Article Characterization of a New DGKE Intronic Mutation In

Total Page:16

File Type:pdf, Size:1020Kb

Article Characterization of a New DGKE Intronic Mutation In Article Characterization of a New DGKE Intronic Mutation in Genetically Unsolved Cases of Familial Atypical Hemolytic Uremic Syndrome Caterina Mele, Mathieu Lemaire, Paraskevas Iatropoulos, Rossella Piras, Elena Bresin, Serena Bettoni, David Bick, Daniel Helbling, Regan Veith, Elisabetta Valoti, Roberta Donadelli, Luisa Murer, Maria Neunha¨userer, Matteo Breno, Ve´ronique Fre´meaux-Bacchi, Richard Lifton, Giuseppe Remuzzi, and Marina Noris Due to the number of contributing authors, Abstract the affiliations are Background and objectives Genetic and acquired abnormalities causing dysregulation of the complement provided in the alternative pathway contribute to atypical hemolytic uremic syndrome (aHUS), a rare disorder characterized by Supplemental thrombocytopenia, nonimmune microangiopathic hemolytic anemia, and acute kidney failure. However, in a Material. substantial proportion of patients the disease-associated alterations are still unknown. Correspondence: Dr. Giuseppe Remuzzi, Design, setting, participants, & measurements Whole-exome and whole-genome sequencing were performed in IRCCS - Istituto di two unrelated families with infantile recessive aHUS. Sequencing of cDNA from affected individuals was used to Ricerche test for the presence of aberrant mRNA species. Expression of mutant diacylglycerol kinase epsilon (DGKE) Farmacologiche Mario protein was evaluated with western blotting. Negri, Centro Anna Maria Astori, Science fi and Technology Park Results Whole-exome sequencing analysis with conventional variant ltering parameters did not reveal any Kilometro Rosso, Via obvious candidate mutation in the first family. The report of aHUS-associated mutations in DGKE, encoding Stezzano 87, 24126 DGKE, led to re-examination of the noncoding DGKE variants obtained from next-generation sequencing, Bergamo, Italy. E-mail: allowing identification of a novel intronic DGKE mutation (c.888+40A.G) that segregated with disease. Se- giuseppe.remuzzi@ marionegri.it quencing of cDNA from affected individuals revealed aberrant forms of DGKE mRNA predicted to cause pro- found abnormalities in the protein catalytic site. By whole-genome sequencing, the same mutation was found in compound heterozygosity with a second nonsense DGKE mutation in all affected siblings of another unrelated family. Homozygous and compound heterozygous patients presented similar clinical features, including aHUS presentation in the first year of life, multiple relapsing episodes, and proteinuria, which are prototypical of DGKE-associated aHUS. Conclusions This is the first report of a mutation located beyond the exon-intron boundaries in aHUS. Intronic mutations such as these are underreported because conventional filtering parameters used to process next- generation sequencing data routinely exclude these regions from downstream analyses in both research and clinical settings. The results suggest that analysis of noncoding regions of aHUS-associated genes coupled with mRNA sequencing might provide a tool to explain genetically unsolved aHUS cases. Clin J Am Soc Nephrol 10: 1011–1019, 2015. doi: 10.2215/CJN.08520814 Introduction membrane cofactor protein [MCP], and thrombo- Atypical hemolytic uremic syndrome (aHUS) is a rare modulin [THBD]) have been documented in nearly disorder resulting in thrombocytopenia, nonimmune 60% of patients (1–10). These findings paved the way microangiopathic hemolytic anemia, and acute kidney for complement-tailored treatments (1,11) that have led failure (1). It has a poor prognosis with approxi- to impressive improvements in short- and long-term mately 60% of patients progressing to ESRD and a prognosis (12). However, the underlying cause remains mortality rate between 4% and 25% (1,2). Extensive elusive for a substantial proportion of patients. The ad- studies showed that hyperactivation of the comple- vent of next-generation sequencing has resulted in ment alternative pathway is the main pathogenetic progress toward filling these knowledge gaps, allow- effector mechanism leading to endothelial damage ing for a rapid exome-/genome-wide search for path- and microvascular thrombosis in most patients with ogenic mutations (13). Recently, using whole-exome aHUS (1,2). Genetic and autoimmune abnormalities sequencing (WES), Lemaire and colleagues success- affecting complement proteins (complement factor fully identified recessive mutations in DGKE, encod- H [FH], factor H–related proteins [FHRs], factor I ing diacylglycerol kinase epsilon (DGKE), as a novel [FI], factor B [FB], complement component 3 [C3], cause of aHUS (14). Patients showed a specific clinical www.cjasn.org Vol 10 June, 2015 Copyright © 2015 by the American Society of Nephrology 1011 1012 Clinical Journal of the American Society of Nephrology phenotype characterized by onset in infancy, multiple re- aHUS was diagnosed at 10 months in the girl (no. 452) lapsing episodes, and nephrotic-range proteinuria (14). Be- and at 5 months in the boy (no. 1200). Both siblings had sides cobalamin C deficiency–associated aHUS (15), DGKE thrombocytopenia, hemolytic anemia with schistocytes on is the only other gene implicated in aHUS that does not blood smear, and renal impairment (Table 1). Mild pro- encode a complement component (16). teinuria and hypertension were also documented. C3 lev- Patients carrying DGKE mutations did not show con- els were lower than normal, and C4 was normal. Complete sumption of serum complement components, suggesting remission was achieved for both patients with supportive the existence of a novel pathogenetic mechanism for throm- therapy, which only included correction of anemia with botic microangiopathy (14). However, this assumption has packed erythrocytes and antihypertensive therapy. Both been challenged by the report of a DGKE-truncating muta- siblings had relapsing disease with one to three bouts a tion in two patients with moderate C3 consumption (17). year, often in concomitance with viral or bacterial infec- The recent finding of combined DGKE and complement tions (Supplemental Figure 1), without evidence of C3 con- gene mutations in three patients suggests that complement sumption. During relapses, they manifested renal dysregulation may have a role in modulating disease impairment (serum creatinine, no. 452: 1.4–1.7 mg/dl; severity in DGKE mutation carriers (18). Identification of no. 1200: 0.7–0.85 mg/dl), with hematuria and high-degree additional patients with DGKE mutations will be helpful proteinuria (.2 g/24 h). After every relapse, renal and he- to better characterize the phenotypic and prognostic het- matologic parameters returned to baseline with supportive erogeneity. therapy alone or with plasma infusion/exchange. From the Here, we report two families with recessive aHUS where age of 8 (no. 452) and 5 (no. 1200) years, the siblings received examination of DGKE variants obtained from WES and two plasma infusions a year as prophylaxis. Patient 1200 whole-genome sequencing (WGS) allowed identification had a relapse at 7 years and 3 weeks after plasma infusion. of a novel, intronic DGKE mutation that segregates with The relapse was treated with plasma infusion with prompt disease in both families and causes aberrant splicing of recovery. Thereafter, no further relapse occurred in both chil- DGKE transcripts. dren. At the last follow-up (age of no. 452, 13 years; age of no. 1200, 10 years), the siblings had mild persistent protein- uria with normal renal function (Table 1). Materials and Methods Sanger sequencing did not reveal any mutation in known aHUS was diagnosed on the basis of microangiopathic aHUS-associated genes (CFH, MCP, CFI, CFB, C3,and hemolytic anemia and thrombocytopenia defined by he- THBD)ortheCFH-H3 and MCPggaac risk haplotypes. matocrit ,30%, hemoglobin level ,100 g/L, serum lactate Multiplex ligation-dependent probe amplification analysis dehydrogenase level .460 U/L, undetectable haptoglobin, showed the presence of two copies of CFHR1 and CFHR3 fragmented erythrocytes in peripheral blood smear, and andexcludedgenomicCFH-CFHRs rearrangements. platelet count ,1503109/L, associated with acute kidney ELISA for anti-FH autoantibodies was negative. To iden- failure. tify the genetic basis of aHUS in this family, we performed Family 1 and 30 unrelated pediatric patients with aHUS WES coupled with homozygosity mapping (20). were recruited from the International Registry of HUS/ WES performed on patient 452 showed a 72X mean cov- Thrombotic Thrombocytopenic Purpura. Patient II-1 from erage over the targeted exons, with 95.1% of targets covered family 2 underwent clinical WGS as part of the Genomics at an average depth of 4X or higher. Variant detection iden- Medicine Clinic, in collaboration with Children’s Hospital tified 30,267 single nucleotide variants (SNVs) and 1137 of Wisconsin and Froedtert Hospital (19). Twenty unrelated insertions/deletions. After excluding variants with minor French patients with pediatric aHUS undergoing genetic allele frequency (MAF) .1%, 4507 candidates remained. screening in Paris were included in this study. Among those, 143 (131 SNVs and 12 insertions/deletions) Peripheral blood samples were collected for DNA, RNA, were homozygous protein-altering variants (nonsense, mis- and protein isolation. Samples from 89 Italian healthy sense, or affecting canonical splice sites). We focused on persons were analyzed as controls. identifying autozygous mutations because the affected sib- The study was approved by the Ethics Committee of the lings are from a consanguineous family and are likely to Azienda Sanitaria
Recommended publications
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
    Research JAMA Neurology | Original Investigation Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets Demis A. Kia, MBBS; David Zhang, MSc; Sebastian Guelfi, PhD; Claudia Manzoni, PhD; Leon Hubbard, PhD; Regina H. Reynolds, MSc; Juan Botía, PhD; Mina Ryten, MD; Raffaele Ferrari, PhD; Patrick A. Lewis, PhD; Nigel Williams, PhD; Daniah Trabzuni, PhD; John Hardy, PhD; Nicholas W. Wood, PhD; for the United Kingdom Brain Expression Consortium (UKBEC) and the International Parkinson’s Disease Genomics Consortium (IPDGC) Supplemental content IMPORTANCE Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. OBJECTIVE To investigate what genes and genomic processes underlie the risk of sporadic PD. DESIGN AND SETTING This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. MAIN OUTCOMES AND MEASURES It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation.
    [Show full text]
  • Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Mol Neurosci (2013) 50:33–57 DOI 10.1007/s12031-012-9850-1 Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds Pawel Lisowski & Marek Wieczorek & Joanna Goscik & Grzegorz R. Juszczak & Adrian M. Stankiewicz & Lech Zwierzchowski & Artur H. Swiergiel Received: 14 May 2012 /Accepted: 25 June 2012 /Published online: 27 July 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract There is increasing evidence that depression signaling pathway (Clic6, Drd1a,andPpp1r1b). LA derives from the impact of environmental pressure on transcriptome affected by CMS was associated with genetically susceptible individuals. We analyzed the genes involved in behavioral response to stimulus effects of chronic mild stress (CMS) on prefrontal cor- (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5,and tex transcriptome of two strains of mice bred for high Prkcc), immune effector processes (Fcer1g, Mpo,and (HA)and low (LA) swim stress-induced analgesia that Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, differ in basal transcriptomic profiles and depression- Dgkg,andPrkcc), and long-term depression (Crhr1, like behaviors. We found that CMS affected 96 and 92 Grm5,andPrkcc) and/or coding elements of dendrites genes in HA and LA mice, respectively. Among genes (Crmp1, Cntnap4,andPrkcc) and myelin proteins with the same expression pattern in both strains after (Gpm6a, Mal,andMog). The results indicate significant CMS, we observed robust upregulation of Ttr gene contribution of genetic background to differences in coding transthyretin involved in amyloidosis, seizures, stress response gene expression in the mouse prefrontal stroke-like episodes, or dementia.
    [Show full text]
  • Downloaded from Ftp://Ftp.Uniprot.Org/ on July 3, 2019) Using Maxquant (V1.6.10.43) Search Algorithm
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.385096; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The proteomic landscape of resting and activated CD4+ T cells reveal insights into cell differentiation and function Yashwanth Subbannayya1, Markus Haug1, Sneha M. Pinto1, Varshasnata Mohanty2, Hany Zakaria Meås1, Trude Helen Flo1, T.S. Keshava Prasad2 and Richard K. Kandasamy1,* 1Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway 2Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India *Correspondence to: Professor Richard Kumaran Kandasamy Norwegian University of Science and Technology (NTNU) Centre of Molecular Inflammation Research (CEMIR) PO Box 8905 MTFS Trondheim 7491 Norway E-mail: [email protected] (Kandasamy R K) Tel.: +47-7282-4511 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.385096; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells.
    [Show full text]
  • Download 20190410); Fragmentation for 20 S
    ARTICLE https://doi.org/10.1038/s41467-020-17387-y OPEN Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes ✉ Martin Mehnert 1 , Rodolfo Ciuffa1, Fabian Frommelt 1, Federico Uliana1, Audrey van Drogen1, ✉ ✉ Kilian Ruminski1,3, Matthias Gstaiger1 & Ruedi Aebersold 1,2 fi 1234567890():,; Rapidly increasing availability of genomic data and ensuing identi cation of disease asso- ciated mutations allows for an unbiased insight into genetic drivers of disease development. However, determination of molecular mechanisms by which individual genomic changes affect biochemical processes remains a major challenge. Here, we develop a multilayered proteomic workflow to explore how genetic lesions modulate the proteome and are trans- lated into molecular phenotypes. Using this workflow we determine how expression of a panel of disease-associated mutations in the Dyrk2 protein kinase alter the composition, topology and activity of this kinase complex as well as the phosphoproteomic state of the cell. The data show that altered protein-protein interactions caused by the mutations are asso- ciated with topological changes and affected phosphorylation of known cancer driver pro- teins, thus linking Dyrk2 mutations with cancer-related biochemical processes. Overall, we discover multiple mutation-specific functionally relevant changes, thus highlighting the extensive plasticity of molecular responses to genetic lesions. 1 Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]
  • SURVEY and SUMMARY Matching Trna Modifications In
    Published online 30 January 2019 Nucleic Acids Research, 2019, Vol. 47, No. 5 2143–2159 doi: 10.1093/nar/gkz011 SURVEY AND SUMMARY Matching tRNA modifications in humans to their known and predicted enzymes Downloaded from https://academic.oup.com/nar/article-abstract/47/5/2143/5304329 by Vrije Universiteit Amsterdam user on 12 March 2019 Valerie´ de Crecy-Lagard´ 1,2,*, Pietro Boccaletto3, Carl G. Mangleburg1, Puneet Sharma4,5, Todd M. Lowe 6,*, Sebastian A. Leidel 4,5,7,* and Janusz M. Bujnicki 3,8,* 1Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA, 2Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA, 3Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, 4Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany, 5Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany, 6Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA, 7Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland and 8Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan,´ Poland Received September 05, 2018; Revised December 28, 2018; Editorial Decision January 03, 2019; Accepted January 10, 2019 ABSTRACT cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analy- tRNA are post-transcriptionally modified by chemi- sis shows that modification genes are highly ex- cal modifications that affect all aspects of tRNA bi- pressed in proliferative tissues like testis and trans- ology.
    [Show full text]
  • Identification of Pain Genes Contributing to Ciguatoxin-Induced Pain Using Haplotype-Based Computational Genetic Mapping in Mice
    Identification of pain genes contributing to ciguatoxin-induced pain using haplotype-based computational genetic mapping in mice by Julian Soh Bachelor of Medicine/Bachelor of Surgery Submitted for the degree of Masters of Philosophy at The University of Queensland in 2018 School of Medicine Abstract Pain is a complex process involving numerous underlying genetic contributions still not completely appreciated, which may explain the high degree of interindividual differences seen with nociception. Chronic pain is responsible for a significant socioeconomic burden on the individual as well as society and is affected by several patient specific aspects including physiological, psychological and environmental factors. Interindividual response to current analgesics is exceedingly inconsistent and the functional basis for the unpredictable efficacies of medications has not been elucidated. It is highly probable that variation seen in nociception is due to undiscovered genetic mechanisms, and specific polymorphisms within genes can be potentially singled out by observing deviations in spontaneous pain responses between animals of differing genotypes using the ciguatoxin marine poison. Ciguatoxin is isolated from the Gambierdiscus toxicus dinoflagellate, a specific type of plankton, which is shown to produce spontaneous pain as well as cold allodynia in a dose dependent manner. The objectives of this thesis are centred on the demonstration of the genotypic influence on pain perception, identifying possible genetic sources implicated in nociception, and validating these potential targets with in vivo methods. In Chapter 2, pain behaviours of sixteen mouse strains with recognised genotypes were quantified after administration of the ciguatoxin, which is known to induce spontaneous flinching and licking pain reactions after intraplantar injection.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Downloaded from Ensembl
    UCSF UC San Francisco Electronic Theses and Dissertations Title Detecting genetic similarity between complex human traits by exploring their common molecular mechanism Permalink https://escholarship.org/uc/item/1k40s443 Author Gu, Jialiang Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members ii Acknowledgement This project would not have been possible without Prof. Dr. Hao Li, Dr. Jiashun Zheng and Dr. Chris Fuller at the University of California, San Francisco (UCSF) and Caribou Bioscience. The Li lab grew into a multi-facet research group consist of both experimentalists and computational biologists covering three research areas including cellular/molecular mechanism of ageing, genetic determinants of complex human traits and structure, function, evolution of gene regulatory network. Labs like these are the pillar of global success and reputation
    [Show full text]