Carisbamate for Partial Onset Epilepsy September 2009

Total Page:16

File Type:pdf, Size:1020Kb

Carisbamate for Partial Onset Epilepsy September 2009 Carisbamate for partial onset epilepsy September 2009 This technology summary is based on information available at the time of research and a limited literature search. It is not intended to be a definitive statement on the safety, efficacy or effectiveness of the health technology covered and should not be used for commercial purposes. The National Horizon Scanning Centre Research Programme is part of the National Institute for Health Research September 2009 National Horizon Scanning Centre News on emerging technologies in healthcare Carisbamate for partial onset epilepsy Target group • Epilepsy: partial onset seizures with or without secondary generalisation in patients aged 16 and older. - First line adjunctive therapy for patients who may experience psychiatric, cognitive or behavioural issues with alternative treatments. - Second line adjunctive therapy after generic adjunctive therapies for those not experiencing psychiatric, cognitive or behavioural issues. Technology description Carisbamate (YKP-509; RWJ-333369; JNJ-10234094) is a neuromodulator with antiepileptic properties. Its exact mechanism of action is unknown but it appears to modulate neurotransmitters in a distinct manner from other antiepileptic drugs. Carisbamate is administered orally twice a day. The minimum effective dose and starting dose is 400mg per day. The dose range will be 400–1,200mg per day, administered in two doses. Carisbamate is also in phase II trials for neuropathic pain and essential tremour. Innovation and/or advantages Confidential. Developer Janssen-Cilag Ltd. Availability, launch or marketing dates, and licensing plans In phase III clinical trials. NHS or Government priority area This topic is relevant to The Long-term (Neurological) Conditions National Service Framework (2005). Relevant guidance • NICE technology appraisal. The clinical effectiveness and cost effectiveness of newer drugs for epilepsy in adults. March 20041. • NICE clinical guideline. The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. October 20042. • HTA. A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery. 20063. • SIGN. Diagnosis and management of epilepsy in adults. 20034. Clinical need and burden of disease Epilepsy is the most common serious neurological condition in the UK5 and is characterised by recurrent, unprovoked seizures (i.e. not an isolated event or due to an underlying acute reversible medical problem such as meningitis or alcohol withdrawal)6. An epileptic seizure is a brief disturbance of consciousness, behaviour, emotion, motor function and/or sensation that is due to abnormal electrical discharge in the brain2. Epilepsy is not usually diagnosed unless the person has had at least two unprovoked 1 seizures . 2 September 2009 National Horizon Scanning Centre News on emerging technologies in healthcare Partial-onset seizures are classified as simple partial seizures and complex partial seizures, either of which may lead to secondary generalised tonic-clonic seizures. The defining element of simple partial seizures is a seizure with preserved consciousness and this group includes sensory, motor, autonomic, and psychic types. Many patients with complex partial seizures have an aura warning them of their seizure. Diagnosis is based on the repeated, stereotypic occurrence of the same experience supported in some cases by focal changes recorded by an electroencephalogram. About 1 in 200 of the population receives treatment for epilepsy and the lifetime prevalence is estimated to be between 2%-5%7. Epilepsy affects between 260,000 and 416,000 people in England and Wales. The reported prevalence increases with age, from 3.9 per 1,000 population at age 7 years to 4.9 per 1,000 population at 16 years2. Existing comparators and treatments Current NICE guidelines recommend monotherapy with an antiepileptic drug (AED) where possible1. • If the older drugs (such as sodium valproate and carbamazepine) do not stop seizures, or if there are side effects, one of the newer drugs can be tried. • Gabapentin, lamotrigine, levetiracetam, oxcarbazepine and topiramate can be given as monotherapy, or if they do not control seizures, in combination with another drug. • Clobazam, lacosamide, pregabalin, tiagabine, vigabatrin and zonisamide are used as combination therapy (adjunctive or add-on therapy) with another drug. Efficacy and safety Trial NCT00433667; NCT00425282; NCT00210522; carisbamate vs placebo; carisbamate vs placebo; carisbamate vs placebo; phase III. phase III. phase II. Sponsor Johnson & Johnson. Johnson & Johnson. Johnson & Johnson. Status Trial complete and Trial complete and Published9. published in abstract8. published in abstract7. Location EU, USA and other EU, USA, Canada and EU (inc UK), USA and countries. other countries. other countries. Design Randomised, double blind, Randomised, double blind, Randomised, double blind, placebo controlled. placebo controlled. placebo controlled. Participants n=565; aged ≥16; partial n=562; aged ≥16; partial n=537; adults; partial onset and onset epilepsy for ≥1yr; ≥3 onset epilepsy for ≥1 yr; seizures. schedule seizures per month, ≥3 seizures per month; Randomised to carisbamate inadequate response to ≥ 1 inadequate response to ≥1 1,600, 800, 300 or AED, and receiving 1-2 AED; receiving 1-2 AEDs. 1,600mg per day or AEDs. Randomised to Randomised to carisbamate placebo for a 4 week dose- carisbamate 400 or 200mg 400 or 200mg per day or titration period and 12 per day or placebo for 12 placebo for 12 weeks with week maintenance period. weeks with concomitant concomitant AEDs.. AEDs. Follow-up 12 weeks. 12 weeks. 12 weeks stable dose; 3 weeks post-treatment. Primary Seizure frequency. Seizure frequency. Seizure frequency. outcomes Secondary Seizure Severity Seizure Severity Safety and responder rate. outcome Questionnaire; responder Questionnaire; responder rate (≥50% reduction in rate. seizure frequency). 3 September 2009 National Horizon Scanning Centre News on emerging technologies in healthcare Key results For carisbamate 400mg, For carisbamate 400mg, For 1,600, 800, 300, 200mg and placebo 200mg and placebo 100mg and placebo respectively (p value vs respectively (p value vs respectively (p value vs placebo): reduction in placebo): reduction in placebo): reduction in seizures 27% (p=0.009), seizures 21% (p=0.225), seizures 28.6% (p<0.001), 16% (p=0.678) and 15%; 22% (p=0.289), 15%; 20.9% (p=0.006), 24% responder rate 33% responder rate 24% (p<0.001), 15.4% (p=0.07) (p<0.001), 25% (p=0.098) (p=0.553), 23% (p=0.637), and 6.2%; responder rate and 18%. A greater 21%. 24.8% (p=0.004), 18.5% response observed in those (p=0.07), 23.6% (p=0.01), not taking concomitant 12.4% (p=0.01) and enzyme inducing AEDs. 10.1%. Adverse Most common (>10%) Most common (>10%) Carisbamate 1,600, 800, effects AEs carisbamate 400mg, AEs carisbamate 400mg, 300, 100mg and placebo (AEs) 200mg, placebo 200mg, placebo respectively: respectively: headache respectively: headache discontinuation due to AEs 12%, 13%, 12% and 14%, 13%, 15% and 19%, 12%, 6%, 5% and dizziness 13%, 9%, 7%. dizziness 12%, 4%, 7%. 8%. Dizziness (2%) and headache (2%) were most common AEs leading to withdrawal. Headache, dizziness, diplopia, vertigo, somnolence, nausea, vomiting, gait disturbance and abnormal coordination occurred more commonly in the 1,600mg group. Trial CARISEPY-3013, NCT00740623; CARISEPY-3007, NCT00563459; carisbamate vs placebo; phase III. carisbamate vs topiramate vs levetiracetam; phase III. Sponsor Johnson & Johnson. Ortho-McNeil Janssen. Status Ongoing. Ongoing. Location EU, USA and other countries. EU (inc UK), USA and other countries. Design Randomised, double blind, placebo Randomised, double blind, controlled controlled with open label extension. with open label extension. Participants n=600; aged ≥16; partial onset seizures, n=600; aged ≥16; partial onset seizures; and schedule receiving ≤3 AEDs. Randomised to monotherapy treatment failure; receiving carisbamate 800 or 1,200mg per day or ≤2 AEDs. Randomised to carisbamate placebo for 14 weeks. 400-1,200mg per day or topiramate 200- 400mg per day or levetiracetam 1,000- 3,000mg per day for 12 months (titration and dose maintenance phases). Follow-up 14 weeks; 4 weeks post-treatment. 12 months active treatment period. Primary Seizure frequency and responder rate. Time to discontinuation (all causes). outcome Secondary Reduction in secondarily generalised Cognitive and neuropsychiatric AEs, outcome seizures and safety. seizure rates, cognitive assessments, mood, behavioural and cognitive changes. Expected Confidential. To be confirmed. reporting date 4 September 2009 National Horizon Scanning Centre News on emerging technologies in healthcare Estimated cost and cost impact The cost of carisbamate is not yet known. The costs of some licensed drug treatments are10: Drug Dose 28 day cost Gabapentin 300-1,200mg 3 times daily £7.53-£7.76 Levetiracetam (Keppra) 250-1,500mg twice daily £27.72-£83.16 Lamotrigine 100-200mg daily in 1-2 divided doses £4.13-£5.45 Oxcarbazepine 600-2,400mg daily in divided doses £22.32-£88.44 Topiramate (Topamax) 100-400mg daily in 2 divided doses £31.40-£109.22 Potential or intended impact – speculative Patients ; Reduced morbidity Reduced mortality or increased ; Improved quality of life for length of survival – delete as patients and/or carers appropriate Quicker,
Recommended publications
  • Preventive Report Appendix
    Title Authors Published Journal Volume Issue Pages DOI Final Status Exclusion Reason Nasal sumatriptan is effective in treatment of migraine attacks in children: A Ahonen K.; Hamalainen ML.; Rantala H.; 2004 Neurology 62 6 883-7 10.1212/01.wnl.0000115105.05966.a7 Deemed irrelevant in initial screening Seasonal variation in migraine. Alstadhaug KB.; Salvesen R.; Bekkelund SI. Cephalalgia : an 2005 international journal 25 10 811-6 10.1111/j.1468-2982.2005.01018.x Deemed irrelevant in initial screening Flunarizine, a calcium channel blocker: a new prophylactic drug in migraine. Amery WK. 1983 Headache 23 2 70-4 10.1111/j.1526-4610.1983.hed2302070 Deemed irrelevant in initial screening Monoamine oxidase inhibitors in the control of migraine. Anthony M.; Lance JW. Proceedings of the 1970 Australian 7 45-7 Deemed irrelevant in initial screening Prostaglandins and prostaglandin receptor antagonism in migraine. Antonova M. 2013 Danish medical 60 5 B4635 Deemed irrelevant in initial screening Divalproex extended-release in adolescent migraine prophylaxis: results of a Apostol G.; Cady RK.; Laforet GA.; Robieson randomized, double-blind, placebo-controlled study. WZ.; Olson E.; Abi-Saab WM.; Saltarelli M. 2008 Headache 48 7 1012-25 10.1111/j.1526-4610.2008.01081.x Deemed irrelevant in initial screening Divalproex sodium extended-release for the prophylaxis of migraine headache in Apostol G.; Lewis DW.; Laforet GA.; adolescents: results of a stand-alone, long-term open-label safety study. Robieson WZ.; Fugate JM.; Abi-Saab WM.; 2009 Headache 49 1 45-53 10.1111/j.1526-4610.2008.01279.x Deemed irrelevant in initial screening Safety and tolerability of divalproex sodium extended-release in the prophylaxis of Apostol G.; Pakalnis A.; Laforet GA.; migraine headaches: results of an open-label extension trial in adolescents.
    [Show full text]
  • 8Th European Congress on Epileptology, Berlin, Germany, 21 – 25 September 2008
    Epilepsia, 50(Suppl. 4): 2–262, 2009 doi: 10.1111/j.1528-1167.2009.02063.x 8th ECE PROCEEDINGS 8th European Congress on Epileptology, Berlin, Germany, 21 – 25 September 2008 Sunday 21 September 2008 KV7 channels (KV7.1-5) are encoded by five genes (KCNQ1-5). They have been identified in the last 10–15 years by discovering the caus- 14:30 – 16:00 ative genes for three autosomal dominant diseases: cardiac arrhythmia Hall 1 (long QT syndrome, KCNQ1), congenital deafness (KCNQ1 and KCNQ4), benign familial neonatal seizures (BFNS, KCNQ2 and VALEANT PHARMACEUTICALS SATELLITE SYM- KCNQ3), and peripheral nerve hyperexcitability (PNH, KCNQ2). The fifth member of this gene family (KCNQ5) is not affected in a disease so POSIUM – NEURON-SPECIFIC M-CURRENT K+ CHAN- far. The phenotypic spectrum associated with KCNQ2 mutations is prob- NELS: A NEW TARGET IN MANAGING EPILEPSY ably broader than initially thought (i.e. not only BFNS), as patients with E. Perucca severe epilepsies and developmental delay, or with Rolando epilepsy University of Pavia, Italy have been described. With regard to the underlying molecular pathophys- iology, it has been shown that mutations in KCNQ2 and KCNQ3 Innovations in protein biology, coupled with genetic manipulations, have decrease the resulting K+ current thereby explaining the occurrence of defined the structure and function of many of the voltage- and ligand- epileptic seizures by membrane depolarization and increased neuronal gated ion channels, channel subunits, and receptors that are the underpin- firing. Very subtle changes restricted to subthreshold voltages are suffi- nings of neuronal hyperexcitability and epilepsy. Of the currently cient to cause BFNS which proves in a human disease model that this is available antiepileptic drugs (AEDs), no two act in the same way, but all the relevant voltage range for these channels to modulate the firing rate.
    [Show full text]
  • PR2 2009.Vp:Corelventura
    Pharmacological Reports Copyright © 2009 2009, 61, 197216 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences Review Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions Jarogniew J. £uszczki1,2 Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, PL 20-950 Lublin, Poland Correspondence: Jarogniew J. £uszczki, e-mail: [email protected]; [email protected] Abstract: This review briefly summarizes the information on the molecular mechanisms of action, pharmacokinetic profiles and drug interac- tions of novel (third-generation) antiepileptic drugs, including brivaracetam, carabersat, carisbamate, DP-valproic acid, eslicar- bazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, and valrocemide. These novel antiepileptic drugs undergo intensive clinical investigations to assess their efficacy and usefulness in the treatment of patients with refractory epilepsy. Key words: antiepileptic drugs, brivaracetam, carabersat, carisbamate, DP-valproic acid, drug interactions, eslicarbazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pharmacokinetics, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, valrocemide Abbreviations: 4-AP
    [Show full text]
  • A Comparative Effectiveness Meta-Analysis of Drugs for the Prophylaxis of Migraine Headache
    University of South Florida Masthead Logo Scholar Commons School of Information Faculty Publications School of Information 7-2015 A Comparative Effectiveness Meta-Analysis of Drugs for the Prophylaxis of Migraine Headache Authors: Jeffrey L. Jackson, Elizabeth Cogbill, Rafael Santana-Davila, Christina Eldredge, William Collier, Andrew Gradall, Neha Sehgal, and Jessica Kuester OBJECTIVE: To compare the effectiveness and side effects of migraine prophylactic medications. DESIGN: We performed a network meta-analysis. Data were extracted independently in duplicate and quality was assessed using both the JADAD and Cochrane Risk of Bias instruments. Data were pooled and network meta-analysis performed using random effects models. DATA SOURCES: PUBMED, EMBASE, Cochrane Trial Registry, bibliography of retrieved articles through 18 May 2014. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: We included randomized controlled trials of adults with migraine headaches of at least 4 weeks in duration. RESULTS: Placebo controlled trials included alpha blockers (n = 9), angiotensin converting enzyme inhibitors (n = 3), angiotensin receptor blockers (n = 3), anticonvulsants (n = 32), beta-blockers (n = 39), calcium channel blockers (n = 12), flunarizine (n = 7), serotonin reuptake inhibitors (n = 6), serotonin norepinephrine reuptake inhibitors (n = 1) serotonin agonists (n = 9) and tricyclic antidepressants (n = 11). In addition there were 53 trials comparing different drugs. Drugs with at least 3 trials that were more effective than placebo for episodic migraines
    [Show full text]
  • Molecular Mechanisms of Antiseizure Drug Activity at GABAA Receptors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 22 (2013) 589–600 Contents lists available at SciVerse ScienceDirect Seizure jou rnal homepage: www.elsevier.com/locate/yseiz Review Molecular mechanisms of antiseizure drug activity at GABAA receptors L. John Greenfield Jr.* Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States A R T I C L E I N F O A B S T R A C T Article history: The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at Received 6 February 2013 GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by Received in revised form 16 April 2013 the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, Accepted 17 April 2013 actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible Keywords: antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, Inhibition led to the development of ganaxolone. Other agents modulate GABAergic ‘‘tone’’ by regulating the Epilepsy synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane Antiepileptic drugs chloride gradient, which changes during development and in chronic epilepsy. This may provide an GABA receptor Seizures additional target for ‘‘GABAergic’’ ASDs. GABAAR subunit changes occur both acutely during status Chloride channel epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs.
    [Show full text]
  • Rat Animal Models for Screening Medications to Treat Alcohol Use Disorders
    ACCEPTED MANUSCRIPT Selectively Bred Rats Page 1 of 75 Rat Animal Models for Screening Medications to Treat Alcohol Use Disorders Richard L. Bell*1, Sheketha R. Hauser1, Tiebing Liang2, Youssef Sari3, Antoinette Maldonado-Devincci4, and Zachary A. Rodd1 1Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA 2Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA 3University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA 4North Carolina A&T University, Department of Psychology, Greensboro, NC 27411, USA *Send correspondence to: Richard L. Bell, Ph.D.; Associate Professor; Department of Psychiatry; Indiana University School of Medicine; Neuroscience Research Building, NB300C; 320 West 15th Street; Indianapolis, IN 46202; e-mail: [email protected] MANUSCRIPT Key Words: alcohol use disorder; alcoholism; genetically predisposed; selectively bred; pharmacotherapy; family history positive; AA; HAD; P; msP; sP; UChB; WHP Chemical compounds studied in this article Ethanol (PubChem CID: 702); Acamprosate (PubChem CID: 71158); Baclofen (PubChem CID: 2284); Ceftriaxone (PubChem CID: 5479530); Fluoxetine (PubChem CID: 3386); Naltrexone (PubChem CID: 5360515); Prazosin (PubChem CID: 4893); Rolipram (PubChem CID: 5092); Topiramate (PubChem CID: 5284627); Varenicline (PubChem CID: 5310966) ACCEPTED _________________________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Bell, R. L., Hauser, S. R., Liang, T., Sari, Y., Maldonado-Devincci, A., & Rodd, Z. A. (2017). Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.02.004 ACCEPTED MANUSCRIPT Selectively Bred Rats Page 2 of 75 The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • 202067Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 202067Orig1s000 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) OFFICE OF CLINICAL PHARMACOLOGY REVIEW Individual Study Reviews (Question-Based Review for ONFI is in DARRTS dated 10/09/2011) NDA: 202067 Brand Name: Onfi® Generic Name: Clobazam Dosage Form & Strength: Immediate Release Tablet (5, 10 and 20 mg) Indication: Adjunctive treatment of seizures associated with Lennox- Gastaut Syndrome (LGS) in patients ≥2 years of age Applicant: Lundbeck Inc. Submission: 505(b)(1), Standard Submission Dates: 12/23/2010, 02/07/2011, 02/10/2011, 04/01/2011, 05/10/2011, 06/10/2011, 09/02/2011 OND Division: OND-1/Division of Neurology Drug Products OCP Divisions: Division of Clinical Pharmacology 1 (DCP-1) Primary Reviewers: Seongeun Julia Cho, Ph.D., Ta-Chen Wu, Ph.D. Team Leader: Angela Yuxin Men, M.D., Ph.D. Pharmacometrics Reviewer: Joo-Yeon Lee, Ph.D. Pharmacometrics Team Yaning Wang, Ph.D. Leader: Pharmacogenomics Hobart Rogers, Pharm.D., Ph.D. Reviewer: Pharmacogenomics Team Michael Pacanowski, Pharm.D., M.P.H. Leader: Table of Contents................................................................................................................1 4 Appendices....................................................................................................................2 4.4 Individual Study Reviews.......................................................................................2 4.4.1 General Clinical Pharmacology...............................................................................2
    [Show full text]
  • Drug Class Review Newer Anticonvulsant Agents 28:12:92 Anticonvulsants, Other
    Drug Class Review Newer Anticonvulsant Agents 28:12:92 Anticonvulsants, Other Brivaracetam (Briviact®) Clobazam (Onfi®) Eslicarbazepine (Aptiom®) Ezogabine (Potiga®) Felbamate (Felbatol®, others) Gabapentin (Neurontin®) Lacosamide (Vimpat®, others) Lamotrigine (Lamictal®, others) Levetiracetam (Keppra®, others) Oxcarbazepine (Trileptal®, Oxtellar XR®, others) Perampanel (Fycompa®) Pregabalin (Lyrica ®) Rufinamide (Banzel®) Tiagabine (Gabitril®) Topiramate (Topamax ®, Trokendi XR, Qudenxi XR, others) Vigabatrin (Sabril®) Zonisamide (Zonergan ®, others) Final Report June 2016 Review prepared by: Vicki Frydrych, Clinical Pharmacist University of Utah College of Pharmacy Copyright © 2016 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved. Table of Contents Introduction ....................................................................................................................... 1 Table 1: Comparison of Newer Anticonvulsant Agents ...................................... 2 Table 2: FDA-Approved Indications for Newer Anticonvulsant Agents ........... 16 Disease Overview ............................................................................................................ 17 Table 3: The International League Against Epilepsy Classification of Seizures ............................................................................................... 19 Table 4: Newer Antiepileptic Drugs Which May Exacerbate Seizures ............. 21 Table 5: Clinical Practice Guideline Recommendations for Epilepsy .............
    [Show full text]
  • (Eicah): Anti-Seizure Drugs Robert S. Fisher, MD
    Epilepsy iConnect at Home (EiCaH): Anti-Seizure Drugs by Robert S. Fisher, MD, PhD Professor and Director, Stanford Epilepsy Center Copyright 2016 (use permission to Epilepsy Foundation of Northern California) This is a discussion about drugs to treat epilepsy. The big categories of how we treat epilepsy are with medicines, surgery, ketogenic diet, neurostimulation (such as the vagus nerve stimulation), biofeedback, and alternative therapies. They are all potential options, but by far the mainstay of treatment and the most used therapy is with anti-seizure medications. That will be the focus on what I talk about today. How well do anti-seizure medicines work? In general, about two-thirds of people who take anti-seizure medicines have their seizures controlled – meaning they have no seizures or very rare breakthrough seizures under unusual circumstances. And then one-third take medicine, but their seizures are uncontrolled either because of continued seizures or inability to take medications due to side-effects. That’s still a pretty large group of people, considering that 1% of the world has epilepsy. One-third of 1% is a number larger than all brain tumors, larger than all multiple sclerosis, larger than all muscular dystrophy. Epilepsy is not yet a solved problem. We have many anti-seizure drugs. Typically, you’ll hear them called AEDs – anti-epileptic drugs. But that’s a misnomer. None of these drugs cure epilepsy, so they’re not really anti-epilepsy drugs, they are seizure suppressant drugs. When you stop the medication, the epilepsy, which is the tendency to have recurrent seizures, remains.
    [Show full text]
  • When to Start and How to Select Aeds
    When to start & How to select AEDs Pasiri Sithinamsuwan, MD Division of Neurology, Phramongkutklao Hospital Concepts of medical treatments Treatment Initiation Consider other options if seizures are provoked Balance risks between recurrent seizures and adverse events of AEDs Frequency of seizures and risk of recurrent Psychosocial consequences of further seizures Avoid AEDs when diagnosis is in doubt AED do not prevent development of epilepsy Expectations should be modest (50%) First seizure, evaluate high recurrence risk A very high risk of recurrence Examples A single seizure occurring at least a month after a stroke A child with a single seizure conjoined with a structural or remote symptomatic etiology and an epileptiform EEG study A patient in whom diagnosis of a specific epilepsy syndrome associated with persistent threshold alteration can be made after the occurrence of a single seizure A first seizure might present present as status epilepticus ILAE 2014 Consider (a case-by-case basis) Seizure type, syndromic form Patient characteristics; age, gender. comorbidities Efficacy and side effect profile Dosing schedule, drug interaction Medical expertise Cost, ED drug (national formulary) Ideal properties for an easy-to-use antiepileptic drug Broad spectrum No tolerance High efficacy No withdrawal seizures Good tolerability Favorable pharmacokinetics (linear kinetics, T1/2 for 1-2 daily dosing) No risk of allergic or idiosyncratic reactions including teratogenicity Fast and easy dose escalation rate Low interaction
    [Show full text]
  • New Methods | Fall 2013 Methods Under Development
    New Methods | Fall 2013 Analyte Matrix LLOQ Units Platform Aprepitant Human Plasma 10 ng/mL LC-MS/MS Ciprofloxacin Human Plasma 10 ng/mL LC-MS/MS Clonidine Human Plasma 10 pg/mL LC-MS/MS Deoxycholic Acid Human Plasma 10 ng/mL LC-MS/MS Mefenamic Acid Human Plasma 40 ng/mL LC-MS/MS Menstrual Blood (as Alkaline Hematin) Feminine Hygiene Prod. 1 mL Colorimetric Midazolam / α-Hydroxymidazolam Human Plasma 0.5 / 0.5 ng/mL LC-MS/MS Paclitaxel Human Plasma 100 pg/mL LC-MS/MS Potassium Human Urine 8 mM ICP-MS Valproic Acid Human Plasma 0.5 mcg/mL LC-MS/MS Methods Under Development Analyte Matrix LLOQ Units Platform Amantadine Human Plasma 2 ng/mL LC-MS/MS Bupivicaine Human Plasma 1 ng/mL LC-MS/MS C-Reactive Protein Human Plasma 62.5 ng/mL ELISA Dasatinib Human Plasma 20 ng/mL LC-MS/MS D-Dimer (Fibrin Degradation Product) Human Plasma 1.37 ng/mL ELISA Dexmedetomide Human Plasma 5 pg/mL LC-MS/MS Fibrinogen (FBG) Human Plasma 3.13 ng/mL ELISA Inflammatory Cytokine Panel: 4 to 9-plex Human Plasma Inquire ELISA Interferon, gamma- Human Plasma 15 pg/mL ELISA Interleukin-6 (IL-6) Human Plasma/Serum 1.56 pg/mL ELISA Isoniazid Human DBS 100 ng/mL LC-MS/MS Leuprolide Human Plasma 100 pg/ml LC-MS/MS Nimodipine Human Plasma 0.5 ng/mL LC-MS/MS Fall 2013 KCAS Bioanalytical Services | kcasbio.com | contact us: [email protected] 1 Analgesic Methods Analyte Matrix LLOQ Units Platform Acetaminophen (APAP) Human Plasma 0.1 mcg/mL LC-MS/MS Acetaminophen / Tramadol Human Plasma 100 / 5 ng/mL LC-MS/MS Acetylsalicylic Acid / Salicylic Acid Human Plasma 0.25 / 0.75 mcg/mL
    [Show full text]