried out in an ultrahigh vacuum surface apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible spectroscopy and, during temperature programmed desorption, via a quadrupole mass spectrometer with an electron impact ionization source (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing single-photon photoionization (SPI-ReTOF-MS) along with resonance-enhanced multiphoton photoionization (REMPI-ReTOF-MS). The confirmation of previous in situ studies of ethylene ice irradiation -
First Principles Prediction of Thermodynamic Properties
2 First Principles Prediction of Thermodynamic Properties Hélio F. Dos Santos and Wagner B. De Almeida NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, ICE Universidade Federal de Juiz de Fora (UFJF), Campus Universitário Martelos, Juiz de Fora LQC-MM: Laboratório de Química Computacional e Modelagem Molecular Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG) Campus Universitário, Pampulha, Belo Horizonte Brazil 1. Introduction The determination of the molecular structure is undoubtedly an important issue in chemistry. The knowledge of the tridimensional structure allows the understanding and prediction of the chemical-physics properties and the potential applications of the resulting material. Nevertheless, even for a pure substance, the structure and measured properties reflect the behavior of many distinct geometries (conformers) averaged by the Boltzmann distribution. In general, for flexible molecules, several conformers can be found and the analysis of the physical and chemical properties of these isomers is known as conformational analysis (Eliel, 1965). In most of the cases, the conformational processes are associated with small rotational barriers around single bonds, and this fact often leads to mixtures, in which many conformations may exist in equilibrium (Franklin & Feltkamp, 1965). Therefore, the determination of temperature-dependent conformational population is very much welcomed in conformational analysis studies carried out by both experimentalists and theoreticians. -
Next Generation PLOT Alumina Technology for Accurate Measurement of Trace Polar Hydrocarbons in Hydrocarbon Streams
Next generation PLOT alumina technology for accurate measurement of trace polar hydrocarbons in hydrocarbon streams Jaap de Zeeuw, Tom Vezza, Bill Bromps, Rick Morehead and Gary Stidsen Restek Corporation, Bellefonte, USA 1 Next generation PLOT alumina technology for accurate measurement of trace polar hydrocarbons in hydrocarbon streams Jaap de Zeeuw, Tom Vezza, Bill Bromps, Rick More head and Gary Stidsen Restek Corporation Summary In light hydrocarbon analysis, the separation and detection of traces of polar hydrocarbons like acetylene, propadiene and methyl acetylene is very important. Using commercial alumina columns with KCl or Na2SO4 deactivation, often results in low response of polar hydrocarbons. Additionally, challenges are observed in response-in time stability. Solutions have been proposed to maximize response for components like methyl acetylene and propadiene, using alumina columns that were specially deactivated. Operating such columns showed still several challenges: Due to different deactivations, the retention and loadability of such alumina columns has been drastically reduced. A new Alumina deactivation technology was developed that combined the high response for polar hydrocarbon with maintaining the loadability. This allows the high response for components like methyl acetylene, acetylene and propadiene, also to be used for impurity analysis as well as TCD type applications. Such columns also showed excellent stability of response in time, which was superior then existing solutions. Additionally, it was observed that such alumina columns could be used up to 250 C, extending the Tmax by 50C. This allows higher hydrocarbon elution, faster stabilization and also widens application scope of any GC where multiple columns are used. In this poster the data is presented showing the improvements made in this important application field. -
Comparing Models for Measuring Ring Strain of Common Cycloalkanes
The Corinthian Volume 6 Article 4 2004 Comparing Models for Measuring Ring Strain of Common Cycloalkanes Brad A. Hobbs Georgia College Follow this and additional works at: https://kb.gcsu.edu/thecorinthian Part of the Chemistry Commons Recommended Citation Hobbs, Brad A. (2004) "Comparing Models for Measuring Ring Strain of Common Cycloalkanes," The Corinthian: Vol. 6 , Article 4. Available at: https://kb.gcsu.edu/thecorinthian/vol6/iss1/4 This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. Campring Models for Measuring Ring Strain of Common Cycloalkanes Comparing Models for Measuring R..ing Strain of Common Cycloalkanes Brad A. Hobbs Dr. Kenneth C. McGill Chemistry Major Faculty Sponsor Introduction The number of carbon atoms bonded in the ring of a cycloalkane has a large effect on its energy. A molecule's energy has a vast impact on its stability. Determining the most stable form of a molecule is a usefol technique in the world of chemistry. One of the major factors that influ ence the energy (stability) of cycloalkanes is the molecule's ring strain. Ring strain is normally viewed as being directly proportional to the insta bility of a molecule. It is defined as a type of potential energy within the cyclic molecule, and is determined by the level of "strain" between the bonds of cycloalkanes. For example, propane has tl1e highest ring strain of all cycloalkanes. Each of propane's carbon atoms is sp3-hybridized. -
Text Related to Segment 5.02 ©2002 Claude E. Wintner from the Previous Segment We Have the Value of the Heat of Combustion Of
Text Related to Segment 5.02 ©2002 Claude E. Wintner From the previous segment we have the value of the heat of combustion of an "unstrained" methylene unit as -157.4 kcal/mole. On this basis one would predict that combustion of "unstrained" cyclopropane should liberate 3 X 157.4 = 472.2 kcal/mole; however, when cyclopropane is burned, a value of 499.8 kcal/mole is measured for the actual heat of combustion. The difference of 27.6 kcal/mole is interpreted as representing the higher internal energy ("strain energy") of real cyclopropane as compared to a postulated strain-free "model." ("Model" in this usage speaks of a proposal, or postulate.) These facts are graphed conveniently on an energy diagram as follows: "Strain Energy" represents the error units: kcal/mole not to scale in the "strain-free model" real cyclopropane + 4.5 O2 27.6 "strain-free model" of cyclopropane 499.8 observed heat of combustion + 4.5 O2 472.2 3CO2 + 3H2O heat of combustion predicted for "strain-free model" Note that this estimate of the strain energy in cyclopropane amounts to 9.2 kcal/mole of strain per methylene group (dividing 27.6 by 3, because of the three carbon atoms). Comparable values in kcal/mole for other small and medium rings are given in the following table. As one might expect, in general the strain decreases as the ring is enlarged. units: kcal/mole n Total Strain Strain per CH2 3 27.6 9.2 (CH2)n 4 26.3 6.6 5 6.2 1.2 6 0.1 0.0 ! 7 6.2 0.9 8 9.7 1.2 9 12.6 1.4 10 12.4 1.2 12 4.1 0.3 15 1.9 0.1 Without entering into a discussion of the relevant bonding concepts here, and instead relying on geometry alone, interpretation of the source of the strain energy in cyclopropane and cyclobutane is to some extent self-evident. -
Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules
Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules Cite as: Journal of Physical and Chemical Reference Data 13, 695 (1984); https://doi.org/10.1063/1.555719 Published Online: 15 October 2009 Sharon G. Lias, Joel F. Liebman, and Rhoda D. Levin ARTICLES YOU MAY BE INTERESTED IN Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update Journal of Physical and Chemical Reference Data 27, 413 (1998); https:// doi.org/10.1063/1.556018 Density-functional thermochemistry. III. The role of exact exchange The Journal of Chemical Physics 98, 5648 (1993); https://doi.org/10.1063/1.464913 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu The Journal of Chemical Physics 132, 154104 (2010); https://doi.org/10.1063/1.3382344 Journal of Physical and Chemical Reference Data 13, 695 (1984); https://doi.org/10.1063/1.555719 13, 695 © 1984 American Institute of Physics for the National Institute of Standards and Technology. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules Sharon G. Lias Center for Chemical Physics, National Bureau of Standards, Gaithersburg, MD 20899 Joel F. Liebman Department of Chemistry, University of Maryland Baltimore County, Catonsville, MD 21228 and Rhoda D. Levin Center for Chemical Physics. National Bureau of Standards, Gaithersburg, MD 20899 The available data on gas phase basicities and proton affinities of molecules are compiled and evaluated. Tables giving the molecules ordered (1) according to proton affinity and (2) according to empirical formula, sorted alphabetically are provided.