Appendix a Table of Indigenous Plant Resources and Their
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Add a Tuber to the Pod: on Edible Tuberous Legumes
LEGUME PERSPECTIVES Add a tuber to the pod: on edible tuberous legumes The journal of the International Legume Society Issue 19 • November 2020 IMPRESSUM ISSN Publishing Director 2340-1559 (electronic issue) Diego Rubiales CSIC, Institute for Sustainable Agriculture Quarterly publication Córdoba, Spain January, April, July and October [email protected] (additional issues possible) Editor-in-Chief Published by M. Carlota Vaz Patto International Legume Society (ILS) Instituto de Tecnologia Química e Biológica António Xavier Co-published by (Universidade Nova de Lisboa) CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier [email protected] (Universidade Nova de Lisboa), Oeiras, Portugal Technical Editor Office and subscriptions José Ricardo Parreira Salvado CSIC, Institute for Sustainable Agriculture Instituto de Tecnologia Química e Biológica António Xavier International Legume Society (Universidade Nova de Lisboa) Apdo. 4084, 14080 Córdoba, Spain Oeiras, Portugal Phone: +34957499215 • Fax: +34957499252 [email protected] [email protected] Legume Perspectives Design Front cover: Aleksandar Mikić Ahipa (Pachyrhizus ahipa) plant at harvest, [email protected] showing pods and tubers. Photo courtesy E.O. Leidi. Assistant Editors Svetlana Vujic Ramakrishnan Nair University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia AVRDC - The World Vegetable Center, Shanhua, Taiwan Vuk Đorđević Ana María Planchuelo-Ravelo Institute of Field and Vegetable Crops, Novi Sad, Serbia National University of Córdoba, CREAN, Córdoba, Argentina Bernadette Julier Diego Rubiales Institut national de la recherche agronomique, Lusignan, France CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Kevin McPhee Petr Smýkal North Dakota State University, Fargo, USA Palacký University in Olomouc, Faculty of Science, Department of Botany, Fred Muehlbauer Olomouc, Czech Republic USDA, ARS, Washington State University, Pullman, USA Frederick L. -
The Prairie Potato
Topeka's Roots: the Prairie Potato The word Topeka comes from Indian words meaning a good place to dig potatoes. by Barbara Burgess, Ph. D. http://www.barbburgess.com/research-topics/prairie-potato-topeka/topeka-s-roots-the- prairie-potato Part 1. Topeka - a good place to dig potatoes. Topeka’s roots grow deep in the Kansas soil, and in this case the roots really are roots, known to scientists as Psoralea esculenta and to pioneers and Indians as prairie potatoes or prairie turnips. The word Topeka comes from Indian words meaning a good place to dig potatoes. Founded on December 5, 1854, Topeka was officially named on January 2, 1855. Fry W. Giles, one of the city’s founders, wrote that the Rev. S.Y. Lum proposed the name Topeka on January 1, 1855, and Giles said that the founders of the city chose the name because it was “a name not found in the list of post offices of the United States, nor in any lexicon of the English language. It was novel, of Indian origin and euphonious of sound.” (Giles 27) Giles said they liked the idea of the name being composed of three consonants alternating with 3 vowels and that it was a good name because it should be easy to pronounce. He said that the name was unanimously adopted by the founders of Topeka on January 2, 1855. (Giles 27) While the city’s founders may not have known the meaning of Topeka, they did not invent this word. They may have found the name on the map drawn by missionary Johnston Lykins who drew the map while he was living at the Potawatomi Baptist Mission in 1849. -
Flora of Oakmont Park, City of Fort Worth Tarrant Co
Flora of Oakmont Park, City of Fort Worth Tarrant Co. Updated 09 April 2015 150 species Oakmont Park FLOWER STATE/FED FAMILY OLD FAMILY LATIN NAME COMMON NAME BLOOM PERIOD Expr1006 COLOR RANK Amaryllidaceae Alliaceae=Liliaceae Allium drummondii Drummond's Onion ++345++++++++++ White/Pink Amaryllidaceae Alliaceae=Liliaceae Nothoscordum bivalve Crow-Poison +F345+++910++++ White Apiaceae Chaerophyllum tainturieri var. Smooth Chervil ++34+++++++++++ White tainturieri Apiaceae Cymopterus macrohizus Bigroot Cymopterus JF34+++++++++++ White/Pink Apiaceae Eryngium leavenworthii Leavenworth Eryngo ++++++789++++++ Purple Apiaceae Polytaenia nuttallii=texana Prairie Parsley +++45++++++++++ Yellow Apiaceae Sanicula canadensis Canada Sanicle +++456+++++++++ White Apiaceae Torilis arvensis Hedge Parsley +++456+++++++++ White Apiaceae Torilis nodosa Knotted Hedge-Parsley +++456+++++++++ White Apocynaceae Asclepidaceae Asclepias asperula ssp. capricornu Antelope Horns +++45678910++++ White Aquifoliaceae Ilex decidua Possum Haw ++345++++++++++ White Asparagaceae Agavaceae Yucca arkansana Arkansas Yucca +++45++++++++++ White Asparagaceae Agavaceae Yucca necopina Glen Rose Yucca ++++5++++++++++ White S1S2 S1S2 Asparagaceae Agavaceae Yucca pallida Pale Leaf Yucca ++++5++++++++++ White S3 S3 Asteraceae Ambrosia psilostachya Western Ragweed +++++++891011++ Inconspicuous Asteraceae Amphiachyris Common Broomweed ++++++7891011++ Yellow dracunculoides=Gutierrezia Asteraceae Artemisia ludoviciana ssp. mexicana Mexican Sagebrush +++++++++1011++ Yellowish White Asteraceae -
Soopolallie (Shepherdia Canadensis) Other Names: Soapberry, Canada Buffaloberry, Russet Buffaloberry
Soopolallie (Shepherdia canadensis) Other names: Soapberry, Canada buffaloberry, Russet buffaloberry. Background Soopolallie is a shrub in the Oleaster family (Elaeagnaceae). Other BC plants in this family include the wolf-willow and the naturalized Russian olive. The name ‘soopolallie’ is from the Chinook language for soap (soop) and berry (olallie) (Parish et al 1996). Plant Morphology Soopolallie is a deciduous shrub 1-2 metres tall with brownish branches that are covered with small brownish-orange scabs. The young branches are covered with many rusty spots, as are the undersides of the leaves. The leaves (sparsely distributed along the branches) are opposite and oval with dark green upper surfaces and silvery-whitish hairs on the under surfaces. The yellowish-brown inconspicuous flowers are borne in clusters on stems, before the leaves open. Male and female flowers are produced on separate plants. The fruits are small, soft, bright red berries that are oval and somewhat translucent. They are juicy and edible but extremely bitter and soapy to touch (Parish et al 1996). Ecology In British Columbia, the soopolallie is widespread and very common at low to subalpine elevations in dry to moist open forests, openings and clearings (Parish et al 1996). It is a transcontinental shrub that occurs sporadically in the pacific region (not at all on the Queen Charlotte Islands) with its occurrence increasing with increasing continentality. It is commonly associated with pinegrass (Calamagrostis rubescens), twinflower (Linnaea borealis), and falsebox (Paxistima myrsinites). Soopolallie has a symbiotic relationship with nitrogen- fixing organisms (Klinka et al 1989). Often, the soopolallie is found on gravelly, shallow soils (Hebda 1995). -
CBA/ABC Bulletin 35(1)
THE CANADIAN BOTANICAL ASSOCIATION BULLETIN DE LASSOCIATION BOTANIQUE DU CANADA February / février 2002 35(1) Montréal Patron / Président d'honneur Her Excellency the Right Honourable / Son excellence la très honorable Adrienne Clarkson, C.C., C.M.M., C.D. Governor General of Canada / Gouverneure générale du Canada On the inside / À l'intérieur I Presidents Message I This issue of the bulletin is the last one to be produced by Denis Lauzer. I am sure you will all agree that Denis has done a wonderful job bringing us all up to date on the current happenings in our Association. Thank you, Denis, for all the 2 Page time you have invested producing such an excellent publication. Editors / La rédaction CBA Section and Committee Chairs The next issue of the Bulletin will be produced in Edmundston, NB, under the direction of our new Editor, Martin Dubé. We look forward to the continued production of an informative and interesting Bulletin under his editorship. Page 3 Plans are being finalized for our next Annual Meeting (August 4-7), to be President's Message (continued) held at the Pyle Conference Center on the campus of the University of Wisconsin Macoun Travel Boursary in Madison, Wisconsin. The deadline for submission of abstracts is now estab- 2002 CBA Annual Meeting / lished (April 1, 2002) and we now have a list of planned Symposia. The subject Congrès annuel de l'ABC 2002 of the Plenary Symposium is Evolution: Highlighting Plants, organized by Patricia Gensel. Sectional Symposia of the Botanical Socie ty of America (with input from Page 4 CBA Sections) include the following: Poorly Known Economic Plants of Canada - 32. -
Phylogenetic Relationships in Korean Elaeagnus L. Based on Nrdna ITS Sequences
Korean J. Plant Res. 27(6):671-679(2014) Print ISSN 1226-3591 http://dx.doi.org/10.7732/kjpr.2014.27.6.671 Online ISSN 2287-8203 Original Research Article Phylogenetic Relationships in Korean Elaeagnus L. Based on nrDNA ITS Sequences OGyeong Son1, Chang Young Yoon2 and SeonJoo Park1* 1Department of Life Science, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Biotechnology, Shingyeong University, Hwaseon 445-741, Korea Abstract - Molecular phylogenetic analyses of Korean Elaeagnus L. were conducted using seven species, one variety, one forma and four outgroups to evaluate their relationships and phylogeny. The sequences of internal transcribed spacer regions in nuclear ribosomal DNA were employed to construct phylogenetic relationships using maximum parsimony (MP) and Bayesian analysis. Molecular phylogenetic analysis revealed that Korean Elaeagnus was a polyphyly. E. umbellata var. coreana formed a subclade with E. umbellata. Additionally, the genetic difference between E. submacrophylla and E. macrophylla was very low. Moreover, E. submacrophylla formed a branch from E. macrophylla, indicating that E. submacrophylla can be regarded as a variety. However, several populations of this species were not clustered as a single clade; therefore, further study should be conducted using other molecular markers. Although E. glabra f. oxyphylla was distinct in morphological characters of leaf shape with E. glabra. But E. glabra f. oxyphylla was formed one clade by molecular phylogenetic with E. glabra. Additionally, this study clearly demonstrated that E. pungens occurs in Korea, although it was previously reported near South Korea in Japan and China. According to the results of ITS regions analyses, it showed a resolution and to verify the relationship between interspecies of Korean Elaeagnus. -
Silver Buffaloberry
Silver Buffaloberry slide 4a 400% slide 4b 360% slide 4c slide 4d 360% 360% III-5 Silver Buffaloberry Environmental Requirements (Shepherdia argentea) Soils Soil Texture - Grows well in most soils. Soil pH - 5.5 to 8.0. Adapted to moderately alkaline and General Description saline soils. A tall, thorny, thicket-forming native shrub. Well adapted Windbreak Suitability Group - 1, 1K, 3, 4, 4C, 5, 6D, 6G, 8, to dry, moderately alkaline and saline soils. Tolerates 9C, 9L. infertile soils, in part because of its ability to fix and assimilate atmospheric nitrogen. Berries used for jellies. Cold Hardiness USDA Zone - 2. Leaves and Buds Bud Arrangement - Opposite. Water Drought tolerant. Not adapted to wet, poorly-drained Bud Color - Silvery. sites. Bud Size - Small, solitary or multiple, stalked, oblong. Leaf Type and Shape - Simple, oblong-elliptical. Light Leaf Margins - Entire. Full sun. Leaf Surface - Finely-scaled, pubescent. Uses Leaf Length - 1 to 2 inches. Leaf Width - 1/4 to 5/8 inch. Conservation/Windbreaks Leaf Color - Silvery-gray on both surfaces. Medium to tall shrub for farmstead and field windbreaks, riparian plantings, and highway beautification. Flowers and Fruits Flower Type - Dioecious. Wildlife Highly important for mule deer browse. Ideal cover and Flower Color - Yellowish. nesting site for many birds. Preferred food source of many Fruit Type - Drupe-like, insipid, ovoid. songbirds and sharptail grouse. Good late winter food Fruit Color - Predominately red, however, some female source for birds. plants can produce yellow fruits. Agroforestry Products Form Food - Fruit processed as jams and jellies. Growth Habit - Loosely branched shrub of rounded outline. Urban/Recreational Ornamental foliage and fruit, but limited in use because of Texture - Medium-fine, summer; fine, winter. -
Morphological Examination of Prairie Turnip (Psoralea Esculenta Pursh) Root Edward Kraft South Dakota State University
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Oak Lake Field Station Research Publications Oak Lake Field Station 2001 Morphological Examination of Prairie Turnip (Psoralea Esculenta Pursh) Root Edward Kraft South Dakota State University R. Neil Reese South Dakota State University, [email protected] Follow this and additional works at: https://openprairie.sdstate.edu/oak-lake_research-pubs Recommended Citation Kraft, Edward and Reese, R. Neil, "Morphological Examination of Prairie Turnip (Psoralea Esculenta Pursh) Root" (2001). Oak Lake Field Station Research Publications. 57. https://openprairie.sdstate.edu/oak-lake_research-pubs/57 This Article is brought to you for free and open access by the Oak Lake Field Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Oak Lake Field Station Research Publications by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Proceedings of the South Dakota Academy of Science,Vol. 80 (2001) 359 MORPHOLOGICAL EXAMINATION OF PRAIRIE TURNIP (PSORALEA ESCULENTA PURSH) ROOT Edward Kraft and R. Neil Reese South Dakota State University Brookings, SD 57007 ABSTRACT Psoralea esculenta Pursh is an herbaceous perennial legume, native to the Great Plains, that has a tuberous-thickened taproot. Native American popula- tions have long used the roots of this plant as food source. The Psoralea root has a tough outer covering (bark) and a fleshy interior that contains numerous isolated vascular strands. Root tissues from mature and young roots were fixed and embedded in JB-4 plastic. -
Rebecca K. Swadek Tony L. Burgess
THE VASCULAR FLORA OF THE NORTH CENTRAL TEXAS WALNUT FORMATION Rebecca K. Swadek Tony L. Burgess Texas Christian University Texas Christian University Department of Environmental Science Department of Environmental Science Botanical Research Institute of Texas TCU Box 298830 1700 University Drive Fort Worth, Texas 76129, U.S.A. Fort Worth, Texas 76107-3400, U.S.A. [email protected] [email protected] ABSTRACT Political boundaries frequently define local floras. This floristic project takes a geological approach inspired by Dalea reverchonii (Comanche Peak prairie clover), which is primarily endemic to glades of the Walnut Formation. The Cretaceous Walnut Formation (Comanchean) lies on the drier western edge of the Fort Worth Prairie in North Central Texas. Its shallow limestone soils, formed from alternating layers of hard limestone and clayey marl, support a variety of habitats. Glades of barren limestone typically appear on ridgetops, grassland savannas form on eroding hillslopes, and seeps support diverse hyperseasonal vegetation. Vouchers were collected from January 2010 to June 2012 resulting in 469 infraspecific taxa, 453 species in 286 genera and 79 families. The richest five plant families are Asteraceae (74 taxa), Poa- ceae (73), Fabaceae (34), Euphorbiaceae (18), and Cyperaceae (17). There are 61 introduced species. Results indicate floristic affinities to limestone cedar glades of the Southeastern United States, the Edwards Plateau of Central Texas, and calcareous Apacherian Savannas of Southwestern North America. RESUMEN Las fronteras políticas definen frecuentemente las floras locales. Este proyecto florístico toma una aproximación geológica inspirada en Dalea reverchonii (trébol de la paradera de Comanche Peak), que es primariamente endémico de los claros de la formación Walnut. -
Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Oral Session Abstracts ORALS–MONDAY 102Nd Annual International Conference of the American Society for Horticultural Science Las Vegas, Nevada
Oral Session Abstracts ORALS–MONDAY 102nd Annual International Conference of the American Society for Horticultural Science Las Vegas, Nevada Presenting authors are denoted by an astrisk (*) the CP treatment had a higher Area Under the Disease Progress Curve than the NST treatment in tomato in 2003. Overall, disease pressure was highest in tomato in 2001. But disease levels within years were Oral Session 1—Organic Horticulture mostly unaffected by amendment treatments. In cabbage, disease was more common in 2002 than in 2003, although head rot was more Moderator: Matthew D. Kleinhenz prevalent in compost-amended plots in 2003 than in manure-amended 18 July 2005, 2:00–4:00 p.m. Ballroom H or control plots. Tomato postharvest quality parameters were similar among amendment and weed treatments within each year. Soil amend- Weed Control in Organic Vegetable Production: The Use ment may enhance crop yield and quality in a transitional-organic of Sweet Corn Transplants and Vinegar system. Also, weed management strategy can alter weed populations and perhaps disease levels. Albert H. Markhart, III *1, Milton J. Harr 2, Paul Burkhouse 3 Consumer Sensory Evaluation of Organically and Con- 1University of Minnesota, Horticultural Science, 223 Alderman Hall, St. Paul, MN, 55108; 2Southwest State University, Southwest Research and Outreach Center, Lamberton, MN, ventionally Grown Spinach 56512; 3Farm, Foxtail Farm, Shafer, MN, 55074 Xin Zhao *1, Edward E. Carey 1, Fadi M. Aramouni2 Weed control in organic vegetable production is a major challenge. 1Kansas State University, Horticulture, Forestry and Recreation Resources, 2021 Throck- During Summer 2004, we conducted fi eld trials to manage weeds in morton Hall, Manhattan, KS, 66506; 2Kansas State University, Animal Sciences and organic sweet corn, carrots and onions.