Leo – Objektauswahl NGC Teil 1

Total Page:16

File Type:pdf, Size:1020Kb

Leo – Objektauswahl NGC Teil 1 Leo – Objektauswahl NGC Teil 1 NGC 2862 NGC 2903 NGC 2926 NGC 2941 NGC 2970 NGC 3024 NGC 3068 NGC 3119 NGC 2872 NGC 2905 NGC 2927 NGC 2943 NGC 2981 NGC 3026 NGC 3069 NGC 3130 NGC 2873 NGC 2906 NGC 2928 NGC 2944 NGC 2984 NGC 3032 NGC 3070 NGC 3131 Teil 2 NGC 2874 NGC 2911 NGC 2929 NGC 2946 NGC 2988 NGC 3040 NGC 3071 NGC 3134 NGC 2875 NGC 2913 NGC 2930 NGC 2948 NGC 2991 NGC 3041 NGC 3075 NGC 3153 Teil 3 NGC 2882 NGC 2914 NGC 2931 NGC 2949 NGC 2994 NGC 3048 NGC 3080 NGC 3154 NGC 2885 NGC 2916 NGC 2933 NGC 2954 NGC 3011 NGC 3049 NGC 3088 NGC 3162 Teil 4 NGC 2893 NGC 2918 NGC 2934 NGC 2958 NGC 3016 NGC 3053 NGC 3094 NGC 3177 Teil 5 NGC 2894 NGC 2919 NGC 2939 NGC 2964 NGC 3019 NGC 3060 NGC 3098 NGC 3185 NGC 2896 NGC 2923 NGC 2940 NGC 2968 NGC 3020 NGC 3067 NGC 3107 NGC 3186 Zur Objektauswahl: Nummer anklicken Sternbild- Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Übersicht Zum Detailfoto: Objekt in Übersichtskarte anklicken Leo – Objektauswahl NGC Teil 2 NGC 3187 NGC 3221 NGC 3274 NGC 3346 NGC 3370 NGC 3419 NGC 3438 NGC 3462 NGC 3189 NGC 3222 NGC 3279 NGC 3349 NGC 3377 NGC 3425 NGC 3439 NGC 3466 Teil 1 NGC 3190 NGC 3226 NGC 3287 NGC 3351 NGC 3379 NGC 3426 NGC 3441 NGC 3467 NGC 3193 NGC 3227 NGC 3299 NGC 3352 NGC 3384 NGC 3427 NGC 3443 NGC 3473 NGC 3196 NGC 3230 NGC 3300 NGC 3356 NGC 3389 NGC 3428 NGC 3444 NGC 3474 NGC 3204 NGC 3239 NGC 3301 NGC 3357 NGC 3391 NGC 3433 NGC 3447 NGC 3475 Teil 3 NGC 3209 NGC 3248 NGC 3303 NGC 3362 NGC 3399 NGC 3454 NGC 3476 NGC 3213 NGC 3251 NGC 3306 NGC 3363 NGC 3405 NGC 3434 NGC 3455 NGC 3477 Teil 4 NGC 3216 NGC 3253 NGC 3332 NGC 3367 NGC 3412 NGC 3436 NGC 3457 NGC 3485 Teil 5 NGC 3217 NGC 3270 NGC 3338 NGC 3368 NGC 3417 NGC 3437 NGC 3461 NGC 3487 Zur Objektauswahl: Nummer anklicken Sternbild- Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Übersicht Zum Detailfoto: Objekt in Übersichtskarte anklicken Leo – Objektauswahl NGC Teil 3 NGC 3489 NGC 3522 NGC 3567 NGC 3601 NGC 3623 NGC 3641 NGC 3659 NGC 3685 NGC 3490 NGC 3524 NGC 3570 NGC 3602 NGC 3624 NGC 3643 NGC 3662 NGC 3686 Teil 1 NGC 3491 NGC 3526 NGC 3574 NGC 3605 NGC 3626 NGC 3644 NGC 3664 NGC 3689 NGC 3492 NGC 3534 NGC 3580 NGC 3607 NGC 3627 NGC 3646 NGC 3666 NGC 3691 Teil 2 NGC 3495 NGC 3535 NGC 3588 NGC 3608 NGC 3628 NGC 3647 NGC 3692 NGC 3501 NGC 3547 NGC 3592 NGC 3609 NGC 3629 NGC 3649 NGC 3670 NGC 3697 NGC 3506 NGC 3551 NGC 3593 NGC 3611 NGC 3630 NGC 3650 NGC 3678 NGC 3701 NGC 3507 NGC 3555 NGC 3596 NGC 3612 NGC 3633 NGC 3651 NGC 3679 NGC 3705 Teil 4 NGC 3509 NGC 3559 NGC 3598 NGC 3615 NGC 3639 NGC 3653 NGC 3681 NGC 3710 Teil 5 NGC 3521 NGC 3563 NGC 3599 NGC 3618 NGC 3640 NGC 3655 NGC 3684 NGC 3713 Zur Objektauswahl: Nummer anklicken Sternbild- Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Übersicht Zum Detailfoto: Objekt in Übersichtskarte anklicken Leo – Objektauswahl NGC Teil 4 NGC 3716 NGC 3748 NGC 3768 NGC 3800 NGC 3810 NGC 3827 NGC 3845 NGC 3868 NGC 3719 NGC 3750 NGC 3772 NGC 3801 NGC 3812 NGC 3828 NGC 3851 NGC 3869 Teil 1 NGC 3720 NGC 3751 NGC 3773 NGC 3802 NGC 3814 NGC 3832 NGC 3853 NGC 3872 NGC 3728 NGC 3753 NGC 3781 NGC 3803 NGC 3815 NGC 3834 NGC 3857 NGC 3873 Teil 2 NGC 3731 NGC 3754 NGC 3784 NGC 3805 NGC 3816 NGC 3837 NGC 3859 NGC 3875 NGC 3739 NGC 3758 NGC 3785 NGC 3806 NGC 3817 NGC 3839 NGC 3860 NGC 3883 Teil 3 NGC 3743 NGC 3761 NGC 3787 NGC 3808 NGC 3819 NGC 3840 NGC 3861 NGC 3884 NGC 3744 NGC 3764 NGC 3790 NGC 3820 NGC 3841 NGC 3862 NGC 3886 NGC 3745 NGC 3765 NGC 3798 NGC 3821 NGC 3842 NGC 3864 NGC 3900 Teil 5 NGC 3746 NGC 3767 NGC 3799 NGC 3826 NGC 3844 NGC 3867 NGC 3902 Zur Objektauswahl: Nummer anklicken Sternbild- Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Übersicht Zum Detailfoto: Objekt in Übersichtskarte anklicken Leo – Objektauswahl NGC Teil 5 NGC 3908 NGC 3934 NGC 3964 NGC 3999 NGC 3910 NGC 3937 NGC 3968 NGC 4000 Teil 1 NGC 3911 NGC 3940 NGC 3973 NGC 4002 NGC 3912 NGC 3983 NGC 4003 Teil 2 NGC 3919 NGC 3943 NGC 3987 NGC 4004 NGC 3920 NGC 3944 NGC 3988 NGC 4005 Teil 3 NGC 3925 NGC 3946 NGC 3989 NGC 4008 NGC 3926 NGC 3947 NGC 3993 NGC 4011 Teil 4 NGC 3929 NGC 3951 NGC 3996 NGC 3933 NGC 3954 NGC 3997 Bis 3902 überprüft Zur Objektauswahl: Nummer anklicken Sternbild- Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Übersicht Zum Detailfoto: Objekt in Übersichtskarte anklicken Auswahl Leo Übersichtskarte N2862_93_2918_26_44_64_68_70_81_3011_26_32_67_68_71 Aufsuchkarte Auswahl NGC 2872_2873_2874_2875 Aufsuchkarte Auswahl NGC 2882_2894_2906 Aufsuchkarte Auswahl NGC 2885_2896 Aufsuchkarte Auswahl NGC 2903_2905_2916 Aufsuchkarte Auswahl NGC 2911_13_14_19_39_40 Aufsuchkarte Auswahl NGC 2923_28_33_34_41_43_46_49_54 Aufsuchkarte Auswahl NGC 2927_2929_2930_2931 Aufsuchkarte Auswahl NGC 2948 Aufsuchkarte Auswahl NGC 2958_2984 Aufsuchkarte Auswahl NGC 2988_2991_2994 Aufsuchkarte Auswahl NGC 3016_19_20_24_75_80 Aufsuchkarte Auswahl NGC 3040_41_48_53_60_94 Aufsuchkarte Auswahl NGC 3049_3069_3070_3130 Aufsuchkarte Auswahl NGC 3088_3098_3162 Aufsuchkarte Auswahl NGC 3107_3119_3134_3153 Aufsuchkarte Auswahl NGC 3131_3154 Aufsuchkarte Auswahl NGC 3177_3185_87_89_90_93 Aufsuchkarte Auswahl NGC 3186 Aufsuchkarte Auswahl NGC 3196_3204_3209_3216_3251_3270_3274 Aufsuchkarte Auswahl NGC 3213_3239_3303 Aufsuchkarte Auswahl NGC 3217_3230_3253 Aufsuchkarte Auswahl NGC 3221_22_26_27_48_87_3301_52_63 Aufsuchkarte Auswahl NGC 3279_99_3300_06_32_38_46_51_57_67_8_77_9_84_9_91_3412_9_28_33_8_44 Aufsuchkarte Auswahl NGC 3349_56_62_3417_25_27_36_39_41_62 Aufsuchkarte Auswahl N 3370_99_3405_26_43_47_54_55_57_61_73_74_87_3501_07_Aufsuchkarte Auswahl NGC 3437_3475_3522_3551_3555 Aufsuchkarte Auswahl N 3466_67_76_77_90_91_92_3506_24_26_47_59 Aufsuchkarte Auswahl NGC 3485_3489 Aufsuchkarte Auswahl Auswahl 59 Leo 58 Leo N 3434_3495_3509_3535_3567_3580 AufsuchkarteN NGC 3521_3662 Aufsuchkarte Auswahl Auswahl NGC 3534_3563_3570_3574 Aufsuchkarte 72 Leo NGC 3588 Aufsuchkarte Auswahl N 3592_98_99_3602_05_07_08_26_39_55_59_81_84_86_91 Aufsuchkarte Auswahl NGC 3593_3596_3623_3627_3628_3666 Aufsuchkarte Auswahl NGC 3601_3611_3685 Aufsuchkarte Auswahl NGC 3609_komplex Aufsuchkarte Auswahl NGC 3624 Aufsuchkarte Auswahl NGC 3630_33_40_41_43_44_47_64 Aufsuchkarte Auswahl N3646_49_50_97_3743_4_5_6_8_50_1_3_4_8_87_3805_8_16_21 Aufsuchkarte Auswahl NGC 3679 Aufsuchkarte Auswahl NGC 3692_3705 Aufsuchkarte Auswahl NGC 3716_3719_3720 Aufsuchkarte Auswahl NGC 3731_73_3810_17_19_20_39_69_72 Aufsuchkarte Auswahl N 3764_67_68_90_99_3800_01_02_03_06_27_28_34_53_3933_34 Aufsuchkarte Auswahl N 3837_40_1_2_4_5_51_7_9_60_1_2_4_7_8_73_5_86 Aufsuchkarte Auswahl NGC 3883_3884 Aufsuchkarte Auswahl NGC 3908_3968_3973_3996 Aufsuchkarte Auswahl Auswahl 93 Leo NGC 3910_19_25_26_29_37_40_43_46_47_54 Aufsuchkarte Auswahl NGC 2862 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2872_2873_2874_2875 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2882_2894 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2885 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2893 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2896 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2903_2905_2916 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2906 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2911_2914_2919 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2913 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2918 ÜbersichtskarteNGC Aufsuch- karte Auswahl 2934 Aufsuch- NGC 2923_28_33_41_43_46_49 ÜbersichtskarteNGC karte Auswahl NGC 2926_2944 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2927_29_30_31 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2939_2940 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2948 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2954 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2958 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2964_2968_2970 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2981 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2984 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 2988_2991_2994 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3011 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3016_19_20_24 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3026_3032 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3040 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3041 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3048_3053_3060 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3049 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3067_3071 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3068 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3069_3070 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3075 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3080 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3088 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3094 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3098 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3107 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3119 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3130 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3131 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3134_3153 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3154 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3162 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3177 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3185_87_89_90_93 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3186 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3196_3204 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3209 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3213 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3222_3226_3227 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3216 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3217 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 3221 ÜbersichtskarteNGC
Recommended publications
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • The Outermost Hii Regions of Nearby Galaxies
    THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Searching for Intermediate-Mass Black Holes in Galaxies with Low-Luminosity AGN: a Multiple-Method Approach Filippos Koliopanos, Bogdan C
    Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach Filippos Koliopanos, Bogdan C. Ciambur, Alister W. Graham, Natalie A. Webb, Mickael Coriat, Burçin Mutlu-Pakdil, Benjamin L. Davis, Olivier Godet, Didier Barret, Marc S. Seigar To cite this version: Filippos Koliopanos, Bogdan C. Ciambur, Alister W. Graham, Natalie A. Webb, Mickael Coriat, et al.. Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach. Astronomy and Astrophysics - A&A, EDP Sciences, 2017, 601, pp.A20. 10.1051/0004- 6361/201630061. hal-03112469 HAL Id: hal-03112469 https://hal.archives-ouvertes.fr/hal-03112469 Submitted on 16 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 601, A20 (2017) Astronomy DOI: 10.1051/0004-6361/201630061 & © ESO 2017 Astrophysics Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach Filippos Koliopanos1; 2, Bogdan C. Ciambur3, Alister W. Graham3, Natalie A. Webb1; 2, Mickael Coriat1;
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • The Leo-I Group: New Dwarf Galaxy and UDG Candidates Oliver Müller1, Helmut Jerjen2, and Bruno Binggeli1
    Astronomy & Astrophysics manuscript no. aanda c ESO 2018 February 26, 2018 The Leo-I group: new dwarf galaxy and UDG candidates Oliver Müller1, Helmut Jerjen2, and Bruno Binggeli1 1 Departement Physik, Universität Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland e-mail: [email protected] 2 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Received XX, 2018; accepted TBD ABSTRACT Context. The study of dwarf galaxies and their environments provides crucial testbeds for predictions of cosmological models and insights on the structure formation on small cosmological scales. In recent years, many problems on the scale of groups of galaxies challenged the current standard model of cosmology. Aims. We aim to increase the sample of known galaxies in the Leo-I group, containing the M 96 subgroup and the Leo Triplet. This galaxy aggregate is located at the edge of the Local Volume at a mean distance of 10.7 Mpc. Methods. We employ image enhancing techniques to search for low-surface brightness objects in publicly available gr images taken by the Sloan Digital Sky Survey within 500 square degrees around the Leo-I group. Once detected, we perform surface photometry and compare their structural parameters to other known dwarf galaxies in the nearby universe. Results. We found 36 new dwarf galaxy candidates within the search area. Their morphology and structural parameters resemble known dwarfs in other groups. Among the candidates 5 to 6 galaxies are considered as ultra diffuse galaxies candidates. If confirmed, they would be some of the closest examples of this galaxy type.
    [Show full text]
  • Arxiv:Astro-Ph/0305472 V1 23 May 2003
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge–on spiral galaxies ? II. The Hα survey atlas and catalog J. Rossa ??1,2 and R.–J. Dettmar1 1 Astronomisches Institut, Ruhr–Universit¨at Bochum, D–44780 Bochum, Germany e-mail: [email protected], [email protected] 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, U.S.A. (present address) Received 14 February 2003 / Accepted 6 May 2003 Abstract. In this second paper on the investigation of extraplanar diffuse ionized gas in nearby edge–on spiral galaxies we present the actual results of the individual galaxies of our Hα imaging survey. A grand total of 74 galaxies have been studied, including the 9 galaxies of a recently studied sub–sample (Rossa & Dettmar 2000). 40.5% of all studied galaxies reveal extraplanar diffuse ionized gas, whereas in 59.5% of the survey galaxies no extraplanar diffuse ionized gas could be detected. The average distances of this extended emission above the galactic midplane range from 1–2 kpc, while individual filaments in a few galaxies reach distances of up to |z| ∼ 6 kpc. In several cases a pervasive layer of ionized gas was detected, similar to the Reynolds layer in our Milky Way, while other galaxies reveal only extended emission locally. The morphology of the diffuse ionized gas is discussed for each galaxy and is compared with observations of other important ISM constituents in the context of the disk–halo connection, in those cases where published results were available.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • Dense Gas in Local Galaxies Revealed by Multiple Tracers
    MNRAS 000,1–18 (2020) Preprint 9 March 2021 Compiled using MNRAS LATEX style file v3.0 Dense gas in local galaxies revealed by multiple tracers Fei Li1, Junzhi Wang1,2¢, Feng Gao3, Shu Liu4, Zhi-Yu Zhang5, Shanghuo Li1,6 Yan Gong7, Juan Li1,2 and Yong Shi5 1Shanghai Astronomical Observatory, Chinese Academy of Sciences,80 Nandan Road, Shanghai, 200030, China 2Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing, JiangSu 210033, China 3Max-Planck-Institut für Extraterrestrische Physik, Gießenbachstrasse 1, D-85741 Garching bei München, Germany 4CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 5School of Astronomy and Space Science, Nanjing University, Nanjing, 210093, China 6Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea 7Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present 3 mm and 2 mm band simultaneously spectroscopic observations of HCN 1- 0, HCO¸ 1-0, HNC 1-0, and CS 3-2 with the IRAM 30 meter telescope, toward a sample 5 of 70 sources as nearby galaxies with infrared luminosities ranging from several 10 ! to 12 ¸ more than 10 ! . After combining HCN 1-0, HCO 1-0 and HNC 1-0 data from literature with our detections, relations between luminosities of dense gas tracers (HCN 1-0, HCO¸ 1-0 and HNC 1-0) and infrared luminosities are derived, with tight linear correlations for all tracers. Luminosities of CS 3-2 with only our observations also show tight linear correlation with infrared luminosities.
    [Show full text]
  • XXXI. Nuclear Radio Emission in Nearby Early-Type Galaxies
    MNRAS 458, 2221–2268 (2016) doi:10.1093/mnras/stw391 Advance Access publication 2016 February 24 The ATLAS3D Project – XXXI. Nuclear radio emission in nearby early-type galaxies Kristina Nyland,1,2‹ Lisa M. Young,3 Joan M. Wrobel,4 Marc Sarzi,5 Raffaella Morganti,2,6 Katherine Alatalo,7,8† Leo Blitz,9 Fred´ eric´ Bournaud,10 Martin Bureau,11 Michele Cappellari,11 Alison F. Crocker,12 Roger L. Davies,11 Timothy A. Davis,13 P. T. de Zeeuw,14,15 Pierre-Alain Duc,10 Eric Emsellem,14,16 Sadegh Khochfar,17 Davor Krajnovic,´ 18 Harald Kuntschner,14 Richard M. McDermid,19,20 Thorsten Naab,21 Tom Oosterloo,2,6 22 23 24 Nicholas Scott, Paolo Serra and Anne-Marie Weijmans Downloaded from Affiliations are listed at the end of the paper Accepted 2016 February 17. Received 2016 February 15; in original form 2015 July 3 http://mnras.oxfordjournals.org/ ABSTRACT We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study 3D of the nuclear radio emission in a representative subset of the ATLAS survey of early-type galaxies (ETGs). We find that 51 ± 4 per cent of the ETGs in our sample contain nuclear radio emission with luminosities as low as 1018 WHz−1. Most of the nuclear radio sources have compact (25–110 pc) morphologies, although ∼10 per cent display multicomponent core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the at MPI Study of Societies on June 7, 2016 3D majority of the central 5 GHz sources detected in the ATLAS galaxies are associated with the presence of an active galactic nucleus (AGN).
    [Show full text]