The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Economics and Sustainable Forest Management: Developing a Transdisciplinary Approach for the Carpathian Mountains
ECOLOGICAL ECONOMICS AND SUSTAINABLE FOREST MANAGEMENT: DEVELOPING A TRANSDISCIPLINARY APPROACH FOR THE CARPATHIAN MOUNTAINS Edited by I.P. Soloviy and W.S. Keeton Ukrainian National Forestry University Press, Lviv © Ihor P. Soloviy and William S. Keeton © Ukrainian National Forestry University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or otherwise without the prior permission of the publisher. Published by Ukrainian National Forestry University Press Gen. Chuprynky 103 Lviv 79057 Ukraine E-mail: [email protected] Ecological economics and sustainable forest management: developing a transdisciplinary approach for the Carpathian Mountains. Edited by I.P. Soloviy, W.S. Keeton. – Lviv : Ukrainian National Forestry University Press, Liga-Pres, 2009. − 432 p. – Statistics: fig. 28, tables 67 , bibliography 686 . The modern scientific conceptions and approaches of ecological economics and sustainable forestry are presented in the book. The attention is given especially to the possibility of the integration of these concepts towards solving the real ecological and economic problems of mountain territories and its sustainable development. The ways of sustainability of forest sector approaching have been proposed using the Ukrainian Carpathian Mountains as a case study. The book will be a useful source for scientists and experts in the field of forest and environmental policies, forest economics and management, as well as for the broad nature conservation publicity. Printed and bound in Ukraine by Omelchenko V. G. LTD Kozelnytska 4, Lviv, Ukraine, phone + 38 0322 98 0380 ISBN 978-966-397-109-0 ЕКОЛОГІЧНА ЕКОНОМІКА ТА МЕНЕДЖМЕНТ СТАЛОГО ЛІСОВОГО ГОСПОДАРСТВА: РОЗВИТОК ТРАНСДИСЦИПЛІНАРНОГО ПІДХОДУ ДО КАРПАТСЬКИХ ГІР За науковою редакцією І. -
Nutrients and Herbivores Impact Grassland Stability Across Multiple
Nutrients and herbivores impact grassland stability across multiple spatial scales through different pathways Q. Q. Chen1, Shaopeng Wang1, Eric Seabloom2, Andrew MacDougall3, Elizabeth Borer2, Jonathan Bakker4, Ian Donohue5, Johannes Knops6, John Morgan7, Oliver Carroll3, Michael Crawley8, Miguel Bugalho9, Sally A Power3, Anu Eskelinen10, Risto Virtanen11, Anita Risch12, Martin Schuetz13, Carly Stevens14, Maria Caldeira15, Sumanta Bagchi3, Juan Alberti16, and Yann Hautier2 1Peking University 2University of Minnesota 3Affiliation not available 4University of Washington 5Trinity College Dublin 6Xi’an Jiaotong-Liverpool University 7La Trobe University 8Imperial College 9University of Lisbon Centre for Applied Ecology Prof Baeta Neves 10German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig 11University of Oulu 12Swiss Federal Institute for Forest Snow and Landscape Research 13Swiss Federal Institute for Forest, Snow and Landscape research 14Lancaster University 15University of Lisbon 16Instituto de Investigaciones Marinas y Costeras (IIMyC; UNMDP-CONICET) April 16, 2021 Abstract Nutrients and herbivores have independent effects on the temporal stability of aboveground biomass in grasslands; however, their joint effects may not be additive and may also depend on spatial scales. In an experiment adding nutrients and excluding herbivores in 34 globally distributed grasslands, we found that nutrients and herbivores mainly had additive effects. Nutrient addition consistently reduced stability at the local and larger spatial scales (aggregated local communities), while herbivore exclusion weakly reduced stability at these scales. Moreover, nutrient addition reduced stability primarily by causing changes in local community composition over time and by reducing local species richness and evenness. In contrast, herbivore exclusion weakly reduced stability at the larger scale mainly by decreasing asynchronous dynamics among local communities, but also by weakly decreasing local species richness. -
Systematic Review to Update 'Value of a Statistical Life'
International Journal of Environmental Research and Public Health Review Systematic Review to Update ‘Value of a Statistical Life’ Estimates for Australia Jaithri Ananthapavan 1,2,* , Marj Moodie 1,2, Andrew J. Milat 3,4 and Rob Carter 1 1 Deakin Health Economics, School of Health and Social Development, Institute for Health Transformation, Deakin University, Geelong, VIC 3220, Australia; [email protected] (M.M.); [email protected] (R.C.) 2 Global Obesity Centre, School of Health and Social Development, Institute for Health Transformation, Deakin University, Geelong, VIC 3220, Australia 3 NSW Ministry of Health, St Leonards, NSW 2065, Australia; [email protected] 4 Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia * Correspondence: [email protected]; Tel.: +61-3-92517181 Abstract: The value of a statistical life (VSL) estimates individuals’ willingness to trade wealth for mortality risk reduction. This economic parameter is often a major component of the quantified benefits estimated in the evaluation of government policies related to health and safety. This study reviewed the literature to update the VSL recommended for Australian policy appraisals. A sys- tematic literature review was conducted to capture Australian primary studies and international review papers reporting VSL estimates published from 2007 to January 2019. International estimates were adjusted for income differences and the median VSL estimate was extracted from each review study. VSL estimates were used to calculate the value of a statistical life year. Of the 18 studies that met the inclusion criteria, two studies were primary Australian studies with a weighted mean VSL of A$7.0 million in 2017 values. -
Nature's Value in Clallam County
NATURE’S VALUE IN CLALLAM COUNTY: POLICY IMPLICATIONS OF THE ECONOMIC BENEFITS OF FEEDER BLUFFS AND 12 OTHER ECOSYSTEMS Prepared by: 107 N. Tacoma Ave Tacoma, WA 98403 253-539-4801 www.eartheconomics.org | [email protected] November 2013 Suggested Citation: Flores, L., Harrison-Cox, J., Wilson, S., Batker, D. 2013. Nature’s Value in Clallam County: The Economic Benefits of Feeder Bluffs and 12 Other Ecosystems. Earth Economics: Tacoma, Washington. Authors: Lola Flores, Jennifer Harrison-Cox, Sara Wilson and David Batker Primary Data Contributors: Anne Shaffer at Coastal Watershed Institute, Dave Parks at Washington State Department of Natural Resources, and Clallam County Department of Community Development. Acknowledgements: Earth Economics would like to thank all who contributed valuable information to this project: Anne Shaffer and Nicole Harris from the Coastal Watershed Institute, Cathy Lear and Steve Gray from Clallam County, Dave Parks from Department of Natural Resources, George Kaminsky and Heather Barron from Department of Ecology, Kathryn Neal from the City of Port Angeles, Clea Rome from the WSU Extension, Ian Miller from WA Seagrant and Helle Andersen, formerly of CWI. We deeply appreciate those who helped review and edit this document, Donna J. Nickerson, Aaron Schwartz, Cathy Lear, Anne Shaffer and Dave Parks. We very much appreciate the professional project sponsorship and support: Margaret Mckeown project manager from the Department of Fish and Wildlife. We would also like to thank our Board of Directors for their continued support of Earth Economics: David Cosman, Josh Farley, Ingrid Rasch, and Josh Reyneveld. Earth Economics project team members for this study included: Tracy Stanton, Maya Kocian, Jonathan Kochmer, Rowan Schmidt, Zachary Christin, Nora Wahlund, Tedi Dickinson, Tania Briceno, TaNeashia Sudds; and our wonderful interns and volunteers: Lauren Travis, Anna Milliren, Hannah Fotherby, Danielle Begg, Yiyan Ge, Can Huynh, Bryan Hueber, Seth Wiggins and Deirdre Gabbay. -
The Value of Human Life
Richárd Adorján THE VALUE OF HUMAN LIFE Development of an exceptional economic issue in Hungary 2 Department of Public Services Tutor: Dr. Ernő Kemenes Richárd Adorján 3 BUDAPEST UNIVERSITY OF ECONOMICS AND PUBLIC ADMINISTRATION PH.D. PROGRAM IN MANAGEMENT THE VALUE OF HUMAN LIFE Development of an exceptional economic issue in Hungary PH.D. DISSERTATION Richárd Adorján Budapest 2004. 4 5 CONTENTS I. INTRODUCTION ........................................................................................................ 9 I.1. The initial problem........................................................................................ 10 I.2. The structure of the dissertation.................................................................. 14 II. COST-BENEFIT ANALYSIS ..................................................................................... 17 II.1. The key points of cost-benefit analysis ...................................................... 18 II.1.1. The most important characteristics of the method.................................. 18 II.1.2. Philosophical issues and other critiques ................................................ 20 II.2. The history of CBA and its use in Hungary .............................................. 22 II.2.1. From the beginning till the Executive Order of President Reagan ........ 22 II.2.2. The role of CBA in Hungary today ......................................................... 22 III. THE HISTORY OF THE ECONOMIC APPROACH TOWARDS VALUING A HUMAN LIFE ................................................................................................................................... -
Ecological Thresholds: the Key to Successful Environmental Management Or an Important Concept with No Practical Application?
Ecosystems (2006) 9: 1–13 DOI: 10.1007/s10021-003-0142-z MINI REVIEW Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application? Peter M. Groffman,1* Jill S. Baron,2 Tamara Blett,3 Arthur J. Gold,4 Iris Goodman,5 Lance H. Gunderson,6 Barbara M. Levinson,5 Margaret A. Palmer,7 Hans W. Paerl,8 Garry D. Peterson,9 N. LeRoy Poff,10 David W. Rejeski,11 James F. Reynolds,12 Monica G. Turner,13 Kathleen C. Weathers,1 and John Wiens14 1Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545, USA; 2Natural Resource Ecology Laboratory, US Geological Survey, Colorado State University, Fort Collins, Colorado 80523-1499, USA; 3Air Resources Division, USDI-National Park Service, Academy Place, Room 450, P.O. Box 25287 Denver, Colorado 80225-0287, USA; 4Department of Natural Resources Science, 105 Coastal Institute in Kingston, University of Rhode Island, One Greenhouse Road, Kingston, Rhode Island 02881, USA 5US Environmental Protection Agency Headquarters, Ariel Rios Building, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA; 6Department of Environmental Studies, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA; 7University of Maryland, Plant Sciences Building 4112, College Park, Maryland 20742-4415, USA; 8Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, North Carolina 28557, USA; 9Center for Limnology, University of Wisconsin, 680 N. Park St., Madison, Wisconsin 53706, USA; 10Department of -
Ecology: Biodiversity and Natural Resources Part 1
CK-12 FOUNDATION Ecology: Biodiversity and Natural Resources Part 1 Akre CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright © 2010 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Printed: October 11, 2010 Author Barbara Akre Contributor Jean Battinieri i www.ck12.org Contents 1 Ecology: Biodiversity and Natural Resources Part 1 1 1.1 Lesson 18.1: The Biodiversity Crisis ............................... 1 1.2 Lesson 18.2: Natural Resources .................................. 32 2 Ecology: Biodiversity and Natural Resources Part I 49 2.1 Chapter 18: Ecology and Human Actions ............................ 49 2.2 Lesson 18.1: The Biodiversity Crisis ............................... 49 2.3 Lesson 18.2: Natural Resources .................................. 53 www.ck12.org ii Chapter 1 Ecology: Biodiversity and Natural Resources Part 1 1.1 Lesson 18.1: The Biodiversity Crisis Lesson Objectives • Compare humans to other species in terms of resource needs and use, and ecosystem service benefits and effects. -
Resilience and Stability of Ecological Systems Author(S): C
Resilience and Stability of Ecological Systems Author(s): C. S. Holling Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 4 (1973), pp. 1-23 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2096802 . Accessed: 08/01/2013 19:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org This content downloaded on Tue, 8 Jan 2013 19:27:43 PM All use subject to JSTOR Terms and Conditions Copyright 1973. All rights reserved RESILIENCE AND STABILITY + 4050 OF ECOLOGICALSYSTEMS C. S. Holling Instituteof ResourceEcology, University of BritishColumbia, Vancouver, Canada INTRODUCTION Individualsdie, populationsdisappear, and speciesbecome extinct. That is one view of the world.But anotherview of the worldconcentrates not so much on presence or absenceas upon the numbersof organismsand the degreeof constancyof their numbers.These are two verydifferent ways of viewingthe behaviorof systemsand the usefulnessof the view dependsvery much on the propertiesof the system concerned. If we are examining a particular device designed by the engineer to perform specific tasks under a rather narrow range of predictable external condi- tions, we are likely to be more concerned with consistent nonvariable performance in which slight departuresfrom the performance goal are immediately counteracted. -
Environmental Limits Page 1
POST Report 370 January 2011 Living with Environmental Limits Page 1 Summary Human well-being is dependent upon assessment approaches. However, where renewable natural resources. Agricultural there is a risk of thresholds being systems, for example, depend upon plant breached and potentially irreversible productivity, soil, the water cycle, the impacts occurring, additional policy nitrogen, sulphur and phosphorus nutrient safeguards to maintain natural resource cycles and a stable climate. Renewable systems within environmental limits are natural resources can be subject to required. biological and physical thresholds beyond which irreversible changes in benefit Managing ecosystems to maximise one provision may occur. These are difficult to particular benefit, such as food provision, define and many are likely to be identified can result in declines in other benefits. only once crossed. An environmental limit The evidence base is not yet sufficient to is usually interpreted as the point or range determine the most effective ways to of conditions beyond which there is a maintain benefit provision within significant risk of thresholds being environmental limits, but a range of policy exceeded and unacceptable changes responses are seeking to optimise multiple occurring.1 benefit provision, including: Biodiversity loss, climate change and a agri-environment schemes range of other pressures are affecting generic measures to enhance renewable natural resources. If biodiversity, which may increase governments do not effectively monitor the the capacity of natural resource use and degradation of natural resource systems to adapt to environmental systems in national account frameworks, change the probability of costs arising from the use of ecological processes to exploiting natural resources beyond increase overall natural system environmental limits is not taken into resilience to address problems account. -
A Biosphere Reserve? a Biosphere Reserve (BR) Is an International Designation by UNESCO in the Man and Biosphere (MAB) Program
Appendix 1. The ES concept in the UNESCO Man and Biosphere (MAB) program What is a Biosphere Reserve? A biosphere reserve (BR) is an international designation by UNESCO in the Man And Biosphere (MAB) program. A BR includes one or several protected areas and their surrounding landscape to combine both biodiversity conservation and sustainable/wise use of natural resources. A BR is a place where local communities are involved in management through dialogue and concerted multi-stakeholder approaches. Through monitoring, research, education, and training, BRs aim to develop and demonstrate sound sustainable development practices and policies. In 2017, there are 669 BRs in 120 countries all over the world, connected through international, regional, and national networks promoting knowledge sharing and exchanges of experiences. How is the ES concept operationalized in Biosphere Reserves? Since 2013, the ES concept has been integrated in the requisite forms for BR creation or revision. Coordinators are requested to address the following: “- 12.1 If possible, identify the ecosystem services provided by each ecosystem of the biosphere reserve and the beneficiaries of these services. - 12.2 Specify whether indicators of ecosystem services are used to evaluate the three functions (conservation, development, and logistic) of biosphere reserves. If yes, which ones and give details. - 12.3 Describe biodiversity involved in the provision of ecosystems services in the biosphere reserve (e.g. species or groups of species involved). - 12.4 Specify whether any ecosystem services assessment has been done for the proposed biosphere reserve”. This requires inventory approaches, with objective ES assessments, rather than deliberations among people about ES management. -
Natural Capital in the Colorado River Basin
NATURE’S VALUE IN THE COLORADO RIVER BASIN NATURE’S VALUE IN THE COLORADO RIVER BASIN JULY, 2014 AUTHORS David Batker, Zachary Christin, Corinne Cooley, Dr. William Graf, Dr. Kenneth Bruce Jones, Dr. John Loomis, James Pittman ACKNOWLEDGMENTS This study was commissioned by The Walton Family Foundation. Earth Economics would like to thank our project advisors for their invaluable contributions and expertise: Dr. Kenneth Bagstad of the United States Geological Survey, Dr. William Graf of the University of South Carolina, Dr. Kenneth Bruce Jones of the Desert Research Institute, and Dr. John Loomis of Colorado State University. We would like to thank our team of reviewers, which included Dr. Kenneth Bagstad, Jeff Mitchell, and Leah Mitchell. We would also like to thank our Board of Directors for their continued support and guidance: David Cosman, Josh Farley, and Ingrid Rasch. Earth Economics research team for this study included Cameron Otsuka, Jacob Gellman, Greg Schundler, Erica Stemple, Brianna Trafton, Martha Johnson, Johnny Mojica, and Neil Wagner. Cover and layout design by Angela Fletcher. The authors are responsible for the content of this report. PREPARED BY 107 N. Tacoma Ave Tacoma, WA 98403 253-539-4801 www.eartheconomics.org [email protected] ©2014 by Earth Economics. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. FUNDED BY EARTH ECONOMICS i ABSTRACT This study presents an economic characterization of the value of ecosystem services in the Colorado River Basin, a 249,000 square mile region spanning across mountains, plateaus, and low-lying valleys of the American Southwest. -
Biosphere Introduction the Biosphere in Education
10/5/2016 Biosphere Encyclopedia of Earth AUTHOR LOGIN EOE PAGES BROWSE THE EOE Home Article Tools: Titles (AZ) About the EoE Authors Editorial Board Biosphere Topics International Advisory Board Topic Editors FAQs Lead Author: Erle Ellis (other articles) Content Partners EoE for Educators Article Topic: Geography Content Sources Contribute to the EoE This article has been reviewed and approved by the following Topic Editor: Leszek A. eBooks Bledzki (other articles) Support the EoE Classics Last Updated: January 8, 2009 Contact the EoE Collections Find Us Here RSS Reviews Table of Contents Awards and Honors Introduction 1 Introduction The biosphere is the biological component of earth systems, which 1.1 History of the Biosphere also include the lithosphere, hydrosphere, atmosphere and other Concept 2 The Biosphere in Education "spheres" (e.g. cryosphere, anthrosphere, etc.). The biosphere 3 Biosphere Research includes all living organisms on earth, together with the dead organic 4 The Future of the Biosphere matter produced by them. 5 More About the Biosphere 6 Further Reading The biosphere concept is common to many scientific disciplines including astronomy, SOLUTIONS JOURNAL geophysics, geology, hydrology, biogeography and evolution, and is a core concept in ecology, earth science and physical geography. A key component of earth systems, the biosphere interacts with and exchanges matter and energy with the other spheres, helping to drive the global biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur and other elements. From an ecological point of view, the biosphere is the "global ecosystem", comprising the totality of biodiversity on earth and performing all manner of biological functions, including photosynthesis, respiration, decomposition, nitrogen fixation and denitrification.