Predicted Power in Ultra High Energy Cosmic Rays from Active Galaxies Laurent¸Iu I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
The MASSIVE Survey-VIII. Stellar Velocity Dispersion Profiles And
MNRAS 000,1{17 (2017) Preprint 26 October 2017 Compiled using MNRAS LATEX style file v3.0 The MASSIVE Survey - VIII. Stellar Velocity Dispersion Profiles and Environmental Dependence of Early-Type Galaxies Melanie Veale,1;2? Chung-Pei Ma,1;2? Jenny E. Greene,3 Jens Thomas,4 John P. Blakeslee,5 Jonelle L. Walsh,6 Jennifer Ito1 1Department of Astronomy, University of California, Berkeley, CA 94720, USA 2Department of Physics, University of California, Berkeley, CA 94720, USA 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 4Max Plank-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany 5Dominion Astrophysical Observatory, NRC Herzberg Astronomy & Astrophysics, Victoria BC V9E2E7, Canada 6George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We measure the radial profiles of the stellar velocity dispersions, σ¹Rº, for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude > 11 MK < −25:3 mag, or stellar mass M∗ ∼ 4 × 10 M , within 108 Mpc. Our wide-field 10700×10700 IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ¹Rº. While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36% to have rising outer dispersion profiles, 30% to be flat within the uncertainties, and 34% to be falling. -
Download (1MB)
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/136213/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Smith, Mark D., Bureau, Martin, Davis, Timothy A., Cappellari, Michele, Liu, Lijie, Onishi, Kyoko, Iguchi, Satoru, North, Eve V. and Sarzi, Marc 2021. WISDOM project - VI. Exploring the relation between supermassive black hole mass and galaxy rotation with molecular gas. Monthly Notices of the Royal Astronomical Society 500 , pp. 1933-1952. 10.1093/mnras/staa3274 file Publishers page: http://dx.doi.org/10.1093/mnras/staa3274 <http://dx.doi.org/10.1093/mnras/staa3274> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. MNRAS 500, 1933–1952 (2021) doi:10.1093/mnras/staa3274 Advance Access publication 2020 October 22 WISDOM project – VI. Exploring the relation between supermassive black hole mass and galaxy rotation with molecular gas Mark D. Smith ,1‹ Martin Bureau,1,2 Timothy A. Davis ,3 Michele Cappellari ,1 Lijie Liu,1 Kyoko Onishi ,4,5,6 Satoru Iguchi ,5,6 Eve V. -
Bright Star Double Variable Globular Open Cluster Planetary Bright Neb Dark Neb Reflection Neb Galaxy Int:Pec Compact Galaxy Gr
bright star double variable globular open cluster planetary bright neb dark neb reflection neb galaxy int:pec compact galaxy group quasar ALL AND ANT APS AQL AQR ARA ARI AUR BOO CAE CAM CAP CAR CAS CEN CEP CET CHA CIR CMA CMI CNC COL COM CRA CRB CRT CRU CRV CVN CYG DEL DOR DRA EQU ERI FOR GEM GRU HER HOR HYA HYI IND LAC LEO LEP LIB LMI LUP LYN LYR MEN MIC MON MUS NOR OCT OPH ORI PAV PEG PER PHE PIC PSA PSC PUP PYX RET SCL SCO SCT SER1 SER2 SEX SGE SGR TAU TEL TRA TRI TUC UMA UMI VEL VIR VOL VUL Object ConRA Dec Mag z AbsMag Type Spect Filter Other names CFHQS J23291-0301 PSC 23h 29 8.3 - 3° 1 59.2 21.6 6.430 -29.5 Q ULAS J1319+0950 VIR 13h 19 11.3 + 9° 50 51.0 22.8 6.127 -24.4 Q I CFHQS J15096-1749 LIB 15h 9 41.8 -17° 49 27.1 23.1 6.120 -24.1 Q I FIRST J14276+3312 BOO 14h 27 38.5 +33° 12 41.0 22.1 6.120 -25.1 Q I SDSS J03035-0019 CET 3h 3 31.4 - 0° 19 12.0 23.9 6.070 -23.3 Q I SDSS J20541-0005 AQR 20h 54 6.4 - 0° 5 13.9 23.3 6.062 -23.9 Q I CFHQS J16413+3755 HER 16h 41 21.7 +37° 55 19.9 23.7 6.040 -23.3 Q I SDSS J11309+1824 LEO 11h 30 56.5 +18° 24 13.0 21.6 5.995 -28.2 Q SDSS J20567-0059 AQR 20h 56 44.5 - 0° 59 3.8 21.7 5.989 -27.9 Q SDSS J14102+1019 CET 14h 10 15.5 +10° 19 27.1 19.9 5.971 -30.6 Q SDSS J12497+0806 VIR 12h 49 42.9 + 8° 6 13.0 19.3 5.959 -31.3 Q SDSS J14111+1217 BOO 14h 11 11.3 +12° 17 37.0 23.8 5.930 -26.1 Q SDSS J13358+3533 CVN 13h 35 50.8 +35° 33 15.8 22.2 5.930 -27.6 Q SDSS J12485+2846 COM 12h 48 33.6 +28° 46 8.0 19.6 5.906 -30.7 Q SDSS J13199+1922 COM 13h 19 57.8 +19° 22 37.9 21.8 5.903 -27.5 Q SDSS J14484+1031 BOO -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Arxiv:0811.1848V3 [Astro-Ph] 18 Dec 2008 Cieglci Uli Ore O Lr Iheeg Cosmi Energy High Biermann Ultra L
Active Galactic Nuclei: Sources for ultra high energy cosmic rays? Peter L. Biermannabcde, Julia K. Beckerf g, Laurent¸iu Carametea h, Alex Curut¸iua, Ralph Engele, Heino Falckei j, L´aszl´o A.´ Gergelyk l, P. Gina Isare h, Ioana C. Mari¸se, Athina Melim, Karl-Heinz Kampertn, Todor Stanevo, Oana Ta¸sc˘aun, Christian Ziera p aMPI for Radioastronomy, Bonn, Germany bDept. of Phys. & Astron., Univ. of Bonn, Germany cDept. of Phys. & Astr., Univ. of Alabama, Tuscaloosa, AL, USA dDept. of Phys., Univ. of Alabama at Huntsville, AL, USA eInst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT), Germany f Institution f¨or Fysik, G¨oteborgs Univ., Sweden gDept. of Phys., Univ. Dortmund, Dortmund, Germany hInstitute for Space Studies, Bucharest, Romania iDept. of Astrophys., IMAP, Radboud Univ., Nijmegen, Netherlands jASTRON, Dwingeloo, Netherlands kDept. Appl. Sci., London South Bank University, UK lDept. of Theoret. & Exp. Phys., Univ. of Szeged, Szeged, Hungary mPhysik. Inst. Univ. Erlangen-N¨urnberg, Germany nPhys. Dept., Univ. Wuppertal, Germany oBartol Research Inst., Univ. of Delaware, Newark, DE, USA arXiv:0811.1848v3 [astro-ph] 18 Dec 2008 pRaman Res. Inst., Bangalore, India The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. -
190 Index of Names
Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea -
The MASSIVE Survey – X
MNRAS 479, 2810–2826 (2018) doi:10.1093/mnras/sty1649 Advance Access publication 2018 June 22 The MASSIVE Survey – X. Misalignment between kinematic and photometric axes and intrinsic shapes of massive early-type galaxies Irina Ene,1,2‹ Chung-Pei Ma,1,2 Melanie Veale,1,2 Jenny E. Greene,3 Jens Thomas,4 5 6,7 8 9 John P. Blakeslee, Caroline Foster, Jonelle L. Walsh, Jennifer Ito and Downloaded from https://academic.oup.com/mnras/article-abstract/479/2/2810/5042947 by Princeton University user on 27 June 2019 Andy D. Goulding3 1Department of Astronomy, University of California, Berkeley, CA 94720, USA 2Department of Physics, University of California, Berkeley, CA 94720, USA 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 4Max Plank-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany 5Dominion Astrophysical Observatory, NRC Herzberg Astronomy and Astrophysics, Victoria, BC V9E 2E7, Canada 6Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia 7ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 8George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 9Department of Physics, University of California, San Diego, CA 92093, USA Accepted 2018 June 19. Received 2018 June 19; in original form 2018 January 30 ABSTRACT We use spatially resolved two-dimensional stellar velocity maps over a 107 × 107 arcsec2 field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5 M in the MASSIVE survey. -
Active Galactic Nuclei: Sources for Ultra High Energy Cosmic Rays!
ACTIVE GALACTIC NUCLEI: SOURCES FOR ULTRA HIGH ENERGY COSMIC RAYS! Peter L. Biermann1,2,3,4, Laurent¸iu Caramete1,5, Alex Curut¸iu1, Ioana Dut¸an1, Ioana C. Mari¸s6, Oana Ta¸sc˘au7, Julia Becker8,9, Ralph Engel6, Heino Falcke10, Karl-Heinz Kampert7, & Todor Stanev11 1 MPI for Radioastronomy, Bonn, Germany 2 Dept. of Phys. & Astron., Univ. of Bonn, Germany 3 Dept. of Phys. & Astr., Univ. of Alabama, Tuscaloosa, AL, USA 4 Dept. of Phys., Univ. of Alabama at Huntsville, AL, USA 1 5 Institute for Space Studies, Bucharest, Romania 6 FZ Karlsruhe, and Phys. Dept., Univ. Karlsruhe, Germany 7 Phys. Dept., Univ. Wuppertal, Germany 8 Institution f¨orFysik, G¨oteborgs Univ., Sweden 9 Dept. of Phys., Univ. Dortmund, Dortmund, Germany 10 Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen, Netherlands 11 Bartol Research Inst., Univ. of Delaware, Newark, DE, USA www.mpifr-bonn.mpg.de/div/theory 2 Abstract: Ultra high energy cosmic rays were discovered over forty years ago (Linsley 1963). The first prediction has been that due to in- teraction with the microwave background their spectrum should show a turn-down near 5 1019 eV (Greisen 1966, Zatsepin & Kuzmin 1966): this has now been confirmed by both HiRes and Auger (ICRC Mexico 2007). While many sites of origin have been proposed, only one argument demonstrated that protons of order 1021 eV are required in a source region to ex- plain observations, specifically the ubiquitous turnoff in the optical synchrotron spectrum near 3 1014 Hz (Biermann & Strittmatter 1987); this argument led to the second prediction that radio galaxies are sources of ultra high en- ergy cosmic rays, one rare and specific class of active galactic nuclei (AGN). -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39