Dispersal, Fishing, and the Conservation of Marine Species a Dissertation Submitted to the Department of Biology and the Commit

Total Page:16

File Type:pdf, Size:1020Kb

Dispersal, Fishing, and the Conservation of Marine Species a Dissertation Submitted to the Department of Biology and the Commit DISPERSAL, FISHING, AND THE CONSERVATION OF MARINE SPECIES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Malin La Farge Pinsky June 2011 © 2011 by Malin La Farge Pinsky. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fk096nf3828 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Palumbi, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Rodolfo Dirzo I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Elizabeth Hadly Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii iv Abstract A central goal of ecology is to understand the forces driving the distribution and abundance of organisms. However, understanding the population dynamics of high-dispersal species, their conservation, and the connections between population dynamics and evolution remains difficult. It is in this context that marine organisms provide a particularly intriguing and challenging study system. Their population dynamics are often highly stochastic, most species have a great ability to disperse, and as the last group of wild species exploited commercially, their ecology and evolution can be strongly influenced by human behavior. By using population genetics, modeling, and meta-analysis, this thesis investigates the spatial ecology of reef fish and the causes and evolutionary consequences of global fisheries collapse. One of the first challenges in understanding spatial population dynamics is obtaining accurate measurements of dispersal abilities. This has been especially difficult for marine species with pelagic larvae. In Chapter 1, I apply a new approach to measuring single-generation dispersal kernels in Clark’s anemonefish (Amphiprion clarkii) in the central Philippines (Pinsky et al. 2010 Evolution 64(9): 2688-2700). After developing two methods for measuring the strength of local genetic drift, my results suggest that larval dispersal kernels in A. clarkii had a spread near 11 km (4-27 km). This study shows that ecologically relevant larval dispersal can be estimated with widely available genetic methods when effective density is measured carefully through cohort sampling and ecological censuses. In Chapter 2, I use dispersal kernels to develop a model for population openness. Openness refers to the degree to which populations are replenished by immigrants or by local production, a factor that has strong implications for population dynamics, species interactions, and response to exploitation. It is also a population trait that has been increasingly measured empirically, though we have until now lacked theory for predicting population openness. I show that considering habitat isolation elegantly explains the existence of surprisingly closed populations in high v dispersal species, and that relatively closed populations are expected when patch spacing is more than twice the standard deviation of a species’ dispersal kernel. In addition, empirical scales of habitat patchiness on coral reefs are sufficient to create both largely open and largely closed populations. We predict that habitat patchiness has strong control over population replenishment pathways for a wide range of marine and terrestrial species with a highly dispersive life stage. While the first tow chapters have strong implications for the design of regional marine protected areas, I turn to global conservation questions in Chapters 3 and 4. I first ask which marine fishes are most vulnerable to human impacts (Pinsky et al. 2011 Proceedings of the National Academy of Sciences doi/10.1073/pnas.1015313108). Surveys of terrestrial species have suggested that large-bodied species and top predators are the most at risk, but there has been no global test of this hypothesis in the sea. Contrary to expectations, two datasets compiled from around the world suggest that up to twice as many fisheries for small, low trophic level species have collapsed as compared to those for large predators. I then show that collapsed and overfished species have lower genetic diversity than their close relatives (Pinsky & Palumbi, in prep). While the ecological and ecosystem impacts of harvesting wild populations have long been recognized, it has been controversial how widespread evolutionary impacts are. Using a meta-analytical approach across 37 taxonomically paired comparisons, I find on average 19% fewer alleles per locus in overfished species, but little difference in heterozygosity. I confirm with simulations that these results are consistent with a recent population bottleneck. These results suggest that the genetic impacts of overharvest are widespread, even among abundant species. A loss of allelic richness has implications for the long-term evolutionary potential of species. vi Acknowledgements I could not have completed these last five years without the support, encouragement, and enthusiasm of those around me. While this list is incomplete, I am indebted to: My Advisor Steve Palumbi My Committee Elizabeth Hadly Fiorenza Micheli Steve Gaines Rodolfo Dirzo Chris Lowe Collaborators Olaf Jensen, Dan Ricard, Boris Worm, Ray Hilborn, Trevor Branch, Katie Arkema, Greg Guannel, Mary Ruckelshaus, Anne Guerry, Marcel van Tuinen, Doug Kennett, Seth Newsome, Serge Andréfouët, Humberto Montes, Jr. and the Visayas State University Marine Lab, Amado Blanco and the Project Seahorse Foundation, Rose- Liza Eisma-Osorio and the Coastal Conservation and Education Foundation Colleagues in the Palumbi Lab Melissa Pespeni, Jason Ladner, Carolyn Tepolt, Alison Haupt, Ryan Kelly, Dan Barshis, Tom Oliver, Mollie Manier, Heather Galindo, Liz Alter, Emily Jacobs- Palmer, Kelly Barr, Kristen Ruegg, Vanessa Michelou, Arjun Sivasundar, Pierre De Wit, Marina Oster, Hannah Jaris, Veronica Searles, and Mark Walker My Cohort Julie Stewart, Nishad Jayasundara, Kevin Miklasz, Aaron Carlisle, Posy Busby, Camila Donati, Beth Pringle, and Jason Ladner Hopkins Marine Station Scientists and Staff Kristy Kroeker, Cheryl Logan, Judit Pungor, Giulio de Leo, Salvador Jorgensen, Chelsea Wood, Steve Litvin, Doug McCauley, Mark Denny, Ashley Greenley, Ashley vii Booth, Tom Hata, Megan Jensen, Ishbel Kerkez, Dane Klinger, Judy Thompson, Joe Wible, Doreen Zelles, Chris Patton, Freya Sommer, Carol Reeb, John Lee, Jim Watanabe, Bob Doudna, Peter Ferrante, Barbara Compton, and Vicki Pearse Stanford University Scientists and Staff Jessica Blois, Judsen Bruzgul, Sarah McMenamin, Paula Spaeth, Lily Li, Dmitri Petrov, Valeria Kiszka, Matt Pinheiro, and Jennifer Mason Funding National Science Foundation Graduation Fellowship, National Defense Science and Engineering Graduation Fellowship, International Society for Reef Studies and the Ocean Conservancy, Earl & Ethel Myers Oceanographic Trust, Jane Miller Scholars, Friends of Hopkins, Woods Institute for the Environment, Center for Ocean Solutions, National Center for Ecological Analysis and Synthesis, and Stanford Department of Biology and My Family Kristin Hunter-Thomson Rob, Margaret, and Maia Pinsky viii Table of Contents Abstract........................................................................................................................... v Acknowledgements ......................................................................................................vii Table of Contents ..........................................................................................................ix List of Tables...............................................................................................................xiii List of Figures..............................................................................................................xiv Introduction .................................................................................................................... 1 Statement on Multiple Authorship ..................................................................... 5 References .......................................................................................................... 6 Chapter 1: Using isolation by distance and effective density to estimate dispersal scales in anemonefish ..................................................................................... 11 1.1. Abstract...................................................................................................... 11 1.2. Introduction ............................................................................................... 12 1.3. Materials and Methods .............................................................................. 14 1.3.1. Study system..............................................................................
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
    SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan
    [Show full text]
  • Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011
    August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai Published by: TheNatureConservancy,Indo-PacificDivision Purwanto:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] Muhajir: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] JoanneWilson: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia. RizyaArdiwijaya:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur, Bali,Indonesia.Email: [email protected] SangeetaMangubhai: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2, Sanur,Bali,Indonesia.Email: [email protected] Suggested Citation: Purwanto,Muhajir,Wilson,J.,Ardiwijaya,R.,Mangubhai,S.2012.CoralReefMonitoringinKofiau andBooIslandsMarineProtectedArea,RajaAmpat,WestPapua.2009-2011.TheNature Conservancy,Indo-PacificDivision,Indonesia.ReportN,6/12.50pp. © 2012012012201 222 The Nature Conservancy AllRightsReserved.Reproductionforanypurposeisprohibitedwithoutpriorpermission. AllmapsdesignedandcreatedbyMuhajir. CoverPhoto:
    [Show full text]
  • Morphological Identifications and Morphometric Measurements of Genus Tenualosa Spp Fowler, 1934 (Family Clupeidae) in Mon Coastal Areas, Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Morphological identifications and morphometric measurements of genus Tenualosa spp fowler, 1934 (Family Clupeidae) in Mon coastal areas, Myanmar Abstract Volume 8 Issue 1 - 2019 Morphometric measurements and identifying morphological characteristics of genus Khin Myo Myo Tint,1 Zarni Ko Ko,2 Naung Tenualosa spp (Family Clupeidae) along Mon Coastal Areas were accomplished during the 2 studied period June–Nov 2018. During the study period, it was designated as ten sampling Naung Oo 1Demonstrator, Department of Marine Science, Mawlamyine sites along Mon Coastal Areas for sample collection. The dissimilarities of morphological University, Myanmar characters between Tenualosa spp (Family Clupeidae) found along Mon Coastal Areas were 2Assistant Lecturer, Department of Marine Science, Mawlamyine consecutively revealed to particular column in a tabular form. Furthermore, morphometric University, Myanmar measurements between the two species of Tenualosa spp; Tenualosa ilisha (Hamilton, 1822) and Tenualosa toli (Valencinnes, 1847) were determined on the specimens to ascertain the Correspondence: Khin Myo Myo Tint, Demonstrator, possibility of morphological diversification. Department of Marine Science, Mawlamyine University, Myanmar, Email Keywords: morphological characteristics, morphometric measurements, Mon coastal areas, Tenualosa spp Received: February 11, 2019 | Published: February 22, 2019 Introduction containing small boast fishing and offshore fisheries of the whole country Myanmar. (DoF data 2012-2013) Furthermore, the capture Tenualosa (tenus=thin, alausa=a fish) is a genus of fish in the for herring fish that rely on man power using motorized vessels Clupeidae family and its subfamily Alosinae (the shads). There are (Myaw Pike Hlay) which was introduced in Ayeyawady deltaic areas three Hilsa species found in the Bay of Bengal, Tenualosa ilisha and for herring fish capture had been operated by 6 vessels in the study T.
    [Show full text]
  • Barndoor Skate, Dipturus Laevis, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-173 Essential Fish Habitat Source Document: Barndoor Skate, Dipturus laevis, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts March 2003 Recent Issues in This Series: 155. Food of Northwest Atlantic Fishes and Two Common Species of Squid. By Ray E. Bowman, Charles E. Stillwell, William L. Michaels, and Marvin D. Grosslein. January 2000. xiv + 138 p., 1 fig., 7 tables, 2 app. NTIS Access. No. PB2000-106735. 156. Proceedings of the Summer Flounder Aging Workshop, 1-2 February 1999, Woods Hole, Massachusetts. By George R. Bolz, James Patrick Monaghan, Jr., Kathy L. Lang, Randall W. Gregory, and Jay M. Burnett. May 2000. v + 15 p., 5 figs., 5 tables. NTIS Access. No. PB2000-107403. 157. Contaminant Levels in Muscle of Four Species of Recreational Fish from the New York Bight Apex. By Ashok D. Deshpande, Andrew F.J. Draxler, Vincent S. Zdanowicz, Mary E. Schrock, Anthony J. Paulson, Thomas W. Finneran, Beth L. Sharack, Kathy Corbo, Linda Arlen, Elizabeth A. Leimburg, Bruce W. Dockum, Robert A. Pikanowski, Brian May, and Lisa B. Rosman. June 2000. xxii + 99 p., 6 figs., 80 tables, 3 app., glossary. NTIS Access. No. PB2001-107346. 158. A Framework for Monitoring and Assessing Socioeconomics and Governance of Large Marine Ecosystems. By Jon G. Sutinen, editor, with contributors (listed alphabetically) Patricia Clay, Christopher L. Dyer, Steven F. Edwards, John Gates, Tom A. Grigalunas, Timothy Hennessey, Lawrence Juda, Andrew W. Kitts, Philip N.
    [Show full text]
  • High Levels of Genetic Variability and Differentiation In
    Genetics and Molecular Biology Online Ahead of Print Copyright © 2009, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br High levels of genetic variability and differentiation in hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) populations revealed by PCR-RFLP analysis of the mitochondrial DNA D-loop region Sabuj Kanti Mazumder and Md. Samsul Alam Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh. Abstract The hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) is an important anadromous clupeid species from the Western division of the Indo-Pacific region. It constitutes the largest single fishable species in Bangladesh. Informa- tion on genetic variability and population structure is very important for both management and conservation pur- poses. Past reports on the population structure of T. ilisha involving morphometric, allozyme and RAPD analyses are contradictory. We examined genetic variability and divergence in two riverine (the Jamuna and the Meghna), two estuarine (Kuakata and Sundarbans) and one marine (Cox’s Bazar) populations of T. ilisha by applying PCR-RFLP analysis of the mtDNA D-loop region. The amplified PCR products were restricted with four restriction enzymes namely, XbaI, EcoRI, EcoRV, and HaeIII. High levels of haplotype and gene diversity within and significant differenti- ations among, populations of T. ilisha were observed in this study. Significant FST values indicated differentiation among the river, estuary and marine populations. The UPGMA dendrogram based on genetic distance resulted in two major clusters, although, these were subsequently divided into three, corresponding to the riverine, estuarine and marine populations. The study underlines the usefulness of RFLP of mtDNA D-loop region as molecular mark- ers, and detected at least two differentiated populations of T.
    [Show full text]
  • Bouguerche Et Al
    Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gastrocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine To cite this version: Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine. Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gas- trocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea. Systematic Parasitology, Springer Verlag (Germany), 2019, 96 (8), pp.681-694. 10.1007/s11230-019-09883-7. hal-02557974 HAL Id: hal-02557974 https://hal.archives-ouvertes.fr/hal-02557974 Submitted on 29 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bouguerche et al. Allogastrocotyle bivaginalis 1 Systematic Parasitology (2019) 96:681–694 DOI: 10.1007/s11230-019-09883-7 Redescription and molecular characterisation
    [Show full text]
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • Pomacentridae)
    Zoologischer Anzeiger 264 (2016) 47–55 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Insight into biting diversity to capture benthic prey in damselfishes (Pomacentridae) Damien Olivier ∗, Eric Parmentier, Bruno Frédérich Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Institut de Chimie (B6C) Université de Liege, B-4000 Liege, Belgium a r t i c l e i n f o a b s t r a c t Article history: The cerato-mandibular (c-md) ligament, joining the hyoid bar to the coronoid process of the angular, Received 9 May 2016 allows Pomacentridae to slam their mouth shut in a few milliseconds. Previous works have revealed that Received in revised form 13 July 2016 such a mechanism is used to feed, but some variability in biting patterns has been observed between two Accepted 13 July 2016 damselfish species. The pelagic feeder Amphiprion clarkii performs two different kinematic patterns to Available online 15 July 2016 bite fixed prey, one that does not depend on the c-md ligament (biting-1) and one that does (biting-2). The benthic feeder Stegastes rectifraenum only performs biting-2. The present study aims to shed light on Keywords: the occurrence of biting-2 in the feeding behaviour of Pomacentridae. To test our hypothesis that biting-2 Cerato-mandibular ligament would be the only biting pattern for benthic feeders, we compared biting behaviours among four species: Feeding behaviour one pelagic feeder, A. clarkii, and three benthic feeders, Neoglyphidodon nigroris, Stegastes leucostictus and Functional morphology Grazing S. rectifraenum.
    [Show full text]
  • One Smart Fish Free
    FREE ONE SMART FISH PDF Christopher Wormell | 32 pages | 06 Jan 2011 | Random House Children's Publishers UK | 9781862306523 | English | London, United Kingdom One Smart Fish by Chris Wormell Hardcover | eBay Now a day people who Living in the era exactly where everything reachable by interact with the internet and the resources inside can be true or not require people to be aware of each information they get. How a lot more to be smart in One Smart Fish any information nowadays? Of course the solution is reading a book. Looking at a book can help folks out of this uncertainty Information particularly this One Smart Fish Smart Fish Rookie Reader Rhyme book as this book offers you rich info and knowledge. Of course the details in this book hundred percent guarantees there is no doubt in it you may already know. You can get a lot of help after read this book. This specific book exist new know-how the information that exist in this reserve represented the condition of the world now. That is important to yo7u to find out how the improvement of the world. This kind of book will bring you throughout new era of the globalization. You can read the e-book on your own smart phone, so you can read that anywhere you want. A lot of people always spent their free time to vacation One Smart Fish well as go to the outside with them loved ones or their friend. Did you know? Many a lot of people spent these people free One Smart Fish just watching TV, or even playing video games all day long.
    [Show full text]
  • Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
    BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes
    [Show full text]
  • Reproductive Biology and Egg Production of Three Species Of
    Abstract.-The spawning seasonality, fecundity, and daily Reproductive biology and egg production of three species of short-lived c1upeids, the sardine egg production of three species of Amblygaster sirm, the herring Herklotsichthys quadrimaculatus, Clupeidae from Kiribati, and the sprat Spratelloides delicatulus were examined in Kiribati to assess whether vari­ tropical central Pacific able recruitment was related to egg production. All species were David A. Milton multiple spawners, reproducing throughout the year. Periods of Stephen J. M. Blaber increased spawning activity were Nicholas J. F. Rawlinson not related to seasonal changes in (SIRO Division of Fisheries, Marine Laboratories, the physical environment. Spawn­ ing activity and fish fecundity P.O. Box J20. Cleveland, Queensland 4 J63. Australia were related to available energy reserves and, hence, food supply. The batch fecundity ofA. sirm and S. delicatulus also varied inversely with hydrated oocyte weight. The maximum reproductive life The sprat Spratelloides delicatulus, Changes in abundance may be span of each species was less than the herring Herklotsichthys quadri­ related to variable or irregular re­ nine months and averaged two to maculatus, and the sardine Ambly­ cruitment, because many clupeoids three months. Each species had a gaster sirm are the dominant tuna (especially clupeids and engraulids) similar spawning frequency of three to five days, but this varied baitfish species in the Republic of have little capacity to compensate more in A. sirm and S. delica­ Kiribati (Rawlinson et aI., 1992). for environmental variation during tulus. Amblygaster sirm had the All three species inhabit coral reef the period ofpeak spawning and egg highest fecundity and potential lagoons and adjacent waters.
    [Show full text]
  • A New Species of Larimichthys from Terengganu, East Coast of Peninsular Malaysia (Perciformes: Sciaenidae)
    Zootaxa 3956 (2): 271–280 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3956.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:28EA3933-85D8-401B-831E-F5165B4172E4 A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia (Perciformes: Sciaenidae) YING GIAT SEAH1,2,4,6, NORHAFIZ HANAFI1, ABD GHAFFAR MAZLAN3,4 & NING LABBISH CHAO5 1School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. E-mail: [email protected] 2Fish Division, South China Sea Repository and Reference Center, Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 3Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 4Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 5National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan, Republic of China 6Corresponding author Abstract A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia is described from specimens collected from the fish landing port at Pulau Kambing, Kuala Terengganu. Larimichthys terengganui can be readily distinguished from other species of the genus by having an equally short pair of ventral limbs at the end of the gas bladder appendages, which do not extend lateral-ventrally to the lower half of the body wall, and fewer dorsal soft rays (29–32 vs. 31–36) and vertebrae (24 vs. 25–28). Larimichthys terengganui can be distinguished from L.
    [Show full text]