Nizar Alkhlaifat Mohammad Badi Mohammad Alsalem 8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NS201C Anatomy 1: Sensory and Motor Systems
NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent. -
Section of Neurosurgery, Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan
ANATOMIC PATHWAYS RELATED TO PAIN IN FACE AND NECK* JAMES A. TAREN, M.D., AND EDGAR A. KAHN, M.D. Section of Neurosurgery, Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan (Received for publication May 19, 1961) HE remarkable ability of the higher V is most dorsal in the tract. Fig. 4 is a dia- portions of the central nervous system gram of the medulla 6 mm. below the obex T to readjust to surgical lesions presup- which we believe to be the optimal level for poses the existence of alternate pathways. tractotomy. The operation is done with the This hypothesis has been tested with regard patient in the sitting position to facilitate to a specific localized sensory input, pain exposure. The medullary incision, 4-5 mm. from the face. in depth, extends from the bulbar accessory Our method has been to study the degen- rootlet to a line extrapolated from the pos- eration of nerve fibers by Weil and Marchi terior rootlets of the ~ud cervical nerve root. techniques following various surgical lesions An adequate incision results in complete in man and monkey. The lesions have con- analgesia of all 8 divisions as well as analgesia sisted of total and selective retrogasserian in the distribution of VII, IX, and X except rhizotomy in 3 humans and 3 monkeys, for sparing of the vermilion border of the lips medullary tractotomy in ~ humans and (Fig. 5). A degree of ataxia of the ipsilateral monkeys, and extirpation of the cervical upper extremity usually accompanies effec- portion of the nucleus of the descending tract tive tractotomy and is caused by compromise of V in ~ monkeys. -
The Brain Stem Medulla Oblongata
Chapter 14 The Brain Stem Medulla Oblongata Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Central sulcus Parietal lobe • embryonic myelencephalon becomes Cingulate gyrus leaves medulla oblongata Corpus callosum Parieto–occipital sulcus Frontal lobe Occipital lobe • begins at foramen magnum of the skull Thalamus Habenula Anterior Epithalamus commissure Pineal gland • extends for about 3 cm rostrally and ends Hypothalamus Posterior commissure at a groove between the medulla and Optic chiasm Mammillary body pons Cerebral aqueduct Pituitary gland Fourth ventricle Temporal lobe • slightly wider than spinal cord Cerebellum Midbrain • pyramids – pair of external ridges on Pons Medulla anterior surface oblongata – resembles side-by-side baseball bats (a) • olive – a prominent bulge lateral to each pyramid • posteriorly, gracile and cuneate fasciculi of the spinal cord continue as two pair of ridges on the medulla • all nerve fibers connecting the brain to the spinal cord pass through the medulla • four pairs of cranial nerves begin or end in medulla - IX, X, XI, XII Medulla Oblongata Associated Functions • cardiac center – adjusts rate and force of heart • vasomotor center – adjusts blood vessel diameter • respiratory centers – control rate and depth of breathing • reflex centers – for coughing, sneezing, gagging, swallowing, vomiting, salivation, sweating, movements of tongue and head Medulla Oblongata Nucleus of hypoglossal nerve Fourth ventricle Gracile nucleus Nucleus of Cuneate nucleus vagus -
DR. Sanaa Alshaarawy
By DR. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal, mid “Trigeminal level” and rostral). 3. Mid brain ( superior and inferior colliculi). Describe the Reticular formation (structure, function and pathway) being an important content of the brain stem. 2 1. Traversed by the Central Canal. Motor Decussation*. Spinal Nucleus of Trigeminal (Trigeminal sensory nucleus)* : ➢ It is a larger sensory T.S of Caudal part of M.O. nucleus. ➢ It is the brain stem continuation of the Substantia Gelatinosa of spinal cord 3 The Nucleus Extends : Through the whole length of the brain stem and upper segments of spinal cord. It lies in all levels of M.O, medial to the spinal tract of the trigeminal. It receives pain and temperature from face, forehead. Its tract present in all levels of M.O. is formed of descending fibers that terminate in the trigeminal nucleus. 4 It is Motor Decussation. Formed by pyramidal fibers, (75-90%) cross to the opposite side They descend in the Decuss- = crossing lateral white column of the spinal cord as the lateral corticospinal tract. The uncrossed fibers form the ventral corticospinal tract. 5 Traversed by Central Canal. Larger size Gracile & Cuneate nuclei, concerned with proprioceptive deep sensations of the body. Axons of Gracile & Cuneate nuclei form the internal arcuate fibers; decussating forming Sensory Decussation. Pyramids are prominent ventrally. 6 Formed by the crossed internal arcuate fibers Medial Leminiscus: Composed of the ascending internal arcuate fibers after their crossing. -
Brainstem and Its Associated Cranial Nerves
Brainstem and its Associated Cranial Nerves Anatomical and Physiological Review By Sara Alenezy With appreciation to Noura AlTawil’s significant efforts Midbrain (Mesencephalon) External Anatomy of Midbrain 1. Crus Cerebri (Also known as Basis Pedunculi or Cerebral Peduncles): Large column of descending “Upper Motor Neuron” fibers that is responsible for movement coordination, which are: a. Frontopontine fibers b. Corticospinal fibers Ventral Surface c. Corticobulbar fibers d. Temporo-pontine fibers 2. Interpeduncular Fossa: Separates the Crus Cerebri from the middle. 3. Nerve: 3rd Cranial Nerve (Oculomotor) emerges from the Interpeduncular fossa. 1. Superior Colliculus: Involved with visual reflexes. Dorsal Surface 2. Inferior Colliculus: Involved with auditory reflexes. 3. Nerve: 4th Cranial Nerve (Trochlear) emerges caudally to the Inferior Colliculus after decussating in the superior medullary velum. Internal Anatomy of Midbrain 1. Superior Colliculus: Nucleus of grey matter that is associated with the Tectospinal Tract (descending) and the Spinotectal Tract (ascending). a. Tectospinal Pathway: turning the head, neck and eyeballs in response to a visual stimuli.1 Level of b. Spinotectal Pathway: turning the head, neck and eyeballs in response to a cutaneous stimuli.2 Superior 2. Oculomotor Nucleus: Situated in the periaqueductal grey matter. Colliculus 3. Red Nucleus: Red mass3 of grey matter situated centrally in the Tegmentum. Involved in motor control (Rubrospinal Tract). 1. Inferior Colliculus: Nucleus of grey matter that is associated with the Tectospinal Tract (descending) and the Spinotectal Tract (ascending). Tectospinal Pathway: turning the head, neck and eyeballs in response to a auditory stimuli. 2. Trochlear Nucleus: Situated in the periaqueductal grey matter. Level of Inferior 3. -
ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2. -
The Nervous System: Sensory and Motor Tracts of the Spinal Cord
15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Millions of sensory neurons are delivering information to the CNS all the time • Millions of motor neurons are causing the body to respond in a variety of ways • Sensory and motor neurons travel by different tracts within the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Communication to and from the brain involves tracts • Ascending tracts are sensory • Deliver information to the brain • Descending tracts are motor • Deliver information to the periphery © 2012 Pearson Education, Inc. Sensory and Motor Tracts • Naming the tracts • If the tract name begins with “spino” (as in spinocerebellar), the tract is a sensory tract delivering information from the spinal cord to the cerebellum (in this case) • If the tract name ends with “spinal” (as in vestibulospinal), the tract is a motor tract that delivers information from the vestibular apparatus (in this case) to the spinal cord © 2012 Pearson Education, Inc. Sensory and Motor Tracts • There are three major sensory tracts • The posterior column tract • The spinothalamic tract • The spinocerebellar tract © 2012 Pearson Education, Inc. Sensory and Motor Tracts • The three major sensory tracts involve chains of neurons • First-order neuron • Delivers sensations to the CNS • The cell body is in the dorsal or cranial root ganglion • Second-order neuron • An interneuron with the cell body in the spinal cord or brain • Third-order neuron • Transmits information from the thalamus to the cerebral cortex © 2012 Pearson Education, Inc. -
Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury
Neurotherapeutics (2016) 13:370–381 DOI 10.1007/s13311-016-0422-x REVIEW Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury Kathren L. Fink1 & William B. J. Cafferty 1 Published online: 3 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Neurons have a limited capacity to regenerate in the molecular mechanisms that drive plasticity within intact cir- adult central nervous system (CNS). The inability of damaged cuits is crucial in developing novel, potent, and specific ther- axons to re-establish original circuits results in permanent apeutics to restore function after SCI. In this review we dis- functional impairment after spinal cord injury (SCI). Despite cuss the evidence supporting a focus on exploring the capacity abortive regeneration of axotomized CNS neurons, limited of intact motor circuits to functionally repair the damaged spontaneous recovery of motor function emerges after partial CNS after SCI. SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways Keywords Spinal cord injury . Plasticity . Regeneration . spared by the injury, suggesting that plasticity of intact circuits Repair . Axon . Neuron is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy), -
Cerebral Cortex
Cerebral Cortex • Research on the structure and function of the brain reveals that there are both specialized and diffuse areas of function • Motor and sensory areas are localized in discrete cortical areas called domains • Many higher mental functions such as memory and language appear to have overlapping domains and are more diffusely located • Broadmann areas are areas of localized function Cerebral Cortex - Generalizations • The cerebral cortex has three types of functional areas – Motor areas / control voluntary motor function – Sensory areas / provide conscious awareness of sensation – Association areas / act mainly to integrate diverse information for purposeful action • Each hemisphere is chiefly concerned with the sensory and motor functions of the opposite (contralateral) side of the body Motor Areas • Cortical areas controlling motor functions lie in the posterior part of the frontal lobes • Motor areas include the primary motor cortex, the premotor cortex, Broca’s area, and the front eye field Primary Motor Cortex • The primary motor cortex is located in the precentral gyrus of the frontal lobe of each hemisphere • Large neurons (pyramidal cells) in these gyri allow us to consciously control the precise or skill voluntary movements of our skeletal muscles Pyramidal cells • These long axons, which project to the spinal cord, form the massive Dendrites voluntary motor tracts called the pyramidal, or corticospinal tracts • All other descending motor tracts issue from brain stem nuclei and consists of chains of two, three, or -
Lecture (6) Internal Structures of the Brainstem.Pdf
Internal structures of the Brainstem Neuroanatomy block-Anatomy-Lecture 6 Editing file Objectives At the end of the lecture, students should be able to: ● Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal and rostral). 3. Midbrain ( superior and inferior colliculi). Color guide ● Only in boys slides in Green ● Only in girls slides in Purple ● important in Red ● Notes in Grey Medulla oblongata Caudal (Closed) Medulla Traversed by the central canal Motor decussation (decussation of the pyramids) ● Formed by pyramidal fibers, (75-90%) cross to the opposite side ● They descend in the lateral white column of the spinal cord as the lateral corticospinal tract. ● The uncrossed fibers form the ventral corticospinal tract Trigeminal sensory nucleus. ● it is the larger sensory nucleus. ● The Nucleus Extends Through the whole length of the brainstem and its note :All CN V afferent sensory information enters continuation of the substantia gelatinosa of the spinal cord. the brainstem through the nerve itself located in the pons. Thus, to reach the spinal nucleus (which ● It lies in all levels of M.O, medial to the spinal tract of the trigeminal. spans the entire brain stem length) in the Caudal ● It receives pain and temperature from face, forehead. Medulla those fibers have to "descend" in what's known as the Spinal Tract of the Trigeminal ● Its tract present in all levels of M.O. is formed of descending (how its sensory and descend?see the note) fibers that terminate in the trigeminal nucleus. -
Chapter 3: Internal Anatomy of the Central Nervous System
10353-03_CH03.qxd 8/30/07 1:12 PM Page 82 3 Internal Anatomy of the Central Nervous System LEARNING OBJECTIVES Nuclear structures and fiber tracts related to various functional systems exist side by side at each level of the After studying this chapter, students should be able to: nervous system. Because disease processes in the brain • Identify the shapes of corticospinal fibers at different rarely strike only one anatomic structure or pathway, there neuraxial levels is a tendency for a series of related and unrelated clinical symptoms to emerge after a brain injury. A thorough knowl- • Recognize the ventricular cavity at various neuroaxial edge of the internal brain structures, including their shape, levels size, location, and proximity, makes it easier to understand • Recognize major internal anatomic structures of the their functional significance. In addition, the proximity of spinal cord and describe their functions nuclear structures and fiber tracts explains multiple symp- toms that may develop from a single lesion site. • Recognize important internal anatomic structures of the medulla and explain their functions • Recognize important internal anatomic structures of the ANATOMIC ORIENTATION pons and describe their functions LANDMARKS • Identify important internal anatomic structures of the midbrain and discuss their functions Two distinct anatomic landmarks used for visual orientation to the internal anatomy of the brain are the shapes of the • Recognize important internal anatomic structures of the descending corticospinal fibers and the ventricular cavity forebrain (diencephalon, basal ganglia, and limbic (Fig. 3-1). Both are present throughout the brain, although structures) and describe their functions their shape and size vary as one progresses caudally from the • Follow the continuation of major anatomic structures rostral forebrain (telencephalon) to the caudal brainstem. -
Development of a Neuromodulation-Based Therapy for the Rehabilitation of Patients with SCI
UNIVERSIDAD DE CASTILLA LA MANCHA Escuela Internacional de Doctorado Development of a neuromodulation-based therapy for the rehabilitation of patients with SCI by Stefano Piazza A thesis submitted in the fulfillment for the degree of Doctor of Philosophy. Directors Dr. José Luis Pons Dr. Julio Gómez Soriano November 2016 i Acknowledgements A Iris, per essere sempre al mio lato, per supportarmi e incoraggiarmi, consigliarmi ed aiutarmi. Per l’energia e l’allegria, il coraggio e la passione. Perché hai aggiunto groove alla mia vita, e da allora non abbiamo piú smesso di ballare. A Mattia, che durante questa tesi sei passato da nano a gigante, per la tua simpatia e irriverenza, per le burle e per le sfide. Mi hai insegnato a non prendermi troppo sul serio ed a vedere tutte le cose con la giusta prospettiva. Ai miei genitori, sempre presenti in questi anni, avete creduto in me fin dal primo momento e non avete mai smesso di appoggiarmi. Grazie per il vostro conforto, la vostra pazienza, e per l’entusiasmo con cui avete colto ogni piccolo passo che mi avvicinava un po’ di piú a questo traguardo. Ed a Tommy, che appoggiato su una spalla non mi perde mai di vista. Alla famiglia spagnola, per accogliermi con calore, sfamarmi in svariate occasioni ed incoraggiare fin da subito tutti i nostri progetti. Ai molti buoni amici, fonte costante di gioia ed evasione, per tutti i bei momenti passati insieme, per essere sempre pronti a rallegrarmi e stimolarmi in tutti questi anni. Credo che una buona parte della mia salute mentale la debba anche a voi.