Course Information

Total Page:16

File Type:pdf, Size:1020Kb

Course Information PHIL 0990T: Paradox and Infinity Josh Schechter Thursday 4:00–6:20 PM Spring 2014 Course Information Instructor Joshua Schechter Office: Corliss-Bracket, 45 Prospect St, Room 307 Office Hours: Tuesdays 2-4 (and by appointment) Email: [email protected] Phone: 863-3225 (office) Course Description This course will focus on several important paradoxes that arise in philosophy and mathematics. We will use these paradoxes to investigate central issues in metaphysics, the philosophy of language, decision theory, physics, mathematics, and logic. Among the paradoxes we will discuss are the following: Zeno's paradoxes of space, time, and motion; the paradoxes of set theory; the paradoxes of truth and reference; the sorites paradox; paradoxes of rational action and rational belief. This course will primarily operate as a seminar. Given the technical nature of some of the material, however, I will lecture for some portion of each week. There is no formal prerequisite for this course. It will not presuppose any particular background knowledge of philosophy or mathematics, but some background in either one would be helpful. Course Requirements Students will be required to complete the following work: 1. One 15-20 minute in-class presentation sometime during the term on a paradox we are studying. 2. A 15-20 page paper due near the end of the term focusing on one of the paradoxes we have studied. 3. A 6-8 page progress report due near the middle of the term. This will provide a draft of a chunk of the student’s final paper. 4. Each week, students will be required to turn in written work. Most weeks, this will be a page or two that describes an issue in the reading for that week that they found particularly interesting or stimulating. For some weeks, I will assign set problems. Required Texts The following texts are available at the bookstore: • R.M. Sainsbury, Paradoxes , 3 rd edition; • Rudy Rucker, Infinity and the Mind ; • A. W. Moore, The Infinite (optional). Additional readings will be distributed in class or made available on OCRA. PHIL 0990T: Paradox and Infinity Josh Schechter Thursday 4:00–6:20 PM Spring 2014 Schedule of Topics Note: We will have one class during reading period. January 23rd Introduction • Optional: W.V. Quine, “The Ways of Paradox” January 30 th Zeno’s Paradoxes • Sainsbury, chapter 1 • Frank Arnztenius, “Are There Really Instantaneous Velocities?” • James Thomson, “Tasks and Supertasks” • Optional: Paul Benacerraf, “Tasks, Supertasks, and the Modern Eleatics” • Highly Optional: Josh Parsons, “The Eleatic Hangover Cure” • Highly Optional: Graham Priest, “On a Version of One of Zeno” • Highly Optional: Stephen Yablo, “A Reply to New Zeno” February 6 th Infinity I • Rucker, chapter 1 Note: The final three sections (starting with “Infinities in the Mindscape”) are optional. • Optional: Moore, chapters 1-3 February 13 th Infinity II • Rucker, chapter 2 • Optional: Moore, chapters 4-6 February 20 th Paradoxes of Set Theory • Sainsbury, section 6.1 • George Boolos, “The Iterative Conception of Set” • Handout on “The Paradoxes of Set Theory” • Optional: Moore, chapter 8 • Optional: Rucker, chapter 5 • Optional: Joseph Shoenfield, “Axioms of Set Theory” February 27 th The Paradoxes of Truth and Reference I Note: This class will end early. • Sainsbury, sections 6.2–6.9 • Alfred Tarski, “The Semantic Conception of Truth and the Foundations of Semantics” • Stephen Yablo, “Paradox without Self-Reference” • Optional: Graham Priest, “Yablo’s Paradox” • Optional: Roy Sorensen, “Yablo’s Paradox and Kindred Infinite Liars” March 6th The Paradoxes of Truth and Reference II • Sainsbury, sections 6.2–6.9 • Saul Kripke, “Outline of a Theory of Truth” March 13 st Vagueness I • Sainsbury, chapter 3 • Timothy Williamson, Vagueness , chapters 4 and 5 March 20 th Vagueness II • Sainsbury, chapter 3 • Timothy Williamson, Vagueness , chapters 7–8 • Gareth Evans, “Can There Be Vague Objects?” • David Lewis, “Vague Identity: Evans Misunderstood” • Optional: Timothy Williamson, chapter 9 • Highly optional: J. Robbert Williams, “Ontic Vagueness and Metaphysical Indeterminacy” • Highly Optional: Elizabeth Barnes, “Ontic Vagueness: A Guide for the Perpelexed” March 27 th NO CLASS – Spring Break April 3rd Paradoxes of Rational Action • Sainsbury, chapter 4 • David Lewis, “Causal Decision Theory” • David Lewis, “Prisoner’s Dilemma is a Newcomb Problem” • Optional: Andy Egan, “Some Counterexamples to Causal Decision Theory” April 10 th Paradoxes of Confirmation • Sainsbury, chapter 5.1 • Carl Hempel, Studies in the Logic of Confirmation , pp. 1–26 • Nelson Goodman, “The New Riddle of Induction” • W.V. Quine, “Natural Kinds” • Optional: Branden Fitelson, “The Paradox of Confirmation” April 17 th NO CLASS – Instructor Away April 24 th Epistemic Paradoxes • Sainsbury, chapter 5.2–5.4 • David Kaplan and Richard Montague, “A Paradox Regained” • Adam Elga, "Self-Locating Belief and the Sleeping Beauty Problem" • David Lewis, “Sleeping Beauty: Reply to Elga” • Optional: Crispin Wright and Aidan Sudbury, “The Paradox of the Unexpected Examination” May 1st Epistemic Paradoxes II • Lewis Carroll, “What Achilles Said to the Tortoise” • Henry Kyburg, “Conjunctivitis” • David Makinson, “The Paradox of the Preface" • Optional: David Christensen, Putting Logic In Its Place, chapter 3 Additional paradoxes that we may discuss include • The Berry Paradox • The St. Petersburg Paradox • The Two Envelope Paradox • The Anti-Expertise Paradox • The Grandfather Paradox The Stanford Encyclopedia of Philosophy is a helpful resource: http://plato.stanford.edu It contains articles on the following topics (among many others): • “Zeno's Paradoxes” • “Supertasks” • “Russell’s Paradox” • “Liar Paradox” • “Curry’s Paradox” • “Vagueness” • “Sorites Paradox” • “Prisoner’s Dilemma” • “Causal Decision Theory” • “The Problem of Induction” • “Epistemic Paradoxes” .
Recommended publications
  • Paradox Philosophy
    Paradox Philosophy Course at Akita International University Philipp Blum, University of Lucerne, [email protected] https://philipp.philosophie.ch/teaching/paradoxes20.html Summary of the course, version of February 17, 2020 Contents 1 Administrative info 2 2 What is a paradox? 3 3 Mathematical Paradoxes 4 3.1 Things and their groupings .............................. 4 3.2 Cantor and modern set theory ............................ 4 3.3 Frege’s definition of number and Russell’s paradox ................. 6 4 Physical Paradoxes 7 4.1 Zeno’s paradoxes .................................... 7 4.2 Not easily solved by the modern calculus ....................... 9 4.3 Whitehead’s lesson: becoming is not continuous ................... 9 4.4 Russell’s lesson: the at-at theory of motion ..................... 10 4.5 Black’s lesson: the problem of hypertasks ...................... 11 4.6 Background 1: the line and the points ........................ 11 4.7 Background 2: the metaphysics of persistence and the problem of change . 12 5 Semantic Paradoxes 13 5.1 Truth and Falsity .................................... 13 5.2 The Liar ......................................... 14 5.3 The Strengthened Liar ................................. 15 5.4 A Spicy Curry ..................................... 15 5.5 Having fun with liars and curries ........................... 16 5.6 The Sorites paradox .................................. 17 6 Paradoxes of Rationality 18 6.1 Surprise Exam ..................................... 18 6.2 Prisoners’ Dilemma ..................................
    [Show full text]
  • The Intrinsic Probability of Grand Explanatory Theories
    Faith and Philosophy: Journal of the Society of Christian Philosophers Volume 37 Issue 4 Article 3 10-1-2020 The Intrinsic Probability of Grand Explanatory Theories Ted Poston Follow this and additional works at: https://place.asburyseminary.edu/faithandphilosophy Recommended Citation Poston, Ted (2020) "The Intrinsic Probability of Grand Explanatory Theories," Faith and Philosophy: Journal of the Society of Christian Philosophers: Vol. 37 : Iss. 4 , Article 3. DOI: 10.37977/faithphil.2020.37.4.3 Available at: https://place.asburyseminary.edu/faithandphilosophy/vol37/iss4/3 This Article is brought to you for free and open access by the Journals at ePLACE: preserving, learning, and creative exchange. It has been accepted for inclusion in Faith and Philosophy: Journal of the Society of Christian Philosophers by an authorized editor of ePLACE: preserving, learning, and creative exchange. applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" AQ1–AQ5 THE INTRINSIC PROBABILITY OF GRAND EXPLANATORY THEORIES Ted Poston This paper articulates a way to ground a relatively high prior probability for grand explanatory theories apart from an appeal to simplicity. I explore the possibility of enumerating the space of plausible grand theories of the universe by using the explanatory properties of possible views to limit the number of plausible theories. I motivate this alternative grounding by showing that Swinburne’s appeal to simplicity is problematic along several dimensions. I then argue that there are three plausible grand views—theism, atheism, and axiarchism—which satisfy explanatory requirements for plau- sibility. Other possible views lack the explanatory virtue of these three theo- ries. Consequently, this explanatory grounding provides a way of securing a nontrivial prior probability for theism, atheism, and axiarchism.
    [Show full text]
  • Evidential Relevance and the Grue Paradox
    科 学 哲 学31-1(1998) Evidential Relevance and the Grue Paradox Robert T. Pennock Philosophy Department The University of Texas at Austin Abstract Goodman's Grue Paradox may be intransigent as a version of the problem of induction, but may be resolved within the more lim ited context of confirmation theory in which the task is to explicate the basic notion of evidential relevance. Although the green and grue hypotheses are equivalently confirmed if we follow Goodman's use of the Hempelian instance confirmation relation, there are asym metries than can be exploited if we adopt an "ontic" confirmation theory that uses a causal notion of evidential relevance. I sort out a variety of interpretive confusions about the intended content of the definition of grue and show how the causal approach resolves each in a way that is not paradoxical. 1. Introduction If we are to make progress in confirmation theory, we must distinguish local problems having to do with the nature of evidence from the global problem of induction. Nelson Goodman posed the Grue Paradox as "The New Riddle of In- duction," but his presentation set up the problem within a Hempelian model of confirmation. In what follows I do not address the aspect of the paradox that participates in the old problem of induction but focus upon the aspect that deals with the explication of the confirmation relation, that is, the relation having to do with what counts as evidence of what. In •˜2-•˜5 1 highlight features of the para- 101 dox that are problematic when viewed with this particular question of evidential relevance in mind and in •˜6 I show how we may avoid the problems by moving from a syntactic/semantic to an ontic/causal relevance relation.' 2.
    [Show full text]
  • Hempel and Confirmation Theory
    Hempel and Confirmation Theory Jan Sprenger* June 15, 2020 Carl Gustav Hempel (1905–1997) was one of the primary exponents of logical empiricism. As a student and member of the Gesellschaft für em- pirische Philosophie in Berlin, alongside Reichenbach and Grelling, he wit- nessed the emergence of logical empiricism as a philosophical program. From the mid-1930s onwards, his contributions shaped its development, too. Hempel studied primarily in Göttingen and Berlin, but in 1929/30, he also spent a semester in Vienna studying with Carnap and partici- pated in the activities of the Vienna Circle. Both societies joined forces for organizing scientific events, and founded the journal Erkenntnis in 1930, where many seminal papers of logical empiricism were published, with Carnap and Reichenbach as editors. While the work of the Berlin philosophers is congenial to the project of the Vienna Circle, there are important differences, too. Neither Hempel nor his mentor Reichenbach identified “scientific philosophy” with the project of cleansing science of meaningless statements (e.g., Carnap 1930). Rather, Hempel extensively used a method that Carnap would apply in later works on probability and confirmation (Carnap 1950, 1952): expli- cation, that is, the replacement of a vague and imprecise pre-theoretical concept (e.g., “confirmation”) by a fruitful and precise concept (e.g., a formal confirmation criterion). Relying on the method of explication, Hempel developed adequacy conditions on a qualitative concept of con- firmation (Hempel 1943, 1945a,b), a probabilistic measure of degree of *Contact information: Center for Logic, Language and Cognition (LLC), Department of Philosophy and Education Sciences, Università degli Studi di Torino, Via Sant’Ottavio 20, 10124 Torino, Italy.
    [Show full text]
  • Paradoxes Situations That Seems to Defy Intuition
    Paradoxes Situations that seems to defy intuition PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 08 Jul 2014 07:26:17 UTC Contents Articles Introduction 1 Paradox 1 List of paradoxes 4 Paradoxical laughter 16 Decision theory 17 Abilene paradox 17 Chainstore paradox 19 Exchange paradox 22 Kavka's toxin puzzle 34 Necktie paradox 36 Economy 38 Allais paradox 38 Arrow's impossibility theorem 41 Bertrand paradox 52 Demographic-economic paradox 53 Dollar auction 56 Downs–Thomson paradox 57 Easterlin paradox 58 Ellsberg paradox 59 Green paradox 62 Icarus paradox 65 Jevons paradox 65 Leontief paradox 70 Lucas paradox 71 Metzler paradox 72 Paradox of thrift 73 Paradox of value 77 Productivity paradox 80 St. Petersburg paradox 85 Logic 92 All horses are the same color 92 Barbershop paradox 93 Carroll's paradox 96 Crocodile Dilemma 97 Drinker paradox 98 Infinite regress 101 Lottery paradox 102 Paradoxes of material implication 104 Raven paradox 107 Unexpected hanging paradox 119 What the Tortoise Said to Achilles 123 Mathematics 127 Accuracy paradox 127 Apportionment paradox 129 Banach–Tarski paradox 131 Berkson's paradox 139 Bertrand's box paradox 141 Bertrand paradox 146 Birthday problem 149 Borel–Kolmogorov paradox 163 Boy or Girl paradox 166 Burali-Forti paradox 172 Cantor's paradox 173 Coastline paradox 174 Cramer's paradox 178 Elevator paradox 179 False positive paradox 181 Gabriel's Horn 184 Galileo's paradox 187 Gambler's fallacy 188 Gödel's incompleteness theorems
    [Show full text]
  • Reza Negarestani – Glass Bead – 2017 1 Three Nightmares of The
    Reza Negarestani – Glass Bead – 2017 1 Three Nightmares of the Inductive Mind Of all the disquieting riddles and paradoxes found in the arsenal of epistemological scepticism— understood as a systematic and piecemeal scrutiny into the methods and paradigms of the formation and justification of knowledge-claims—one problem has particularly proved, time and again, to be a never- ending source of cognitive vexation. With few notable exceptions, philosophers and philosophically- minded scientists and statisticians (e.g., Hume, Goodman, Putnam, Stegmüller, Boltzmann and De Finetti among others) have invariably either downplayed and deflected the seriousness of this problem and its variations, or have simply given up worrying about it in the hope that it may miraculously disappear. The said problem is nothing but David Hume’s strong version of the problem of induction which, unbeknownst to Hume himself, was destined to become the superacid of methodological scepticism capable, in the blink of an eye, of eating away the foundation of any epistemic project built on naïve forms of empiricism and rationalism. It is often the case that philosophers who pose sceptical problems recoil in fear once they realize the far- reaching implications of such problems, and Hume, with his problem of induction, is no exception. They rush into defusing their inadvertent exercise in scepticism. But systematic scepticism is something akin to an explosive chemical chain reaction. Once it is set off, with every passing minute it becomes more difficult to extinguish the flames. Pour on more water, and the fire spreads to areas you never imagined flammable. A genuine philosopher—regardless of her alliances—seeks to examine how far the fire spreads.
    [Show full text]
  • PHIL 110A Introduction to Philosophy: Knowledge and Reality Syllabus
    PHIL 110A Introduction to Philosophy: Knowledge and Reality Fall 2015 Syllabus Instructor: Prof. Doreen Fraser E-mail (for quick questions): [email protected] Office Hours (for substantive questions): Tuesdays 1-2p.m. and Thursdays 11:30a.m.-12:30p.m. Office: HH 330 Teaching assistant: Phillipe Beriault E-mail (for quick questions): [email protected] Office Hours (for substantive questions): See the Calendar on LEARN Office: HH 337 Course Meeting Time and Location: Mondays, Tuesdays and Thursdays 10:30-11:20p.m. in AL 124 Course Description This course provides an introduction to some central questions about knowledge and reality. What is knowledge? What are our best sources of knowledge? What are the distinguishing features of our best sources of knowledge? What sorts of things exist? How do we know? What is the relationship between our minds and our brains? We will study answers to these questions offered by a selection of philosophers past and present, including Descartes, Berkeley, Hume, Russell, P.S. Churchland, Thagard, and Searle. Methods for analyzing and assessing arguments will be an important focus of the course. Readings All of the texts for the course are available free of charge online from either the LEARN course web site or the library e-reserves web site. Required readings for each class are listed on the attached course schedule. All of the readings listed on the course schedule are required. Students are expected to read each assigned text prior to the class for which it is assigned. The assigned texts should be brought to class. You will probably find that it is necessary to re- read the texts at least once after they are discussed in class.
    [Show full text]
  • The Π Research Network
    Version 1.0 THE Π RESEARCH NETWORK Patrick Allo, Bert Baumgaertner, Simon D’Alfonso, Nir Fresco, Federico Gobbo, Carson Grubaugh, Andrew Iliadis, Phyllis Illari, Eric Kerr, Giuseppe Primiero, Federica Russo, Christoph Schulz, Mariarosaria Taddeo, Matteo Turilli, Orlin Vakarelov, Hector Zenil. THE PHILOSOPHY OF INFORMATION AN INTRODUCTION T H E Π RESEARCH NETWORK The Philosophy of Information An Introduction The Philosophy of Information - An Introduction by The Π Research Network is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. THE PHILOSOPHY OF IN F O R M A T I O N — A N INTRODUCTION Table of Contents Table of Contents 1 List of Figures 5 PREFACE 6 CONTRIBUTORS 7 Part I: Introductory material 8 1. A QUICK HISTORY OF THE PHILOSOPHY OF INFORMATION 9 1.1 Introduction 9 1.2 Turing’s basic idea 10 1.3 Shannon’s basic idea 12 1.4 Extension of the concepts 14 1.5 Cybernetics 15 1.6 Dretske 18 1.7 French Philosophy of Information 21 1.8 Conclusion 26 1.9 Exercises 26 1.10 Further reading 27 2. WHAT IS THE PHILOSOPHY OF INFORMATION TODAY? 28 2.1 Introduction 28 2.2 The information revolution alters our self-understanding 29 2.3 The philosophy of information as a field 31 2.4 Open and closed questions 33 2.5 The idea of a Level of Abstraction (LoA) 36 2.6 The definition of a level of abstraction 37 2.7 The implications of LoAs 39 2.8 Exercises 41 2.9 Further reading 42 3. NATURALISED INFORMATION 43 3.1 Semantic vs.
    [Show full text]
  • 'Grue' Problem Really Show? Re-Reading of Frank Jackson, 'Grue', Journal of Philosophy 5 (1975), Pp.113-131
    Okasha, S. (2007). What does Goodman's 'Grue' Problem Really Show? re-reading of Frank Jackson, 'Grue', Journal of Philosophy 5 (1975), pp.113-131. Philosophical Papers, 36(3), 483-502. https://doi.org/10.1080/05568640709485211 Peer reviewed version Link to published version (if available): 10.1080/05568640709485211 Link to publication record in Explore Bristol Research PDF-document This is an author's accepted manuscript of an article published in Philosophical Papers, Volume 36, Issue 3, 2007, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/05568640709485211 University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Philosophical Papers Vol. 36, N o. 3 (N ovem ber 2007): 483-502 W hat Does Goodm an’s ‘Grue’ Problem Really Show? Samir Okasha Re-reading of Frank Jackson, ‘Grue’, Journal of Philosophy 5 (1975), pp.113-131.∗ Introduction N elson Goodm an devised his fam ous ‘grue’ exam ple in order to show that the sim ple ‘straight rule’ of induction leads to inconsistency unless restricted to the so-called ‘projectible’ predicates. In his searching critique of Goodm an’s discussion, Frank Jackson (1975) argued that on careful exam ination, Goodm an’s alleged paradox dissolves—the naïve straight rule does not lead to inconsistency, and does not need to be restricted to predicates of any particular type. Jackson’s article seem s to have been overlooked by m uch of the subsequent literature on ‘grue’; indicative of this is that virtually all philosophers today believe that Goodm an did show what, according to Jackson, he did not show.1 The structure of this paper is as follows.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]
  • What Is Mathematics: Gödel's Theorem and Around. by Karlis
    1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27
    [Show full text]
  • Confirmation and Induction
    Confirmation and Induction Jan Sprenger∗ Abstract Scientific knowledge is based on induction, that is, ampliative inferences from experience. This chapter reviews attacks on and defenses of induction, as well as attempts to spell out rules of inductive inference. Particular attention is paid to the degree of confirmation of a hypothesis, its role in inductive inference and the Bayesian explications of that concept. Finally, the chapter compares Bayesian and frequentist approaches to statistical inference. Keywords: confirmation, degree of confirmation, induction, probability, inductive logic, Bayesianism, statistical inference. ∗Contact information: Tilburg Center for Logic, Ethics and Philosophy of Science (TiLPS), Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. Email: [email protected]. Webpage: www.laeuferpaar.de 1 1 The Problems of Induction Induction is a method of inference that aims at gaining empirical knowledge. It has two main characteristics: First, it is based on experience. (The term “experience” is used interchangeably with “observations” and “evidence”.) Second, induction is ampliative, that is, the conclusions of an inductive inference are not necessary, but contingent. The first feature makes sure that induction targets empirical knowledge, the second feature distinguishes induction from other modes of inference, such as deduction, where the truth of the premises guarantees the truth of the conclusion. Induction can have many forms. The most simple one is enumerative induction: inferring a general principle or making a prediction based on the observation of par- ticular instances. For example, if we have observed 100 black ravens and no non-black ravens, we may predict that also raven #101 will be black.
    [Show full text]