Next Generation Spacecraft, Crew Exploration Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Next Generation Spacecraft, Crew Exploration Vehicle Next Generation Spacecraft, Crew Exploration Vehicle A Special Bibliography From the NASA Scientific and Technical Information Program Includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology. January 2004 Next Generation Spacecraft, Crew Exploration Vehicle A Special Bibliography from the NASA Scientific and Technical Information Program JANUARY 2004 20040004384 Nebraska Univ., Lincoln, NE, USA Design of Experiments for the Thermal Characterization of Metallic Foam Crittenden, Paul E.; Cole, Kevin D.; Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials; August 18, 2003; In English Contract(s)/Grant(s): NAG1-01087; No Copyright; Avail: CASI; A03, Hardcopy Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion. Author Metal Foams; Heat Transfer 20040003713 NASA Langley Research Center, Hampton, VA, USA Development of Structural Health Management Technology for Aerospace Vehicles Prosser, W. H.; [2003]; In English; JANNAF 39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Harzards/3rd Modeling and Simulation Joint Subcommittee Meeting, 1-5 Sep. 2003, Colorado Springs, CO, USA; Original contains color illustrations; No Copyright; Avail: CASI; A02, Hardcopy As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention. Author Aerospace Vehicles; Systems Health Monitoring; Systems Engineering; Technology Utilization; Remote Sensors 20040001677 Aerospace Corp., USA Liquid Engine Test Facilities Assessment Adams, Michael J.; Emdee, Jeffery L.; George, Daweel J.; Peinemann, Manfred; May 03, 2002; In English Contract(s)/Grant(s): F04701-00-C-0009 Report No.(s): NASA/SE-2002-05-00041-SSC; No Copyright; Avail: CASI; A04, Hardcopy The John C. Stennis Space Center (SSC) requested The Aerospace Corporation to examine the current testing capability of all existing large liquid engine test facilities located in the USA. That information along with projected liquid rocket engine development was used to examine future liquid rocket engine testing facilities needs in the coming decade. Current domestic liquid engine test facilities capabilities, when examined against engine concepts for the coming decade, indicate there are 1 ample facilities offering altitude simulation during test. In addition, it was observed that many contractor facilities have limited ambient test capability of larger thrust engines under current consideration. Finally, it was concluded that diminished contractor participation engine development testing will drive this activity to the government sector. Only three facilities are seen as key contributors to engine testing in the coming decade, namely John C. Stennis Space Center (SSC), Marshall Space Flight Center (MSFC), and Air Force Research Laboratory (AFRL). Past rocket engine test experience was evaluated as a possible resource for projecting future engine test needs. A database comprised of various engine models and the level of testing performed to flight qualify those systems for their first flight was constructed. For comparison purposes in this study, development and qualification efforts were totaled and treated as one test program. Based on experience with past Air Force programs, the time on the test stand accounts for typically 50% or more of the total program time. Historical data show that the time to design and develop new engines has increased over the last 40 years, most likely due to scarcer resources in today’s funding environment. Derived from text Engine Tests; Liquid Propellant Rocket Engines; Test Facilities; Aerospace Systems 20040001153 NASA Langley Research Center, Hampton, VA, USA Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.; [2003]; In English; No Copyright; Avail: CASI; A03, Hardcopy Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase. Author Cryogenic Temperature; Cryopumping; Insulation; Reusable Launch Vehicles; Manufacturing 20040000905 NASA Stennis Space Center, Bay Saint Louis, MS, USA Improved Testing Capability and Adaptability Through the Use of Wireless Sensors Solano, Wanda M.; April 14, 2003; In English; 2003 Propulsion Measurement Sensor Development Workshop, 13-15 May 2003, Huntsville, AL, USA; Original contains color illustrations Report No.(s): SE-2003-04-00020-SSC; No Copyright; Avail: CASI; A02, Hardcopy From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms. Author Engine Tests; Engine Monitoring Instruments; Instrument Packages 20040000874 Lockheed Martin Space Operations, Bay Saint Louis, MS, USA NASA Stennis Space Center V and V Capabilities Overview Ryan, Robert; October 22, 2001; In English; MAPPS-ASPRS Conference: Measuring the Earth-Digital Elevation Technologies and Applications, 31 Oct. - 2 Nov. 2001, Saint Petersburg, FL, USA Contract(s)/Grant(s): NAS13-650 Report No.(s): SE-2001-10-00062-SSC; No Copyright; Avail: CASI; A03, Hardcopy 2 The objective are provide independent field measurement ground capability for satellite and aircraft mounted in-flight sensor validation. NASA Stennis is considering expanding its Verification and Validation (V&V) range to support LIDAR and digital camera characterization.
Recommended publications
  • The Flight to Orbit
    There are numerous ways to get there— Around the Corner Th As then–US Space Command chief from rocket The Gen. Howell M. Estes III said to launch to space defense writers just before his re- tirement in August, “This is going maneuver to come along a lot quicker than we vehicles—and the think it is. ... We tend to think this stuff is way out there in the future, Air Force is but it’s right around the corner.” keeping its Flight The Air Force and NASA have divided the task of providing the options open. US government with a means of reliable, low-cost transportation to Earth orbit. The Air Force, with the largest immediate need, is heading to up the effort to revamp the Expend- to able Launch Vehicles now used to loft military and other government satellites. Called the Evolved ELV, this program is focused on derivatives of existing rockets. Competitors have been invited to redesign or value- engineer their proven boosters with new materials and technologies to provide reliable launch services at a he Air Force would like to go Orbit far lower price than today’s bench- back and forth to Earth orbit as bit mark of around $10,000 a pound to T O easily as it goes back and forth to Low Earth Orbit. The reasoning is 30,000 feet—routinely, reliably, and that an “evolved”—rather than an relatively cheaply. Such a capability all-new—vehicle will yield cost sav- goes hand in hand with being a true ings while reducing technical risk.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Delta Clipper a Path to the Future
    Delta Clipper A Path to the Future By Jason Moore & Ashraf Shaikh Executive Summary Although the Space Shuttle has well served its purpose for years, in order to revitalize and advance the American space program, a new space launch vehicle is needed. A prime candidate for the new manned launch vehicle is the DC-X. The DC-X isn’t a state-of-the-art rocket that would require millions of dollars of new development. The DC-X is a space launch vehicle that has already been tested and proven. Very little remains to be done in order to complete the process of establishing the DC-X as an operational vehicle. All that’s left is the building and final testing of a full-size DC-X, followed by manufacture and distribution. The Space Shuttle, as well as expendable rockets, is very expensive to build, maintain and launch. Costing approximately half a billion dollars for each flight, NASA can only afford to do a limited number of Space Shuttle missions. Also, the Shuttle is maintenance intensive, requiring hundreds of man-hours of maintenance after each flight. The DC-X, however, is very cheap to build, easy to maintain, and much cheaper to operate. If the DC-X was used as NASA’s vehicle of choice, NASA could afford to put more payloads into orbit, and manned space missions wouldn’t be the relative rarity they are now. Since not much remains in order to complete the DC-X, a new private organization dedicated solely to the DC-X would be the ideal choice for the company that would build it.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Abstract US Patent References
    Architecture for Reusable Responsive Exploration Systems: ARES - Platform and Reusable Responsive Architecture for Innovative Space Exploration: PRAISE (Part 1) PATENT PENDING Abstract A comprehensive Modular Reusable Responsive Space Exploration Platform (Architecture) composed of multiple modular reusable elements such that the assemblies can be flexibly configured into systems for low earth orbits launches and for long-range exploration such as orbits to moon, Lagrange points and others. This platform & architecture is named as Architecture for Reusable Responsive Exploration System (acronym ARES) / Platform and Reusable Responsive Architecture for Innovative Space Exploration (acronym PRAISE), in short ARES/PRAISE or simply ARES. It is also known as Alpha Spaces Architecture and Platform (acronym ASAP), in short as “αPlatform” or “αArchitecture”, or “αAres”. As an example, the configuration involves reusable lightweight wing, core stage, (optional booster stages) combination of expendable upper stage and reusable crew capsule. Further, the expendable upper stage can be re-used to serve as in-orbit fuel depots and for other innovative uses. This is first part of the multi part patent application. Inventor: Atreya, Dinesh S. US Patent References US Patent 6158693 - Recoverable booster stage and recovery method US Patent 4878637 - Modular space station US Patent 6726154 - Reusable space access launch vehicle system US Patent 6113032 - Delivering liquid propellant in a reusable booster stage US Patent 4557444 - Aerospace vehicle US Patent 4880187 - Multipurpose modular spacecraft US Patent 4452412 - Space shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank US Patent 4802639 - Horizontal-takeoff transatmospheric launch system US Patent 4884770 - Earth-to-orbit vehicle providing a reusable orbital stage US Patent 4265416 - Orbiter/launch system U.S.
    [Show full text]
  • Columbia Accident Investigation Board
    COLUMBIA ACCIDENT INVESTIGATION BOARD Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD On the Front Cover This was the crew patch for STS-107. The central element of the patch was the microgravity symbol, µg, flowing into the rays of the Astronaut symbol. The orbital inclination was portrayed by the 39-degree angle of the Earthʼs horizon to the Astronaut symbol. The sunrise was representative of the numerous science experiments that were the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conduct- ed on this mission had widespread benefits to life on Earth and the continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. In addition, the seven stars represent the STS-107 crew members, as well as honoring the original Mercury 7 astronauts who paved the way to make research in space possible. The Israeli flag represented the first person from that country to fly on the Space Shuttle. On the Back Cover This emblem memorializes the three U.S. human space flight accidents – Apollo 1, Challenger, and Columbia. The words across the top translate to: “To The Stars, Despite Adversity – Always Explore“ Limited First Printing, August 2003, by the Columbia Accident Investigation Board Subsequent Printing and Distribution by the National Aeronautics and Space Administration and the Government Printing Office Washington, D.C. 2 Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD IN MEMORIAM Rick D. Husband Commander William C.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster Shannon Dean Eilers Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Aerospace Engineering Commons Recommended Citation Eilers, Shannon Dean, "Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster" (2013). All Graduate Theses and Dissertations. 1726. https://digitalcommons.usu.edu/etd/1726 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DEVELOPMENT OF THE MULTIPLE USE PLUG HYBRID FOR NANOSATS (MUPHYN) MINIATURE THRUSTER by Shannon Eilers A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering Approved: Dr. Stephen A. Whitmore Dr. David K. Geller Major Professor Committee Member Dr. Barton Smith Dr. Warren Phillips Committee Member Committee Member Dr. Doran Baker Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii Copyright © Shannon Eilers 2013 All Rights Reserved iii Abstract Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) Miniature Thruster by Shannon Eilers, Doctor of Philosophy Utah State University, 2013 Major Professor: Dr. Stephen A. Whitmore Department: Mechanical and Aerospace Engineering The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorpo- rates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft.
    [Show full text]
  • Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
    Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars by C. B. Rabotin M.S., ESIEE Paris, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Masters of Science in Aerospace Engineering Sciences Ann and H.J. Smead Aerospace Engineering Sciences 2017 This thesis entitled: Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars written by C. B. Rabotin has been approved for the Ann and H.J. Smead Aerospace Engineering Sciences Dr. Hanspeter Schaub Dr. Natasha Bosanac Dr. Jay McMahon Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Rabotin, C. B. (M.Sc., Aerospace) Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars Thesis directed by Dr. Hanspeter Schaub Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches.
    [Show full text]
  • Microgravity and Macromolecular Crystallography Craig E
    CRYSTAL GROWTH & DESIGN 2001 VOL. 1, NO. 1 87-99 Review Microgravity and Macromolecular Crystallography Craig E. Kundrot,* Russell A. Judge, Marc L. Pusey, and Edward H. Snell Mail Code SD48 Biotechnology Science Group, NASA Marshall Space Flight Center, Huntsville, Alabama 35812 Received August 24, 2000 ABSTRACT: Macromolecular crystal growth is seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, are simply operated, and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity is a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. The results of microgravity crystal growth are considerable when one realizes that the comparisons are always between few microgravity-based experiments and a large number of earth-based experiments. Finally, we outline the direction for optimizing the future use of orbiting platforms. 1. Introduction molecules, including viruses, proteins, DNA, RNA, and complexes of those molecules. In this review, the terms Macromolecular crystallography is a multidisciplinary protein or macromolecule are used to refer to this entire science involving the crystallization of a macromolecule range. or complex of macromolecules, followed by X-ray or The reduced acceleration environment of an orbiting neutron diffraction to determine the three-dimensional spacecraft has been posited as an ideal environment for structure. The structure provides a basis for under- biological crystal growth, since buoyancy-driven convec- standing function and enables the development of new tion and sedimentation are greatly reduced.
    [Show full text]
  • Summary of Liquid Propulsion System Needs in Support of The
    · m~-W Summary ofLiquid Propulsion System Needs in Support ofthe Constellation Program Terry Lorier, Program Manager, Space Propulsion Systems Development Pratt & Whitney Rocketdyne Canoga Park, CA Phil Sumrall, AdvancedPlanning Manager, Ares Projects Office NASA Marshall Space Flight Center Huntsville. AL Michael Baine, Ph.D., Orion Propulsion System Manager NASA Johnson Space Center Houston, TX Abstract In January 2004, the President ofthe United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration ofMars and worlds beyond. In response, NASA developed the Constellation Program, consisting ofthe components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support ofthe Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview ofengines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part ofthis paper. Also, other portions ofthe VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements ofreturning humans to the Moon. Our Exploration Fleet What will the vehicles look like? Orion Crew Exploration Vehicle Figure 1. Constellation Program components I.
    [Show full text]
  • Failures in Spacecraft Systems: an Analysis from The
    FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof.
    [Show full text]