Examination of Non-Ideal Explosives

Total Page:16

File Type:pdf, Size:1020Kb

Examination of Non-Ideal Explosives University of Rhode Island DigitalCommons@URI Open Access Dissertations 2019 EXAMINATION OF NON-IDEAL EXPLOSIVES Ryan Charles Rettinger University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Rettinger, Ryan Charles, "EXAMINATION OF NON-IDEAL EXPLOSIVES" (2019). Open Access Dissertations. Paper 825. https://digitalcommons.uri.edu/oa_diss/825 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. EXAMINATION OF NON-IDEAL EXPLOSIVES BY RYAN CHARLES RETTINGER A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY UNIVERSITY OF RHODE ISLAND 2019 DOCTOR OF PHILOSOPHY DISSERTATION OF RYAN CHARLES RETTINGER APPROVED: Dissertation Committee: Major Professor Jimmie C. Oxley Co-Major Professor James L. Smith Brenton DeBoef Tao Wei Godi Fisher Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2019 ABSTRACT As seen in multiple cases, including the 2013 Boston Marathon bombing, improvised explosives compositions may be as simple as a combination commonly-available fuel/oxidizer (FOX) mixtures initiated by an electrically-heated wire. The predictive knowledge of large scale explosive potential of FOX mixtures is incomplete. Predicting explosive potential from laboratory-scale analytical test data is desirable. Herein the explosive properties of fuel/oxidizer combinations (FOX) were measured at both the small scale (2 g) with bomb calorimetry for heat output and closed-vessel dynamic pressure rise and also on the large scale (5 kg) with high speed photography for detonation velocity and with piezoelectric pressure probes for TNT air blast equivalence. Potassium nitrate (KN), potassium chlorate (KC), potassium permanganate (KMnO4), potassium iodate (KIO3), ammonium nitrate (AN), and ammonium perchlorate (AP) were prepared with sucrose (Su) fuel, and KN, AP, and AN were prepared with aluminum (Al) fuel. The results were compared to each other as well as predictions from Cheetah thermochemical code in order to correlate detonation performance, particularly the ideality of detonation performance, with simple laboratory screening tests. Presented here are the results of around 60 explosive experiments which have become the first series of experiments at the URI explosives test facility to successfully field photon Doppler velocimetry (PDV) and ultra-high speed photography. The experiments outlined herein focus on homogeneous improvised explosives, namely hydrogen peroxide (HP) aqueous solutions fueled with ethanol (EtOH). These materials have been chosen as a template system for evaluation with time-resolved detonation diagnostics aimed at screening clandestine non-ideal explosive threat materials for detonable character even, and especially, in configurations below their critical diameter. The ‘galloping’ detonation instabilities of these materials have been captured on camera in the stoichiometric mixture of HP:EtOH in diameters from 1 to 2.6 inches; a steady detonation never formed. Reactive particle velocity waveforms for this mixture were measured by PDV through a PMMA pressure-maintaining window. These materials were subjected to both overdriven and underdriven configurations, and non-steady waveforms have been collected to monitor non-ideal explosives under these conditions i.e. inside the infinite diameter region of a range of different shock loading environments. Several mixtures of HP:EtOH have also been artificially doped with glass microballoons to study the ideality of this mixture in a heterogeneous regime. Successful detonations of heterogeneous HP:EtOH mixtures were observed using as low as 40% HP. ACKNOWLEDGMENTS I would like to thank our Ordinance Technician Allan Valliere for being so willing to help get these experiments done, rain, snow, or shine often with great inconvenience to him; a great deal of credit goes to him for the impressive frequency with which we’ve been able to get so many experiments done in such a short amount of time. I acknowledge the insight and guidance of Dr. James Kennedy and his valuable advice through the many obstacles encountered in this work. I would like to credit Dr. Tao Wei and Dr. Brian Chen with the many hours of instruction helping me get started with PDV. Our success fielding this optical technique is largely due to their generous collaboration in the early years of building the range; before their help, I had zero experience with fiber optics, time/frequency transformations, or the wave interaction mathematics necessary to understand the diagnostics. I would also like to acknowledge the two faithful companions who shared every day out at the Alton Jones test site with me, Ruger and Trig, and the family who waited so patiently and supportively for me to finish my degree. I would also like to thank my research team, both past and present, for the collaborative and friendly environment to which I quickly integrated in spite of being foreign to the area. I’d like to thank my advisors Jimmie Oxley and Jim Smith for the opportunity to build the Alton Jones test site; I could never have expected such an incredible opportunity. My personal relationship with the sovereign, holy, righteous, God Most High has saved my soul from death, my eyes from tears, and my feet from stumbling. He meets me where I am, and fulfills His promise. He made me like a potter shapes a clay vessel, and His banner over me is Love. Please see: Proverbs 3:5, Isaiah 49:9-10, I John 3:11, and Psalms 73:21-28. iv PREFACE This dissertation has been prepared in manuscript format in accordance with the guidelines of the Graduate School of the University of Rhode Island. The research contained herein is separated into two manuscripts. The first manuscript, “Correlation of Thermal Properties and Explosive Performance of Fuel/Oxidizer Mixtures” is being submitted to the journal Propellants, Explosives, Pyrotechnics. The second manuscript, “Characterization of Detonation Waveforms in Homogeneous Non-Ideal Explosives” will also be submitted for publication in the journal Propellants, Explosives, Pyrotechnics. These experiments are the first two bodies of work to be published which directly relate to work from the new URI Outdoor Explosive Test Facility (OTF) which was being built with this very work in mind. Through the support of his advisors, the OTF was outfitted with a suite of ultra-high-speed diagnostics not previously known to the author or his research group. In establishing the application of these technologies the author experienced an uncanny amount of failure; this work represents over 4 years of work maturing the use of these technologies at URI. v TABLE OF CONTENTS ABSTRACT .................................................................................................................. ii ACKNOWLEDGMENTS .......................................................................................... iv PREFACE ..................................................................................................................... v TABLE OF CONTENTS ............................................................................................ vi LIST OF TABLES ....................................................................................................... x LIST OF FIGURES.....................................................................................................xi LIST OF ABBREVIATIONS .................................................................................. xiv MANUSCRIPT 1……………………………………………………………………...1 Title Page: Fuel-Oxidizer Mixtures: A Lab and Field Study……………………....1 Abstract………………………………………………………………………………..2 1 Introduction…………………………………………………………………………3 2 Experimental Methods……………………………………………………………..4 2.1 Sample Preparation for Calorimetry, DSC, and SDT………………………….4 2.2 Differential Scanning Calorimetry (DSC)………………………………………5 2.3 Simultaneous DSC/TGA (SDT) ………………………………………………….5 2.4 Bomb Calorimetry with Pressure Transducer ………………………………….5 2.5 Sample Preparation for Detonation Diagnostics………………………………..7 2.6 Detonation Diagnostics…………………………………………………………...8 2.8 Predictive Tools………………………………………………………………….11 3 Results……………………………………………………………………………...12 3.1 Parr Bomb Results………………………………………………………………13 3.2 Detonation Testing………………………………………………………………16 vi 3.2.1 High-speed photography and detonation velocity…………………………16 3.2.2 Blast Pressure………………………………………………………………..20 3.3 Cheetah Thermochemical Predictions…………………………………………22 4 Discussion…………………………………………………………………………..23 4.1 General Discussion………………………………………………………………23 4.2 Experimental Agreement with Cheetah Predictions………………………….24 4.2.1 Cheetah Total Energy Detonation (TED)……………………………………24 4.2.2 Cheetah Detonation Velocity (Dv)……………………………………………26 4.3 Comparisons of Detonation Velocity to Lab Scale Analytical Tests…………28 4.3.1 Bomb Calorimetry Heat of Reaction (ΔHrxn)………………………………..28 4.3.2 Bomb Calorimeter Pressure Rise Rate………………………………………29 4.4 Air Blast Correlation with Laboratory Analytical Measurements…………..30 4.4.1 Bomb calorimeter heat of reaction…………………………………………...30 4.4.2: TNT Air Blast versus Pressure Rise Rate (dP/dt)………………………......32 4.4.3 TNT Air Blast Energy vs Bomb Calorimetry Heat of Reaction……………33 4.5 Doping of Potassium Nitrate-Sugar…………………………………………….34 4.6
Recommended publications
  • May 25, 1965 M. A. COOK ETAL 3,185,017 METHOD of MAKING an EXPLOSIVE BOOSTER Original Filed July 13, 1959
    May 25, 1965 M. A. COOK ETAL 3,185,017 METHOD OF MAKING AN EXPLOSIVE BOOSTER Original Filed July 13, 1959 FLS-1 INVENTORS AE1M at OOC AOWGLMS Al ACA 3,185,017 United States Patent Office Patented May 25, 1965 2 3,185,017 pressed pentolite (PETN-TNT), TNT, tetryl, tetrytol METHOD OF MAKING AN EXPLGSWE GOSTER (tetryl-TNT), cyclotol (RDX-TNT), composition B Melvin A. Cook and Dotigias E. Pack, 3: it lake City, (RDX-TNT-wax) and Ednatol (EDNA-TNT). The Utah, assig Rors to Intertanozzataia Researcia and Engi more inexpensive of these explosives are not detonatable eering Company, Inc., Saitake City, Utah, a cospera by Prinnacord, however. tion of Utah 5 Original application July 13, 1959, Ser. No. 826,539, how It has been found that PETN, PETN-TNT mixtures, Patent No. 3,637,453, dated June 5, 1932, Cisie at: RDX and cyclotol are detonated by Primacord, but their this application Oct. 24, 1960, Ser. No. 70,334 high cost and the relatively large quantities required make 2 Clairls. (C. 86-) it uneconomical to use them as boosters. O The improved boost cr of the invention generally com This invention relates to detonating means for ex prises a core of Primacord-sensitive explosive material plosives and more particularly to boosters for relatively sit trol inted by a compacted sheath of Primacord-insensi insensitive explosive compositions. This application is tive explosive imaterial of high brisance, said booster a division of our copending application Serial No. 826,539, having at cast one perforation extending through said filed July 13, 1959, now U.S.
    [Show full text]
  • Detonation Cord, Detacord, Det
    DDEPATMENT OF MINING ENGINEERING INTRODUCTION:- What are explosives? An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances. The potential energy stored in an explosive material may, for example, be chemical energy, such as nitro glycerine or grain dust DDEPATMENT OF MINING ENGINEERING pressurized gas, such as a gas cylinder or aerosol can nuclear energy, such as in the fissile isotopes uranium-235 and plutonium-239 Explosive materials may be categorized by the speed at which they expand. Materials that detonate (the front of the chemical reaction moves faster through the material than the speed of sound) are said to be "high explosives" and materials that deflagrate are said to be "low explosives". Explosives may also be categorized by their sensitivity. Sensitive materials that can be initiated by a relatively small amount of heat or pressure are primary explosives and materials that are relatively insensitive are secondary or tertiary explosives. A wide variety of chemicals can explode; a smaller number are manufactured specifically for the purpose of being used as explosives. The remainder are too dangerous, sensitive, toxic, expensive, DDEPATMENT OF MINING ENGINEERING unstable, or prone to decomposition or degradation over short time spans. DDEPATMENT OF MINING ENGINEERING HISTORY:- The use of explosives in mining goes back to the year 1627, when gunpowder was first used in place of mechanical tools in the Hungarian (now Slovak) town of Banská Štiavnica.
    [Show full text]
  • Guide for the Selection of Commercial Explosives Detection Systems For
    2.5.3.8 EXPRAY Field Test Kit EXPRAY is a unique, aerosol-based field test kit for the detection of what the manufacturer refers to as Group A explosives (TNT, DNT, picric acid, etc.), Group B explosives (Semtex H, RDX, PETN, NG, smokeless powder, etc.), and compounds that contain nitrates that are used in improvised explosives. Detection of explosive residue is made by observing a color change of the test paper. EXPRAY can be used in a variety of applications, and although in some aspects it does not perform as well as many of the other trace detectors discussed in this section, it costs only $250. This very low cost, coupled with simplicity and ease of use, may make it of interest to many law enforcement agencies (see the EXPRAY kit in fig. 13). The EXPRAY field kit2 is comprised of the following items: - one can of EXPRAY-1 for Group A explosives, - one can of EXPRAY-2 for Group B explosives, - one can of EXPRAY-3 for nitrate-based explosives (ANFO, black powder, and commercial and improvised explosives based on inorganic nitrates), - special test papers which prevent cross contamination. Figure 13. Photo of the EXPRAY Field Test Kit for explosives Initially, a suspected surface (of a package, a person’s clothing, etc.) is wiped with the special test paper. The paper is then sprayed with EXPRAY-1. The appearance of a dark violet-brown color indicates the presence of TNT, a blue-green color indicates the presence of DNT, and an orange color indicates the presence of other Group A explosives.
    [Show full text]
  • Explosive Characteristics and Performance Larry Mirabelli Design Factors for Chemical Crushing
    Explosive Characteristics and Performance Larry Mirabelli Design Factors for Chemical Crushing Controllable EXPLOSIVEEXPLOSIVE Uncontrollable GEOLOGYROCK CONFINEMENT DISTRIBUTION Course Agenda What is an Explosive Explosive Types What are best to fuel “chemical crusher” Explosive Properties Explosive types Characteristics General Application Explosive selection to meet blasting objectives What is an Explosive Intimate mixture of fuel and oxidizer. Can be a molecular solid, liquid or gas and/or mixtures of them. When initiated reacts very quickly to form heat, solids and gas. Violent exothermic oxidation-reduction reaction. Detonates instead of burning. Rate of reaction is its detonation velocity. Explosive Types Main Explosive Charge Explosive for use in primer make up. Initiation System Explosive Types – Main Explosive Charge Bulk Explosive Blasting Agent, 1.5 D (not detonator sensitive) • Repumpable – Emulsion (available with field density adjustment and/or homogenization) • Repumpable ANFO Blend – Emulsion (available with field density adjustment) • Heavy ANFO Blend – Emulsion • ANFO For fueling chemical crusher, application flexibility for changing design is best decision. Explosive Types – Main Explosive Charge Packaged Explosive Explosive, 1.1D (detonator sensitive) • Emulsion • Dynamite Blasting Agent, 1.5 D (not detonator sensitive) • Emulsion • Water Gel • WR ANFO • ANFO For fueling chemical crusher, it is best to optimize explosive distribution. Explosive Types Explosive for use in primer make up. Explosive, 1.1D (detonator sensitive) • Cast Booster • Dynamite • Emulsion For fueling chemical crusher, cast booster is recommended explosive for primer make up. Explosive Types Initiation System Electronic Non Electric Electric For fueling chemical crusher, Electronic Detonator is recommended. Explosive Properties Safety properties Characterize transportation, storage, handling and use Physical properties Characterize useable applications and loading equipment requirements.
    [Show full text]
  • Render-Safe Impact Dynamics of the M557 Fuze G.A. Gazonas U.S. Army
    Transactions on the Built Environment vol 32, © 1998 WIT Press, www.witpress.com, ISSN 1743-3509 Render-safe impact dynamics of the M557 fuze G.A. Gazonas U.S. Army Research Laboratory Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005, USA e-mail: [email protected] Abstract This paper outlines the results of a combined experimental and computational study which investigates the transient structural response of the M557 point detonating fuze subjected to low-speed (200 m/s) oblique impact by a hardened steel projectile. The problem is of interest to the explosive ordnance disposal (EOD) community as it is a method that is currently used to "render-safe" ordnance and other explosive devices found in the field [1]. An inert M557 fuze is instrumented with a low mass (1.5 gram), 60 kilo-g uniaxial accelerometer and subjected to oblique impact by launching a 300 gram projectile from a 4-in airgun. The transient structural response of the fuze is compared to the predicted response using the Lagrangian finite element code DYNA3D. Peak accelerations measured in two tests average 35 kilo-g whereas DYNA3D predicts a 40 to 50 kilo-g peak acceleration depending upon the amount of prescribed damping. Both measured and computed acceleration histories are Fourier transformed and the estimated spectral response at the base of the fuze is shown to be dependent upon the failure strength of the flash tube. 1 Introduction The explosive ordnance disposal (EOD) community utilizes a variety of devices to disarm or "render-safe" ordnance and other explosive devices found in the field.
    [Show full text]
  • Surface Mining
    Surface Mining Products, Services and Reference Guide Contents n Services 4 n Bulk Explosives 5 n Packaged Explosives 21 n Initiation Systems 29 n Blasting Accessories 45 n Explosive Delivery Systems 47 n Reference 49 Why do companies come to Dyno Nobel for groundbreaking solutions? Dyno Nobel is a global leader in commercial explosives and blast design. One of our core strengths is our understanding of the processes and challenges that impact on the mining industry. We leverage our decades of industry experience to meet and exceed customer expectations. We can draw upon our global resources to provide our customers with fully tailored solutions that can make a positive difference to your project. Our team work with mining companies to solve highly complex problems and they can help you too. Dyno Nobel has the people, the resources and the experience to deliver Groundbreaking Performance®. Dyno Nobel is a business of Incitec Pivot Limited (IPL), an S&P/ASX Top 50 company listed on the Australian Securities Exchange (ASX). Dyno Nobel Asia Pacific provides a full range of industrial explosives, related products and services to customers in Australia, Indonesia, Papua New Guinea, Turkey, Latin America, the United States and Canada. Services Consulting services Tailored training courses DynoConsult®, the specialist consulting division of Dyno Nobel backs up its innovative product offering with Dyno Nobel, aims to improve customer performance. world class support for our customers. Its resources include a team of experienced professionals To reinforce safe practices and upskill technical with local and international experience in open cut proficiency, Dyno Nobel offers a full range of training mining processes.
    [Show full text]
  • IMEMTS 2006 Booster Explosives Paper
    EXPLOSIVE BOOSTER SELECTION CRITERIA FOR INSENSITIVE MUNITIONS APPLICATIONS Ron Hollands BAE SYSTEMS RO Defence, Glascoed, Usk, Monmouthshire, NP15 1XL, UK. Tel: +44-(0)1291-674181; Fax: +44-(0)1291-674103; E-mail: [email protected] Peter Barnes, Ron Moss and Mike Sharp Defence Ordnance Safety Group, MOD Abbey Wood, Bristol, BS34 8JH, UK. Introduction Boosters play an essential role in the safe functioning of the majority of explosive-filled ordnance by propagating and magnifying the detonation wave from initiator to main charge. Booster explosives formulated for Insensitive Munitions (IMs) applications must fulfil a number of exacting and often apparently conflicting requirements. For example, the booster must be shock sensitive enough to reliably take over from the detonator and at the same time must possess reduced vulnerability towards hazardous stimuli as represented by the threats described in STANAG 4439. Consistent performance and survivability under in-service conditions must also be maintained throughout the lifecycle of the munition. This necessitates preservation of physical integrity, thermal stability and resistance to ageing, particularly if the explosive is to be subjected to high–g environments during launch or retardation. Selection Criteria This paper describes the rationale and methodology adopted in the United Kingdom for the assessment and selection of candidate pressable booster formulations as part of a systems approach to meeting IM requirements. The Insensitive Munitions Assessment Panel (IMAP) reviews available data on design features, such as boosters, beginning at an early stage in a project’s life. These reviews are undertaken to assess the IM compatibility of proposed design options and choices of energetic materials with a view to defining the IM signature for the munition.
    [Show full text]
  • FM 5-250: Explosives and Demolitions
    FM 5-250 HEADQUARTERS Field Manual DEPARTMENT OF THE ARMY 5-250 Washington, DC, 15 June 1992 i FM 5-250 ii FM 5-250 iii FM 5-250 iv FM 5-250 v FM 5-250 vi FM 5-250 vii FM 5-250 viii FM 5-250 ix FM 5-250 x FM 5-250 xi FM 5-250 xii FM 5-250 xiii FM 5-250 xiv FM 5-250 xv FM 5-250 xvi FM 5-250 xvii FM 5-250 xviii FM 5-250 xix FM 5-250 xx FM 5-250 xxii FM 5-250 xxi FM 5-250 xxiv FM 5-250 xxiii FM 5-250 xxv FM 5-250 xxvi FM 5-250 xxvii FM 5-250 Preface The purpose of this manual is to provide technical information on explosives used by United States military forces and their most frequent applications. This manual does not discuss all applications but presents the most current information on demolition procedures used in most situations. If used properly, explosives serve as a combat multiplier to deny maneuverability to the enemy. Focusing mainly on these countermobility operations, this manual provides a basic theory of explosives, their characteristics and common uses, formulas for calculating various types of charges, and standard methods of priming and placing these charges. When faced with unusual situations, the responsible engineer must either adapt one of the recommended demolition methods or design the demolition from basic principles presented in this and other manuals. The officer in charge must maintain ultimate responsibility for the demolition design, ensuring the safe and efficient application of explosives.
    [Show full text]
  • R1-B.1: Metrics for Explosivity, Inerting & Compatibility
    Appendix A: Project Reports ALERT Thrust R1: Characterization & Elimination of Illicit Explosives Phase 2 Year 4 Annual Report Project R1-B.1 R1-B.1: Metrics for Explosivity, Inerting & Compatibility I. PARTICIPANTS Faculty/Staff Name Title Institution Email Jimmie Oxley Co-PI URI [email protected] Jim Smith Co-PI URI [email protected] Graduate, Undergraduate and REU Students Name Degree Pursued Institution Month/Year of Graduation Ryan Rettinger PhD URI 5/2018 Matt Porter PhD URI 5/2017 Tailor Busbee PhD URI 5/2020 Kevin Colizza PhD URI 5/2018 Devon Swanson PhD URI 5/2017 Alex Yeudakemau PhD URI 12/2020 Maxwell Yekel BS URI 8/2017 Rachael Lenher BS URI 5/2021 II. PROJECT DESCRIPTION A. Project Overview The goal of this project is to narrow the range of potential explosives threats that concern the Department of Homeland Security (DHS) and Homeland Security Enterprise (HSE). For example, not every oxidizer/fuel (FOX) mixture is a potential explosive. This project is aimed at determining which are and assessing at what point threat mixtures have been successfully “inerted.” Because the number of potential threats is large and highly diverse, it is essential that a quick, safe method of determining detonability be established—a method not requiring the formulation of large amounts of material to determine if it is an explosive hazard. We have taken multiple approaches to this problem, including: • Approach 1: Using homemade explosives (HMEs) that are FOX mixtures. We have characterized their responses to small-scale tests and are in the process of seeking a correlation to modest-scale detonation testing; • Approach 2: Applying fundamental tandem mass spectrometric (MS) techniques to discover possible • Approach 3: Developing a new way to characterize the shock/detonation front using unique probes to aid relationships between collision-induced fragmentation energies and specific properties of explosives; in the examination of the growth to detonation vs.
    [Show full text]
  • Detonation Modeling of Corner-Turning Shocks in PBXN-111
    15th Australasian Fluid Mechanics Conference The University of Sydney, Sydney, Australia 13-17 December 2004 DETONATION MODELLING OF CORNER-TURNING SHOCKS IN PBXN-111 J.P. Lu1, F.C. Christo1 and D.L. Kennedy2 1Weapons Systems Division Defence Science and Technology Organisation P O Box 1500, Edinburgh, SA 5111 AUSTRALIA 2Orica Explosives, George Booth Drive PO Box 196, Kurri Kurri, NSW Abstract Due to geometrical symmetry an axisymmetric computational An explicit finite element hydrocode, LS-DYNA, was used to model was constructed. The boosters were modelled with the model corner-turning shocks of a highly non-ideal PBXW-115 programmed burn model and JWL equation of state. The explosive. Unlike our previous work where the CPeX combustion acceptors were modelled with the Ignition and Growth Reactive model was used, this study has focused on the Ignition and Model, and the brass tube was modelled with the plastic- Growth Reactive Model, which has been calibrated against kinematic material model. experimental results. It was found that the Ignition and Growth Reactive Model performs as well as the CPeX model in predicting shock evolution around corners, yet both models were Pentolite initiator unable to accurately model the configuration of the brass cylindrical confined explosive booster. charge Introduction 16.9mm Cylindrical thick Brass booster casing PBXW-115 explosive has been tailored and fully qualified as an charge underwater explosive. Known also as PBXN-111 in the US, and 50.8mm PBXW-115(Aust), it is composed of 43% ammonium perchlorate diameter, Spherical explosive (AP), 25% aluminium (Al), 20% RDX and 12% HTPB binder. 152.5mm in length charge bowl Modelling this highly non-ideal explosive is a challenging task.
    [Show full text]
  • 60137NCJRS.Pdf
    If you have issues viewing or accessing this file contact us at NCJRS.gov. .' ) Instructor Text DEPARTMENT OF THE TREASURY Bureau of Alcohol, Tobacco & Firearms /I. f l Modular ISxplosives Training Program Introduction to Explosives I :c:: ATF P 4510.1 (12/76) replaces ATF Training 5145-12 To be used in conjunction with modules 1, 2 & 3 of Instructor Guide • INTRODUCT'ION TO EXPLOSIVES ',' 02 c. R. NEWHO USER .. CONTENTS Section Topic Page ONE EXPLOSIONS ............................•............. 3 TYPES OF EXPLOSIONS ......... • . .. 3 Mechanical Explosion Chemical Explosion At0":lic Explosion NATURE OF CHEMICAL EXPLOSIONS 4 Ordinary Combustion Explosion Detonation EFFECTS OF AN EXPLOSION 5 Blast Pressure Effect Fragmentation Effect I ncendiary Thermal Effect TWO EXPLOSIVES .... : . • . .. 15 COMPOSITION AND BEHAVIOR OF CHEMICAL EXPL.OSIVES ............................. 15 Explosive Mixtures Explosive Compounds Classification By Velocity Explosive Work EXPLOSIVE TRAINS ................................... 24 Low Explosive Trains High Explosive Trains A PUBLICATION OF The National Bomb Data CenfeE •. Research Division o A program funded by the Law Enforcement Assistance Administra­ tion of the United States Department of Justice. Dissemination of this document does not constitute U. S. Department of Justice endorsf3- ment or approval of content. Section Topic Page COMMON EXPLOSIVES ................................. 28 • Low Explosives , Primary High Explosives Secondary High Explosive Boosters Secondary High Explosive Main Charges THREE
    [Show full text]
  • 15.9 Blasting Caps, Demolition Charges, and Detonators
    15.9 Blasting Caps, Demolition Charges, And Detonators Munitions listed in this section begin with the Department of Defense Identification Code (DODIC) letter “M.” This category of munitions includes blasting caps, demolition charges, and detonators. Examples include trinitrotoluene (TNT), Composition C4 demolition block charges, detonation cord, military dynamite, and blasting caps. 15.9.1 M023, M112 Demolition Block Charge 15.9.1.1 Ordnance Description1,2 The M112 Demolition Block Charge (DODIC M023) is a plastic explosive ideally suited for cutting charges as the adhesive backing allows the charge to be attached to any relatively dry, flat surface above freezing. This ammunition is used during combat and on firing ranges during training. The explosive is packed in a mylar wrapper, but it can be removed from the wrapper and hand formed as desired to suit the target. When the charge is detonated, the explosive is converted to compressed gas that exerts pressure in the form of a shock wave. Depending on the placement of the charge in relation to the target, the pressure generated at detonation destroys the target by cutting, breaching, or cratering. 15.9.1.2 Emissions And Controls1,3-6 The primary emission from the use of the M112 Demolition Block Charge is carbon dioxide (CO2). Criteria pollutants, hazardous air pollutants as defined by the Clean Air Act (CAA), and toxic chemicals (i.e., those chemicals regulated under Section 313 of the Emergency Planning and Community Right-to-Know Act [EPCRA]) are emitted at low levels. As this ordnance is typically used in the field, there are no controls associated with its use.
    [Show full text]