The Thermal Conductivity of Magnesium Silicon Nitride, Mgsin2, Ceramics and Related Materials
Total Page:16
File Type:pdf, Size:1020Kb
The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials Citation for published version (APA): Bruls, R. J. (2000). The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR535906 DOI: 10.6100/IR535906 Document status and date: Published: 01/01/2000 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 04. Oct. 2021 The Thermal Conductivity of Magnesium Silicon Nitride, MgSiN2, Ceramics and Related Materials PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. M. Rem, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 5 oktober 2000 om 16.00 uur door Richard Joseph Bruls geboren te Sittard Dit proefschrift is goedgekeurd door de promotoren: prof.dr. R. Metselaar en prof.dr. K. Itatani Copromotor: dr. H.T. Hintzen Druk: Universiteitsdrukkerij, Technische Universiteit Eindhoven CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Bruls, Richard J. The Thermal Conductivity of Magnesium Silicon Nitride, MgSiN2, Ceramics and Related Materials / by Richard J. Bruls. - Eindhoven: Technische Universiteit Eindhoven, 2000. - Proefschrift. - ISBN 90-386-3011-5 NUGI 813 Trefwoorden: keramische materialen; nitriden / warmtegeleidbaarheid / phononen Subject headings: ceramic materials; nitrides / thermal conductivity / phonons Kaft: temperatuur-tijd afhankelijkheid van een thermische diffusiviteitsmeting met een atomic force microscoop thermisch beeld als achtergrond. Aan mijn ouders en grootouders Aan Marianne Table of contents Chapter 1. Introduction 11 1. General introduction 11 2. Substrate materials 13 2.1. Requirements 13 2.2. Relation between heat conduction and material characteristics 14 2.3. AlN as a promising substrate material 16 2.4. The new ceramic material MgSiN2 18 3. Objective and outline 20 References 22 Chapter 2. Preparation and characterisation of MgSiN2 powders 29 1. Introduction 30 2. Experimental section 30 2.1. Starting materials 30 2.2. Preparation 31 2.3. Characterisation 32 3. Results and discussion 33 3.1. Starting powder characteristics 33 3.1.1. Mg3N2 33 3.1.2. Si3N4 35 3.2. Phase formation of MgSiN2 36 3.3. Oxygen content of the MgSiN2 powders 41 3.4. X-ray diffraction data of MgSiN2 44 3.5. Powder characteristics 49 3.6. Oxidation behaviour of MgSiN2 powders 52 4. Conclusions 53 References 55 5 Table of contents Chapter 3. Preparation, characterisation and properties of MgSiN2 ceramics 59 1. Introduction 59 2. Experimental 61 2.1. Preparation 61 2.2. Characterisation 64 2.3. Properties 66 3. Results and discussion 67 3.1. Characterisation 67 3.1.1. Phase formation and lattice parameters of MgSiN2 67 3.1.2. Density 71 3.1.3. Chemical composition 72 3.1.4. Microstructure 74 3.1.5. TEM/EDS 77 3.2. Properties 80 3.2.1. Oxidation resistance 80 3.2.2. Hardness 81 3.2.3. Young's modulus 82 3.2.4. Thermal expansion 82 3.2.5. Thermal diffusivity/conductivity 83 4. Theoretical considerations 86 4.1. Secondary phases 86 4.2. Grain size 87 4.3. Defects 87 4.4. Maximum influence of secondary phases, grain size and defects 88 5. Conclusions 89 References 89 Chapter 4. Anisotropic thermal expansion of MgSiN2 97 1. Introduction 97 2. Experimental procedure 99 3. Results and discussion 101 6 Table of contents 3.1. Neutron diffraction data refinement 101 3.2. Thermal expansion 107 4. Conclusions 112 References 112 Chapter 5. The heat capacity of MgSiN2 117 1. Introduction 117 2. Experimental 119 2.1. Adiabatic calorimeter measurements 119 2.2. Differential scanning calorimeter measurement 120 3. Results and discussion 121 o 3.1. Cp of MgSiN2 121 3.2. Debye temperature of MgSiN2 124 o o o 3.3. Thermodynamic functions ST , (HT - H0 ) and o o (GT - H0 ) of MgSiN2 127 o 3.4. H0 of MgSiN2 130 4. Conclusions 133 References 133 Chapter 6. The Young's modulus of MgSiN2, AlN and Si3N4 137 1. Introduction 137 2. Experimental section 138 3. Results and discussion 140 3.1. Evaluation of the measurements 140 3.2. Interpretation of the fitting parameters 144 3.2.1. E0 144 3.2.2. B and T0 145 4. Conclusions 146 References 147 Chapter 7. The Grüneisen parameters of MgSiN2, AlN and β-Si3N4 153 1. Introduction 153 2. Evaluation of the input parameters 156 7 Table of contents 2.1. Lattice linear thermal expansion coefficient α lat 156 2.2. Molar volume Vm 159 2.3. Adiabatic compressibility βS 159 2.4. Heat capacity at constant pressure Cp 160 3. Evaluation of the Grüneisen parameter γ 162 4. Discussion 166 4.1. The temperature dependence of the Grüneisen parameter 166 4.2. The absolute value of the Grüneisen parameter at the Debye temperature 168 5. Conclusions 170 References 170 Chapter 8. Theoretical thermal conductivity of MgSiN2, AlN and β-Si3N4 using Slack's equation 177 1. Introduction 177 2. The Slack equation 179 3. Influence of input parameters 181 4. The modification of the Slack equation 185 5. Applicability, reliability and limitations of Slack modified 193 6. Conclusions 195 References 196 Chapter 9. A new method for estimation of the intrinsic thermal conductivity 203 1. Introduction 203 2. The temperature dependence of the thermal diffusivity and conductivity 204 3. Experimental 208 4. Results for MgSiN2, AlN and β-Si3N4 209 4.1. The temperature dependence of the thermal diffusivity a 209 4.2. Inverse thermal diffusivity a -1 versus temperature T plots 212 8 Table of contents 5. Discussion 220 5.1. Interpretation of the fitting parameters 220 5.2. Thermal conductivity estimates for MgSiN2, AlN and β-Si3N4 221 5.3. Comparison with other estimates 225 5.4. Limitations, accuracy and reliability 227 6. Conclusions 228 References 229 Chapter 10. Conclusions 237 List of symbols 241 Lower-case symbols 241 Upper-case symbols 242 Greek symbols 243 Summary 245 Samenvatting 247 Nawoord 251 Curriculum Vitae 254 List of publications 255 9 10 Chapter 1. Introduction 1. General introduction "So the Lord God banished him from the Garden of Eden to work the ground" [1]. Since then people try to improve their existence by making life more comfortable. They used their intellect, knowledge and inventiveness to increase the standard of living. It started with stone tools, the ability of making fire and the production of food by farming and is now (after making a large step in history in only few seconds of writing [2]) continuing in the age of the computer information and automation. 1.E+08 Pentium® II 1.E+07 Processor Pentium® Pentium® Pro Processor Processor 1.E+06 80486DX 80486SX 80386DX 80386SX 80286 1.E+05 8086 8088 Number of transistors 1.E+04 8080 8008 4004 1.E+03 1970 1975 1980 1985 1990 1995 2000 2005 t [year] Fig. 1-1: Number of transistors per chip versus time (t) (Data supplied by Intel Corp.). More and more processes are computer controlled and/or guided. Due to the increasing number and complexity of tasks in e.g. the industry, and in order to 11 Chapter 1. reduce the human intervention the complexity, speed and calculating power of these machines is still increasing. E.g. the last decades the number of transistors per chip and the processing power have increased tremendously (see Figs. 1-1 and 1-2). 1.E+09 Pentium® Pro Processor Pentium® 1.E+08 Processor 1.E+07 80386DX 1.E+06 8008 1.E+05 Instructions per second Instructions per 4004 1.E+04 1970 1975 1980 1985 1990 1995 2000 2005 t [year] Fig. 1-2: Processing power in instructions per second versus time (t) (Data supplied by Intel Corp.). Related to this development there is a tendency to increase the processing power per unit volume by miniaturisation. E.g. the computing power of the house size first computer in 1945 (ENIAC) containing 17468 vacuum tubes is nowadays easily surpassed by a microprocessor with a size much smaller than a match box containing 10000000 transistors [3, 4].