<<

U.S. Department of the Interior Prepared for the Scientific Investigations Map 3404 U.S. Geological Survey National Aeronautics and Space Administration Sheet 1 of 2

180°E NOMENCLATURE 0°E 180°W SPACECRAFT AND INSTRUMENT DESCRIPTION 360°W 55° This image mosaic is based on observations acquired by the Dual Imaging Feature names on this sheet have been approved by the IAU. All features greater than –55° System (MDIS; Hawkins and others, 2009), an instrument on the National Aeronautics and 100 km in diameter or length were included unless they were not visible at the printed map STILBON 150°E Space Agency (NASA) MErcury Surface, Space ENvironment, GEochemistry, and Ranging scale. Some selected well-known features less than 100 km in diameter or length were also 30°E Brahm s 210°W 210°E (MESSENGER) spacecraft (Solomon and others, 2007). MDIS consists of two cameras, a included. For a complete list of the IAU-approved nomenclature for Mercury, see the 330°E 360°W 150°W PLANITIA Gazetteer of Planetary Nomenclature at https://planetarynames.wr.usgs.gov. 30°W 60° wide angle camera (WAC) and a narrow angle camera (NAC). The WAC is a 4-element –60° refractive telescope having a focal length of 78 mm and a collecting area of 48 mm2. A 12-position filter wheel provides color imaging over the spectral range of the charge-coupled ACKNOWLEDGMENTS Mendes Pinto SUISEI device (CCD) detector. Eleven spectral filters spanning the range from 395 nanometers (nm) The collection of the data used in the production of this map was made possible by to 1,040 nm are defined to cover wavelengths diagnostic of different surface materials. The NASA and the MESSENGER team. The production of the map itself and publication costs PLANITIA Oskison twelfth position is a broad-band filter for optical navigation. The filters are arranged on the were funded by a NASA and USGS Interagency Agreement. filter wheel in such a way as to provide complementary passbands (for example, 3- and P u s h k i n 4-color imaging) in adjacent positions (Denevi and others, 2016). The NAC is an off-axis REFERENCES CITED reflective telescope with a 550-mm focal length and a collecting area of 462 mm2. The NAC Ahm ad 70° Baba Acton, C.H., 1996, Ancillary Data Services of NASA’s Navigation and Ancillary Information –70° 120°E has an identical CCD detector with a single medium-band filter (100 nm wide), centered at 240°W Khansa 60°E Paestum Facility: Planetary and Space Science, v. 44, no. 1, p. 65–70, 300°W 750 nm to match to the corresponding WAC filter 7 (or G filter) for monochrome imaging n 240°E Vallis 300°E o Turgenev i 120°W https://naif.jpl.nasa.gov/naif/. 60°W t s Caral (Hash and others, 2015). Valli s u e l

p o a Archinal, B.A. (chair), A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, u i Kofi s

s k R i e

l s o l R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., , G., Oberst, J., i r l R

h a l o MAP DESCRIPTION

a a k Van V g is Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Rabelais V C l Dijck n l a d A This global mosaic includes the Basemap Data Records (BDR) compiled using NAC and Report of the IAU Working Group on Cartographic Coordinates and Rotational a V g e WAC 750-nm that best fit the intended illumination geometry of low emission angle r m Elements—2009: Celestial Mechanics and Dynamical Astronomy, v. 109, no. 2, p. i u T t and incidence angle near 74°. Prior to mosaicking, the images were photometrically s 101–135, https://doi.org/10.1007/s10569-010-9320-4. n e 80° e –80° Henri normalized to a solar incidence angle (i) = 30°, emission angle (e) = 0°, and phase angle v p Becker, K.J., Robinson, M.S., Becker, T.L., Weller, L.A., Edmundson, L., Neumann, G.A., d u Lism er (g) = 30° at a spatial sampling of 256 pixels per degree (~166 meter per pixel at the equator). Perry, M.E., and Solomon, S.C., 2016, First global digital elevation model of Mercury: A R The 30° incidence angle was found to minimize shadows while including topographic A Lunar and Planetary Science XLVII, abstract 2959. I shading. This edition, version 2, was released on May 12, 2017, as 15 tiles to the Planetary Ma T Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., Chih-Yuan I Data System (PDS) MESSENGER archive (Hash, 2013). A l v e r N Owen, T.C., Seidelmann, P.K., Sinclair, A.T., Wilkins, G.A., and Tjuflin, Y.S., 1980, T e A r r L Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements o E P Roerich r l PROJECTION of the and Satellites: Celestial Mechanics and Dynamical Astronomy, v. 22, p. t R I a u I D n p U T A R The Mercator projection is used between latitudes ±57°, with a central meridian at 0° 205–230. i n e 90°W 270°W 90°W Sei s 270°W 90°E Denevi, B.W., Seelos, F.P., Ernst, C.M., Keller, M.R., Chabot, N.L., Murchie, S.L., 270°E longitude and latitude equal to the nominal scale at 0°. The polar stereographic projection is 270°E R 90°E Domingue, D.L., Hash, C.D., and Blewett, D.T., 2016, Final calibration and multispectral Fram Chao u used for the regions north of the +55° parallel and south of the –55° parallel, with a central Meng-Fu p ++ e Lowest Point Rupes (-5,631 m) meridian set for both at 0° and a latitude of true scale at +90° and –90°, respectively. The map products from the Mercury Dual Imaging System wide-angle camera on s adopted spherical radius used to define the map scale is 2439.4 km (Perry and others, 2015). MESSENGER: Lunar and Planetary Science XLVII, abstract 1264, Disney B a c h G o e t h e https://www.hou.usra.edu/meetings/lpsc2016/pdf/1264.pdf. Hash, C., 2013, MESSENGER MDIS Map Projected Basemap RDR V1.0: NASA Planetary Stieglitz COORDINATE SYSTEM Data System, https://pds-imaging.jpl.nasa.gov/volumes/mess.html. S The orientation model for Mercury has been updated using improved pole position and Hash, C., Espiritu, R., Malaret, E., Prockter, L., Murchie, S., Mick, A., and Ward, J., 2015, short-period longitude libration information from Margot (2009). The International Magritte 80° MESSENGER Mercury Dual Imaging System (MDIS) Experiment Data Record (EDR) –80° Astronomical Union (IAU) Working Group, since its original report (Davies and others, Software Interface Specification (SIS): The Johns Hopkins University, Applied Physics I 1980), recommends the use of the crater Hun Kal (which means “twenty” in the Mayan Labratory, MDIS EDR SIS V2T, https://pdsimage2.wr.usgs.gov/archive/mess- B language) to define the 20° west longitude meridian. Therefore, the value of the prime e_v_h-mdis-2-edr-rawdata-v1.0/MSGRMDS_1001/DOCUMENT/MDISEDRSIS.PDF. L meridian (W0) used previously (W0 = 329.548°; Robinson and others, 1999) but corrected for Hawkins, S.E., III, Murchie, S.L., Becker, K.J., Selby, C.M., Turner, F.S., Nobel, M.W., O libration terms at J2000.0 results in a new recommended value of W0 = 329.5988° A Chabot, N.L., Choo, T.H., Darlington, E.H., Denevi, B.W., Domingue, D.L., Ernst, C.M., R (Stark, 2016). The pole position is given by an updated model by Stark, with the J2000.0 right s E Holsclaw, G.M., Laslo, N.R., McClintock, W.E., Prockter, L.M., Robinson, M.S.,

60°W 120°W

e s 300°E e p ascension of the pole as 281.0103–0.0328T and the declination as 61.4155–0.0049T, where T Solomon, S.C., and Sterner, R.E., II, 2009, In-flight performance of MESSENGER’s 240°E

u p 300°W u R 60°E is the number of Julian centuries from J2000.0 (Stark, 2017). 240°W Mercury Dual Imaging System, in Hoover, B., Levin, G.V., Rozanov, A.Y., and Rether- 120°E R A ° e e 70 i Using this prime meridian, the mosaic was constructed from overlapping NAC and WAC –70° n ford, K.D., eds., Instruments and methods for Astrobiology and Planetary Missions XII: g i

e h p 750-nm images and controlled using NASA’s updated Navigation and Ancillary Information n Bellingham, Wash., SPIE, Paper 74410Z, 12 p. r u a I a D Facility (NAIF) SPICE (Spacecraft, , Instrument, C-matrix, Events; Acton, 1996) C La Margot, J.L., 2009, A Mercury orientation model including non-zero obliquity and librations: P T kernels (known as c-smithed kernels) and a global digital elevation model (DEM), both Celestial Mechanics and Dynamical Astronomy, v. 105, p. 329–336, derived using a least-squares bundle adjustment of common features. Images were L I https://doi.org/10.1007/s10569-009-9234-1. A N orthorectified using this derived DEM. Empirically, misregistration errors between images Perry, M.E., Neumann, G.A., Phillips, R.J., Barnouin, O.S., Ernst, C.M., Kahan, D.S., decreased generally to the pixel scale of the map (~0.2 km) in most locations. Derivation of Solomon, S.C., Zuber, M.T., Smith, D.R., Hauck, S.A., II, Peale, S.J., Margot, J.L., Vincente as -P uoi urq Po c-smithed kernels and the DEM for end-of-mission data products was described by Becker Mazarico, E., Johnson, C.L., Gaskell, R.W., Roberts, J.H., McNutt, R.L., Jr., and Oberst, sRupe and others (2016). J., 2015, The low-degree shape of Mercury: Geophysical Research Letters, v. 42, p. 60° H e Longitudes are shown in both positive West (shown in black) and East (shown in red). r –60° 30°W 6951–6958, https://doi.org/10.1002/2015GL065101. 150°W o 330°E 330°W Positive West is the default longitude system recommended by the IAU (Archinal and others, 210°E 210°W Robinson, M.S., Davies, M.E., Colvin, T.R., and Edwards, K., 1999, A revised control R 30°E 150°E 2011), but positive East has been used for all MESSENGER map products. u network for Mercury: Journal of Geophysical Research, v. 104, p. 30847–30852. p Solomon, S.C., McNutt Jr., R.L., Gold, R.E., and Domingue, D.L., 2007, MESSENGER e s 55° MAPPING TECHNIQUES mission overview: Space Science Reviews, v. 131, p. 3–39, –55° 0°W https://doi.org/10.1007/s11214-007-9247-6. 180°W 360°E Included in this global mosaic are BDRs created with images from any campaign that 180°E best fit the intended illumination geometry. A campaign refers to a planned period of image Stark, A., 2015, The prime meridian of the planet Mercury: DLR and Technische Universität acquisition during a mission. To prepare the images for publication, the original PDS tiles Berlin, SCALE 1:12,157,366 (1 mm = 12.157366 km) AT 56˚ LATITUDE were map projected into Mercator and Polar Stereographic projections with a resolution of ftp://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/documen SCALE 1:12,157,366 (1 mm = 12.157366 km) AT 56˚ LATITUDE POLAR STEREOGRAPHIC PROJECTION ~166 meter per pixel. The original reflectance values (I/F) were stretched from a minimum of t/stark_prime_meridian.pdf. POLAR STEREOGRAPHIC PROJECTION West longitude (planetographic) coordinate system shown in black. 0.000867 to a maximum of 0.220197 to 8 bits (0 to 255) using a linear stretch. Finally, the Stark, A., Oberst, J., Preusker, F., Burmeister, and S., Steinbrügge, H., 2017, The reference West longitude (planetographic) coordinate system shown in black. East longitude (planetocentric) coordinate system shown in red. images were then scaled to 1:20,000,000 for the Mercator part and 1:12,157,366 for the two frames of Mercury after MESSENGER, arXiv preprint arXiv:1710.09686. East longitude (planetocentric) coordinate system shown in red. polar stereographic parts with a resolution of 300 pixels per inch. The two projections have a 1000 500 0 500 1000 KILOMETERS common scale at ±56° latitude. 1000 500 0 500 1000 KILOMETERS 90 90 -90 -90 70 70 -70 -70 55 55 -55 -55 NORTH POLAR REGION SOUTH POLAR REGION

North 180°E 210°E 240°E 270°E 300°E 330°E 360°E 30°E 60°E 90°E 120°E 150°E 180°E 180°W 150°W 120°W 90°W 60°W 30°W 0°W 330°W 300°W 270°W 240°W 210°W 180°W 57° 57° K ofi

STILBON PLANITIA

s

e

p u

Stri ndb erg R BOREALIS R usta ve li Stra vi nsk y Sh ole m en a i Al ei c h em r Sor ha o es t Juana 50° e 50° c e V y ā s a i up Z V R E n hed ua nna Ak uta gawa C hŏng C h'ŏl So usa PLANITIA D a l i M o n e t Van Larrocha E yck

r

Scarlatti u

o H u g o s Al - v C S O B K O U e a

H am ad han i p A e CALORIS V e lá z q uez u L C op la nd R nd

O E H ol bei n MEARCAIR R P L A N I T I A Ak sak ov I

S Mussorgskij A nthe J o b i m n a o t n o P k n c i Highest Point 30° r a ++ 30° e Ku an d (4,676 m) F M e k i o s s H an -C h'i ng ty s s a e i O m Rachm aninoff n PLANITIA

e p U s R a d i t l a d i Kertész e u D e

N R p

H o u

r R A tg et

T ODIN

W r e n s K e ro u a c

u

E

m Ts'ai S Wen -C hi M el vil le Munkácsy D ü r e r C atu ll us R o d i n s PLANITIA BUDH p e PLANITIA Ru P rou st H a f i z OTAARED o ps Schiaparelli Dorsum l y Li Ab u N u wa s H em in gwa y C a PLANITIA P o M ol i ère H arun ob u Lerm ont ov Si nan V i v a l d i PLANITIA Gi ot to APĀRANGI E m in escu n s S i P h id ias Wang e a v l M en g n F aul k ner p M oza r t Chaikovskij A u H t a R a Lan ge R C y u M

a s p a s t e PLANITIA M i st ra l t a r

e s í e

n c a P i ca sso p

k H an del C arava ggi o a B

Vieira C hu u TIR Ste ve nson e

da S i lva Ta P o lygn otu s Kuni sada R a

r g

0° u 0° l

o East e West Bo eth iu s H o m e r Hun Kal

I z q ui erdo m M ach aut SIHTU R Sveinsdóttir a Zeami T hā k ur r PLANITIA u R ū d a k i Ba gryana a LUGUS p P R u p e s e s B l o s s o m Go ya So pho cles PLANITIA PLANITIA CATUILLA Brun el le sch i D erai n M ark Twain Kuiper PLANUM M ura sa k i Ts'ao S a n a i E llington Steichen C han H iro sh ig e PAPSUKKAL Rublev T o l s t o j Sullivan H it om aro H o l s t Kāli dāsā s I m h ote p e Be ll o R e n o i r p Ki pl in g u PLANITIA R a p h a e l M ah le r

R

B e e t h o v e n

E i tok u n Ke nk ō

e

k f

Vālm ik i y s M at isse H au ptm an n

u e D I bsen p u s M i lto n R D arí o lu Am aral er t i lm H a y d n TURMS u s Sa ya t-N ova a a e P p Bartók A n e i r i n N u –30° R –30° P e trarch Ustad s Unkei e I sa PLANITIA p R e m b r a n d t u Heaney R M N eu m a nn V s e ir o r i C arducci C he kh ov n R s r p S u r i k o v i t t e Tak ayoshi R u o E n u Mofolo p k P i ga ll e p e J o p l i n e s s e E q uia no Lia ng b s K'a i Ba r m a a l e

o a p r ry t u a s s Z R Schu be rt e A p R u Del acroi x Gra in ger M ic helangelo P o Ya S ū r Bram an te S h e l l e y D ā s S m e t a n a Sōtatsu s p e R u –50° a –50° g i c Africanus e l H aw tho r n e B Horton s e p u Ku ro sawa N erud a R y Shevchenko r e v o Coleri dge c s i

D V incent e –57° –57° r 180°W 150°W 120°W 90°W 60°W 30°W 0°W 330°W 300°W 270°W 240°W 210°W 180°W 180°E 210°E 240°E 270°E 300°E 330°E 360°E 30°E 60°E 90°E 120°E 150°E 180°E South Descriptions of nomenclature used on map are listed Prepared on behalf of the Planetary Science Division, Science Mission at https://planetarynames.wr.usgs.gov Directorate, National Aeronautics and Space Administration SCALE 1:20 000 000 (1 mm = 20 km) AT 56° LATITUDE Edited by J.L. Zigler; digital cartography by D.L. Knifong MERCATOR PROJECTION Manuscript approved for publication April 2, 2018 West longitude (planetographic) coordinate system shown in black. East longitude (planetocentric) coordinate system shown in red.

2000 1000 500 0 500 1000 2000 KILOMETERS 57 57 40 20 20 0 0

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government This map is also offered in an online, digital version. Users should be aware that, because of differences in rendering processes and pixel resolution, some slight Image Map of Mercury distortion of scale may occur when viewing it on a computer screen or when printing it on an electronic plotter, even when it is viewed or printed at its intended Printed on recycled paper publication scale For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, By Denver, CO 80225, 1–888–ASK–USGS 1 1 1 2 3 Digital files available at https://doi.org/10.3133/sim3404 Marc A. Hunter, Trent M. Hare, Rosalyn K. Hayward, Nancy L. Chabot, Christopher D. Hash, Suggested citation: Hunter, M.A., Hare, T.M., Hayward, R.K., Chabot, N.L., Hash, 1U.S. Geological Survey, C.D., Denevi, B.W., Ernst, C.M., Murchie, S.L., Blewett, D.T., Malaret, E.R., Solomon, 2 2 2 2 3 4 2 S.C., Becker, K.J., Becker, T.L., Weller, L.A., Edmundson, K.L., Neuman, G.A., Brett W. Denevi, Carolyn M. Ernst, Scott L. Murchie, T. Blewett, Erick R. Malaret, and Sean C. Solomon Johns Hopkins University, ISSN 2329-1311 (print) 3 Mazarico, E., and Perry, M.E., 2018, Image mosaic and topographic maps of Applied Coherent Technology Corp., ISSN 2329-132X (online) Mercury: U.S. Geological Survey Scientific Investigations Map 3404, scale 4 2018 Columbia University https://doi.org/10.3133/sim3404 1:20,000,000 and 1:12,157,366, https://doi.org/10.3133/sim3404.