Blood Product Ordering Guidelines

Total Page:16

File Type:pdf, Size:1020Kb

Blood Product Ordering Guidelines Ordering Blood Plasma Transfusion Cryoprecipitate is most likely NOT appropriate: Order type and crossmatch if blood is to be given Minimum effective adult dose is 2 units (~ 500 ml) Patients with concurrent clotting factor deficiency and immediately or scheduled to be given within 3 days Be aware of patient’s volume status, do not fluid hypofibrinoginemia (use FFP instead) Order type and screen if blood may not be given; overload Patients with von Willebrand disease or hemophilia A crossmatch can later be completed quickly if needed. (use factor concentrates instead, when available) INR ≥ 1.6 ≈ PT > 5 sec above upper normal A crossmatch is needed only for red cells; plasma and Plasma is most likely appropriate: Red blood cell transfusion (adult) platelet orders do not require a crossmatch, but do require two patient blood type determinations on Bleeding or before most procedures INR ≥ 1.6 One unit will raise Hgb by approximately 1 g/dL record. Interventional radiology exceptions: Hgb 8 g/dL ≈ Hct 24%, Hgb 10 g/dL ≈ Hct 30% - Emergent arterial procedure INR > 2.0 Platelet transfusion (adult) RBCs are most likely appropriate: - Central venous line INR > 2.0 Store only at room temperature, do not refrigerate or - Venous procedure INR > 3.0 72 hr before and after surgery Hgb < 8 g/dL place in coolers. Significant bleeding in patients with DIC any INR Chronic anemia if other therapy fails Hgb < 8 g/dL Each dose of platelets should raise count by ~30x109/L Clinical symptoms of anemia Hgb < 10 g/dL Plasma is most likely NOT appropriate: Massive blood loss any Hgb Platelets are most likely appropriate: Stable patients with INR ≤ 1.5 (>750 cc or >15% blood volume) Stable without bleeding < 10x109/L For treatment of hypovolemia or hypoalbuminemia 9 RBCs are most likely NOT appropriate: Hematopoietic stem cell transplant ≤ 20x10 /L Correction of isolated prolonged PTT (usually due to 9 heparin or lupus anticoagulant) Asymptomatic patients with Hgb > 8 g/dL Before major procedures & up to 72 hr after < 50x10 /L Interventional radiology exceptions: To replace a single coagulation factor if concentrate is 9 Modified Red Blood Cell Units Elective arterial procedure < 70x10 /L available (i.e. hemophilia and von Willebrand Disease) 9 Orders for “fresh” or “washed” RBCs are appropriate in Non-vascular procedure < 70x10 /L Cryoprecipitate transfusion Neurological or ophthalmological procedure very few patients (i.e. severe transfusion reactions or or bleeding < 100x109/L Typical dose is one pooled-pack which should raise specific causes of potassium elevation) Bleeding or pre-operative and any count fibrinogen 40-50 mg/dL Orders will be considered on a case-by-case basis - Documented reason for platelet dysfunction; or Cryoprecipitate is most likely appropriate: Leukoreduced Products - Abnormal platelet function by thromboelastograph Isolated hypfobrinogenemia (≤100 mg/dL) All standard blood products at this institution are pre- Platelets are most likely NOT appropriate: storage leukocyte reduced to decrease the incidence Patients with dysfibrinogenemia Patients with immune thrombocytopenic purpura (ITP), Bleeding in uremic patients if DDAVP and estrogens of febrile nonhemolytic transfusion reactions and HLA thrombotic thrombocytopenic purpura (TTP) or fail to improve platelet function or are contraindicated alloimmunization. heparin-induced thrombocytopenia (HIT) unless they As part of massive transfusion Leukocyte reduced units are CMV-safe products with have life-threatening hemorrhage virtually equivalent risk of CMV transmission as CMV seronegative units. CMV-negative Products For nearly all patients leukoreduced blood is Concise Blood equivalent to CMV-negative blood Supplementary Pediatric Guidelines CMV-negative blood is not routinely stocked RBCs are most likely appropriate: Product Ordering Shock due to perinatal blood loss Blood Irradiation Infants on mechanical ventilation with: And Administration To prevent graft vs. host disease in susceptible MAP > 8 and FIO2 > 0.4 Hct < 35% patients FIO2 < 0.4 Hct < 28% Guidelines Does not sterilize product or reduce risk of infection Recently extubated with FIO2 > 0.4 Hct < 28% Clinical signs of anemia, such as Hct < 25% Irradiation is appropriate: - Unexplained bradycardia or apnea for 48 hours Hematologic malignancies - Serum lactate > 2.5 mEq/L Hematopoietic stem cell transplant recipient or - Poor weight gain with adequate calories scheduled for HSC transplant - Unexplained lethargy Receiving purine analogs (fludarabine, 2-CDA, etc.) Prior to surgery Hct < 25% Blood Bank: 8-4444 HLA-matched products or directed donations from Without signs of anemia Hct < 20% blood relatives Platelets are most likely appropriate: Intrauterine transfusion Based on guidelines prepared by: Preterm infants with increased risk < 50 x109/L Newborns who received intrauterine transfusions or UCD Blood Utilization of bleeding are in the neonatal ICU Review Committee Congenital T cell-mediated immunodeficiencies (DiGeorge’s, SCID, Wiskott-Aldrich, etc) Irradiation is most likely NOT appropriate: Patients with AIDS or HIV Solid organ transplant recipients Complete guidelines available at: https://www.uchealth.org/professionals/Pages/Clinica Patients receiving immunosuppressive therapy or chemotherapy who do not meet above criteria l-Laboratory/Transfusion-Services.aspx Congenital humoral immunodeficiencies (aggamaglobulinemia, hypogammaglobulinemia) Updated: April 2015 .
Recommended publications
  • Guidelines for Transfusions
    Guidelines for Transfu- sion Prepared by: Community Transfusion Committee Lincoln, Nebraska CHAIR: Aina Silenieks, MD MEMBERS: L. Bausch, M.D. R. Burton, M.D. S. Dunder, M.D. D. Voigt, M.D. B. J. Wilson, M.D. COMMUNITY Becky Croner REPRESENTATIVES: Ellen DiSalvo Christa Engel Phyllis Ericson Kelly Gillaspie Pat Gilles Vic Grdina Jessica Henrichs Kelly Jensen Laurel McReynolds Christina Nickel Angela Novotny Kelley Thiemann Janet Wachter Jodi Wikoff Guidelines For Transfusion Community Transfusion Committee INTRODUCTION The Community Transfusion Committee is a multidisciplinary group that meets to monitor blood utilization practices, establish guidelines for transfusion and discuss relevant transfusion related topics. It is comprised of physicians from local hospitals, invited guests, and community representatives from the hospitals’ transfusion services, nursing services, perfusion services, health information management, and the Nebraska Community Blood Bank. These Guidelines for Transfusion are reviewed and revised biannually by the Community Trans- fusion Committee to ensure that the industry’s most current practices are promoted. The Guidelines are the standard by which utilization practices are evaluated. They are also de- signed to provide helpful information to assist physicians to provide appropriate blood compo- nent therapy to patients. Appendices have been added for informational purposes and are not to be used as guidance for clinical decision making. ADULT RED CELLS A. Indications 1. One of the following a. Hypovolemia and hypoxia (signs/symptoms: syncope, dyspnea, postural hypoten- sion, tachycardia, angina, or TIA) secondary to surgery, trauma, GI tract bleeding, or intravascular hemolysis, OR b. Evidence of acute loss of 15% of total blood volume or >750 mL blood loss, OR c.
    [Show full text]
  • Stem Cells and Artificial Substitutes Could Ease the Dependence on Blood Donations
    OUTLOOK BLOOD DOING WITHOUT DONORS Stem cells and artificial substitutes could ease the dependence on blood donations. ANDREW BAKER BY ELIE DOLGIN S12 | NATURE | VOL 549 | 28 SEPTEMBER©2017 Ma c2017millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. BLOOD OUTLOOK ach year, at about 13,000 collection centres worldwide, phlebotomists stick needles in the veins of healthy vol- unteers and amass in excess of 110 million donations of blood. The volume collected is enough to fill 20 Olympic- sized swimming pools — but it’s nowhere near to meeting the medical demand for whole blood or its components. To fill the gap, an enterprising group of stem-cell biologists and bio- Eengineers hopes to produce a safe, reliable and bottomless supply of on-demand blood substitutes in the laboratory. According to Robert Lanza, a pioneer of stem cell therapies and head IMAGES IWM VIA GETTY CHETWYN/ SGT. of global regenerative medicine at Astellas Pharma in Marlborough, Massachusetts, current technologies are not yet ready to compete with the real stuff. “We’re not going to put blood banks out of business any time soon,” he says. But in the near future, artificial blood products could be approved for use when transfusions are not otherwise an option, such as during combat or in people with a religious objection to receiving blood transfusions. And therapies that rely on reprogrammed stem cells to produce components of blood might also help transfusion centres to relieve shortages or to avoid donor-derived contamination.
    [Show full text]
  • Blood Product Replacement: Obstetric Hemorrhage
    CMQCC OBSTETRIC HEMORRHAGE TOOLKIT Version 2.0 3/24/15 BLOOD PRODUCT REPLACEMENT: OBSTETRIC HEMORRHAGE Richard Lee, MD, Los Angeles County and University of Southern California Medical Center Laurence Shields, MD, Marian Regional Medical Center/Dignity Health Holli Mason, MD, Cedars-Sinai Medical Center Mark Rollins, MD, PhD, University of California, San Francisco Jed Gorlin, MD, Innovative Blood Resources/Memorial Blood Center, St. Paul, Minnesota Maurice Druzin, MD, Lucile Packard Children’s Hospital Stanford University Jennifer McNulty, MD, Long Beach Memorial Medical Center EXECUTIVE SUMMARY • Outcomes are improved with early and aggressive intervention. • Both emergency blood release and massive transfusion protocols should be in place. • In the setting of significant obstetric hemorrhage, resuscitation transfusion should be based on vital signs and blood loss and should not be delayed by waiting for laboratory results. • Calcium replacement will often be necessary with massive transfusion due to the citrate used for anticoagulation in blood products. • During massive transfusion resuscitation, the patient’s arterial blood gas, electrolytes, and core temperature should be monitored to guide clinical management and all transfused fluids should be warmed; direct warming of the patient should be initiated as needed to maintain euthermia and to avoid added coagulopathy. BACKGROUND AND LITERATURE REVIEW After the first several units of packed red blood cells (PRBCs) and in the face of continuing or worsening hemorrhage, aggressive transfusion therapy becomes critical. This report covers the experience with massive transfusion protocols. Lessons from military trauma units as well as civilian experience with motor vehicle accidents and massive obstetric hemorrhage have identified new principles such as earlier use of plasma (FFP/thawed plasma/plasma frozen within 24 hours/liquid plasma) and resuscitation transfusion while laboratory results are pending.
    [Show full text]
  • Platelet Transfusion
    Lab Dept: Transfusion Services Test Name: PLATELET TRANSFUSION General Information Lab Order Codes: TPLT Special charges: HLA Matched-MHLA, AHLA PLA1 Negative – PLAT, APLA1 Platelet Crossmatching PLTX – CPLT Synonyms: Leukocyte Reduced Platelets; Random Platelets; Platelet Rich Plasma; Platelet concentrate; Leukocyte Reduced Platelet Pheresis; Single- Donor Platelets; SDP Platelet pheresis; Apheresis Platelets; LRPH CPT Codes: P9035 – Platelet pheresis, Leukocyte reduced 86806 – Lymphocytotoxicity assay, visual crossmatch, without titration 86813 – HLA Matched 86945 – Irradiation 86985 – Volume Reduction 86965 – Pooling 86903 – Platelet Antigen typing 86999 – Washing 86022 – Platelet Crossmatch Test Includes: Leukocyte Reduced Platelet Pheresis consists of platelets suspended in 200-300 mL of plasma collected by cytapheresis. Each unit contains at least 3 x 1011 platelets, and ≤5.0 x 106 leukocytes. One pheresis unit equals 5-6 random unit platelet concentrate. Logistics Test Indications: Refer to Guidelines for the Transfusion of Blood Components. Platelet Crossmatching or HLA-Matched Platelets may be useful for patients receiving repeated platelet transfusions who have become refractile, and for patients who repeatedly develop febrile non-hemolytic transfusion reactions after platelet transfusions. Volume Reduced Platelets are indicated in the event that ABO - incompatible platelets must be transfused due to availability or in patients with severe fluid restrictions. Refer to Blood Component Compatibility Chart Lab Testing Sections: Transfusion Services Phone Numbers: MIN Lab: 612-813-6824 STP Lab: 651-220-6558 Test Availability: Daily, 24 hours Turnaround Time: 1 - 2 hours Standard Dose/Volume: <10 kg: 10 – 15 mL/kg up to one unit or 50 mL maximum 10 – 15 kg: 1/3 pheresis unit 15 – 25 kg: 1/2 pheresis unit >25 kg: 1 pheresis unit Rate of Infusion: 10 minutes/unit, <4 hours Administration: Must be administered through a blood component administration filter.
    [Show full text]
  • Platelet-Rich Plasmapheresis: a Meta-Analysis of Clinical Outcomes and Costs
    THE jOURNAL OF EXTRA-CORPOREAL TECHNOLOGY Original Article Platelet-Rich Plasmapheresis: A Meta-Analysis of Clinical Outcomes and Costs Chris Brown Mahoney , PhD Industrial Relations Center, Carlson School of Management, University of Minnesota, Minneapolis, MN Keywords: platelet-rich plasmapheresis, sequestration, cardiopulmonary bypass, outcomes, economics, meta-analysis Presented at the American Society of Extra-Corporeal Technology 35th International Conference, April 3-6, 1997, Phoenix, Arizona ABSTRACT Platelet-rich plasmapheresis (PRP) just prior to cardiopulmonary bypass (CPB) surgery is used to improve post CPB hemostasis and to minimize the risks associated with exposure to allogeneic blood and its components. Meta-analysis examines evidence ofPRP's impact on clinical outcomes by integrating the results across published research studies. Data on clinical outcomes was collected from 20 pub­ lished studies. These outcomes, DRG payment rates, and current national average costs were used to examine the impact of PRP on costs. This study provides evidence that the use of PRP results in improved clinical outcomes when compared to the identical control groups not receiving PRP. These improved clinical out­ comes result in subsequent lower costs per patient in the PRP groups. All clinical outcomes analyzed were improved: blood product usage, length of stay, intensive care stay, time to extu­ bation, incidence of cardiovascular accident, and incidence of reoperation. The most striking differences occur in use of all blood products, particularly packed red blood cells. This study provides an example of how initial expenditure on technology used during CPB results in overall cost savings. Estimated cost savings range from $2,505.00 to $4,209.00.
    [Show full text]
  • Blood Product Modifications: Leukofiltration, Irradiation and Washing
    Blood Product Modifications: Leukofiltration, Irradiation and Washing 1. Leukocyte Reduction Definitions and Standards: o Process also known as leukoreduction, or leukofiltration o Applicable AABB Standards, 25th ed. Leukocyte-reduced RBCs At least 85% of original RBCs < 5 x 106 WBCs in 95% of units tested . Leukocyte-reduced Platelet Concentrates: At least 5.5 x 1010 platelets in 75% of units tested < 8.3 x 105 WBCs in 95% of units tested pH≥6.2 in at least 90% of units tested . Leukocyte-reduced Apheresis Platelets: At least 3.0 x 1011 platelets in 90% of units tested < 5.0 x 106 WBCs 95% of units tested pH≥6.2 in at least 90% of units tested Methods o Filter: “Fourth-generation” filters remove 99.99% WBCs o Apheresis methods: most apheresis machines have built-in leukoreduction mechanisms o Less efficient methods of reducing WBC content . Washing, deglycerolizing after thawing a frozen unit, centrifugation . These methods do not meet requirement of < 5.0 x 106 WBCs per unit of RBCs/apheresis platelets. Types of leukofiltration/leukoreduction o “Pre-storage” . Done within 24 hours of collection . May use inline filters at time of collection (apheresis) or post collection o “Pre-transfusion” leukoreduction/bedside leukoreduction . Done prior to transfusion . “Bedside” leukoreduction uses gravity-based filters at time of transfusion. Least desirable given variability in practice and absence of proficiency . Alternatively performed by transfusion service prior to issuing Benefits of leukoreduction o Prevention of alloimmunization to donor HLA antigens . Anti-HLA can mediate graft rejection and immune mediated destruction of platelets o Leukoreduced products are indicated for transplant recipients or patients who are likely platelet transfusion dependent o Prevention of febrile non-hemolytic transfusion reactions (FNHTR) .
    [Show full text]
  • Transfusion Triggers for Platelets and Other Blood Products Sunil Karanth Indian Journal of Critical Care Medicine (2019): 10.5005/Jp-Journals-10071-23250
    INVITED ARTICLE Transfusion Triggers for Platelets and Other Blood Products Sunil Karanth Indian Journal of Critical Care Medicine (2019): 10.5005/jp-journals-10071-23250 INTRODUCTION Department of Intensive Care Unit, Manipal Hospital, Bengaluru, Transfusion of whole blood is not associated with any significant Karnataka, India benefit, rather can be harmful. Significant advances have been Corresponding Author: Sunil Karanth, Department of Intensive made in transfusion medicine, facilitating the use of blood product Care Unit, Manipal Hospital, Bengaluru, Karnataka, India, e-mail: or component therapy than use of whole blood (Fig. 1). In 2009, a [email protected] report on Serious Hazards of Transfusion in the UK, estimated that How to cite this article: Karanth S. Transfusion Triggers for Platelets a total of 3 million units of blood components were released. The and Other Blood Products. Indian J Crit Care Med 2019;23(Suppl requirement of the same in South-East Asia is much higher to the 3):S189–S190. tune of 15 million units annually. The current recommendation Source of support: Nil is to use blood only in life-threatening situations, rather than to Conflict of interest: None normalize abnormal numbers. PLATELETS Platelets are derived from the buffy coat of whole blood donations. A pooled platelet concentrate includes pooled buffy-coat derived platelets from four whole-blood donations suspended in platelet additive solution and plasma of one of the four donors. It contains 240000 platelets pooled from 4–6 donors. A Single donor platelet is derived from a single-donor by a process of apheresis. In view of the lesser number of donors and the theoretical advantage of involving a single-donor platelet (SDP) may be preferred over the use of platelets from multiple donors.
    [Show full text]
  • Blood-Platelet-Orders-Outpatient-V3
    Blood / Platelet Orders Outpt v3 USE THIS ORDER SET FOR OUTPATIENT NON URGENT BLOOD OR PLATELET TRANSFUSION 24 Hours advanced notice required for infusion center NO MORE THAN 2 UNITS OF RED BLOOD CELLS CAN BE INFUSED IN THE INFUSION CENTER PER DAY BMH Outpatient Infusion Center: Fax completed order set to 843-522-7313/Phone 843-522-7680 Hospital Outpatient: Fax Completed order set to Registration at 843-522-5741 and notify Nursing Supervisor at 843-522-7653 Service Designation THIS IS NOT AN ADMISSION SET Patient Name ___________________________________ Patient DOB ____________ Service Designation Blood Platelet Outpatient Attending ___________________________________ Date Requested ___________________________________ Status Outpatient Check Appropriate Diagnosis Below: [ Anemia of chronic renal disease Anemia related to chemotherapy Aplastic anemia Anemia related to cancer Anemia related to blood loss Sickle cell disease Anemia unspecified Thombocytopenia (platelets) Other _________________________ ] Allergies Update Allergies in the Summary Panel in MEDITECH Special Requirement: (REQUIRES SPECIAL ORDER ONE DAY IN ADVANCE) Special Requirement RBC or Platelets REQUIRES SPECIAL ORDER ONE DAY IN ADVANCE [ Irradiated CMV Negative HgBS Negative ] Medications diphenhydrAMINE HCl (Benadryl) 25 mg orally single dose premedicate prior to transfusion diphenhydrAMINE HCl (Benadryl) 50 mg orally single dose premedicate prior to transfusion diphenhydrAMINE HCl (Benadryl) 25 mg intravenously single dose premedicate prior to transfusion diphenhydrAMINE
    [Show full text]
  • Platelet Transfusion Refractoriness
    Evaluation of the Patient with Suspected Platelet Refractory State NOTE: While evaluating the patient for suspected immune refractory state, provide ABO matched platelets if available. 1. Determine if the Alloimmunization may be directed against platelet specific antigens or, more commonly HLA patient is at risk for antigens. Current leukoreduction methods are generally effective at preventing HLA alloimmunization: alloimmunization. Alloimmunization may occur in multiply transfused patients. A. Multiparous female? B. Multiple nonleukoreduced transfusions? C. Organ transplant? Assess previous platelet transfusions: TWO previous ABO compatible/ABO matched transfusions fail to yield an increase in platelet count >10K or a CCI >5-7500 Platelet counts should be performed 10 – 60 minutes post transfusion and 24 hour post transfusion. One hour post transfusion platelet counts that fail to demonstrate a >10K increase in platelets is suggestive of immune destruction. Adequate one hour post transfusion platelet counts and decreased 24 hour post transfusion platelet counts are suggestive of consumption/utilization/sequestration. Condition Presentation Laboratory Findings 2. Exclude non- alloimmune causes Leukocytosis, +cultures Sepsis Fever, tachycardia, tachypnea, etc. of a platelet refractory state: Thrombocytopenia, elevated PT, APTT, decreased DIC Bleeding, oozing These are generally fibrinogen, + fibrin degradation disorders of platelet products consumption. Sequestration Splenomegaly . Antibiotics (esp Vancomycin) Drugs are an often . Heparin (Heparin induced Thrombocytopenia, diminished overlooked cause of Drugs thrombocytopenia)* response to transfusion platelet destruction. Amphotericin . Purpura, esp of lower extremities Thrombocytopenia Auto-Immune . Easy bruising Auto antibodies to platelet thrombocytopenia* Nose bleeds glycoprotein IIb/IIIa (aka ITP) . Bleeding gums Significant bleeding may consume Thrombocytopenia, diminished Bleeding platelets response to transfusion Continued on next page TS 017 (Rev.
    [Show full text]
  • CCEMS Whole Blood Protocol
    PROCEDURES 31 Revised 8/2016 Assessment Approved: Levon Vartanian, MD Hemoglobin Assessment Indications Equipment Needed Trauma or medical patient with suspected blood CLIAwaived photometer, alcohol swab, gauze loss pad, lancet, Capillary Transfer Tube, Test cartridges Procedure 1. Make sure the meter is ready for use. Turn meter on, and when the on-screen display indicates, insert the testing strip all the way in. 2. Cleanse site for capillary puncture using alcohol pad and allow to dry. 3. Lance side of fingertip. Blot away first drop of blood. 4. Press gently once again to get a 2nd drop of blood. 5. Place the tip of the capillary collection tube against the drop of blood. DO NOT squeeze capillary collection tube. 6. Allow capillary collection tube to draw up blood to the level of the black line. 7. Apply blood sample to the specimen area on the test strip. It should fill the entire test area with blood. 8. The meter will then read hemoglobin and hematocrit values. 9. Document findings in PCR. Dispose of microcuvette and lancet into sharps container. Pearls • The meter requires a code chip packaged with each box of testing strips. This chip must be inserted on the left hand side of the meter in slot provided. • Only capillary blood may be tested. Do not use arterial or venous blood. • Samples should be immediately tested. • Hematocrit values will not display if hemoglobin values are outside of the range 12.3–17.5 g/Dl. • Meter will read LO if test result is < 4.5 g/Dl OR if insufficient blood was applied.
    [Show full text]
  • Comparing Platelet Compatibility to Red Cell Compatibility Protocols
    Review: comparing platelet compatibility to red cell compatibility protocols S. ROLIH Between 1971 and 1980, the number of platelet con- Incidence of Alloimmunization From centrates transfused in the United States increased from Transfusion 0.4 to 2.8 million units.1 That number increased to near- Each RBC or platelet transfusion has the potential to ly 5 million in 1987 and continues to increase in the influence the outcome of future transfusions of the 1990s. The increase in platelet transfusions has led to a same products by inducing the formation of alloanti- concomitant rise in the incidence of platelet alloimmu- bodies. For RBC transfusions, in which ABO and D nization. As a consequence, many transfusion services group-compatible units are routinely given, this is not a or blood product providers have developed platelet significant problem. Only 0.3 percent to 1.3 percent of compatibility protocols to select platelet components all RBC transfusion recipients produce alloantibodies, that will have acceptable survival when transfused to although in selected recipient populations, such as alloimmunized patients. Most serologists are familiar patients with thalassemia or sickle cell anemia, the with compatibility tests used to select red blood cells alloimmunization rate may be as high as 30 percent (RBCs) for transfusion. These tests are performed before because of chronic transfusions.2 Overall, decreased sur- transfusion, whether or not alloimmunization has vival of transfused RBCs due to alloimmunization occurs occurred. Platelet compatibility tests, in contrast, are infrequently. Once alloimmunization occurs, premature implemented only after alloimmunization and develop- loss of future transfused RBCs is prevented by the selec- ment of the refractory state.
    [Show full text]
  • Outpatient Blood Platelet Orders
    Blood / Platelet Orders Outpt v5 USE THIS ORDER SET FOR OUTPATIENT NON URGENT BLOOD OR PLATELET TRANSFUSION 24 Hours advanced notice required for infusion center NO MORE THAN 2 UNITS OF RED BLOOD CELLS CAN BE INFUSED AS AN OUTPATIENT PER DAY BMH Outpatient Infusion Center: Fax completed order set to 843-522-7313/Phone 843-522-7680 Hospital Outpatient: Fax Completed order set to Registration at 843-522-5741 and notify Nursing Supervisor at 843-522-7653 ALL INFORMATION BELOW IS REQUIRED BY ORDERING PHYSICIAN Service Designation THIS IS NOT AN ADMISSION SET Patient Name ___________________________________ Patient DOB ____________ Service Designation Blood Platelet Outpatient Attending / Ordering Physician ______________________________ Date Requested ___________________________________ Status Outpatient Check Appropriate Diagnosis Below: [ Anemia of chronic renal disease Anemia related to chemotherapy Myelodysplasia Anemia related to cancer Anemia related to blood loss Sickle cell disease Anemia unspecified Thombocytopenia (platelets) Other _________________________ ] Allergies Update Allergies in the Summary Panel in MEDITECH Special Requirement: (REQUIRES SPECIAL ORDER ONE DAY IN ADVANCE) Special Requirement RBC or Platelets REQUIRES SPECIAL ORDER ONE DAY IN ADVANCE [ Irradiated CMV Negative HgBS Negative ] Vital Signs Per BMH Policy, Blood and Blood Component Administration, 07.02 Diet Mediterranean Style Diet 2 Gm Sodium Diet Regular 7 Diet 1800 kcal Consistent Carbohydrate Diet Other Dietper patient choice ____________________ Medications
    [Show full text]