©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

Sc h o l l e r et al.: platani – monitoring of an epidemic spread in Germany 263

Erysiphe platani : monitoring of an epidemic spread in Germany and molecular characterization based on rDNA sequence data

Ma r k u s Sc h o l l e r , Ve r e n a He mm & Ma t t h i a s Lu t z

Abstract ist Arendsee im nördlichen Sachsen-Anhalt. Vermutet This work deals in two sections with the North Ameri- wird, dass die Art über das Rhonetal und die Burgun- can plane powdery mildew Erysiphe platani, an epide- dische Pforte in die Oberrheinebene nach Deutschland miological study and a molecular phylogenetic analysis eingedrungen ist. based on rDNA ITS sequence data. Most likely, the Die Sequenzanalyse zeigt, dass Material aus Deutsch- species was introduced in South Europe at the begin- land und Italien identisch ist und sich von Material aus ning of the 1960s. In 2007, it was observed for the first Griechenland leicht und deutlich von außereuropä- time in Germany near Freiburg (SW Germany) and ob- ischem Material (Australien, USA) unterscheidet. Dies viously did not reach other German states until 2009. A deutet auf eine erhebliche Mutationsrate im neuen eu- detailed monitoring from 2009 to 2011 shows that the ropäischen Areal hin. Die phylogenetische Auswertung continually spread north- and northeastward der Sequenzdaten bestätigt, dass Erysiphe platani mit with a speed of roughly 190 km/year. The northernmost anderen auf Gehölzen vorkommenden Erysiphe-Arten record is from Arendsee in the north of Sachsen-Anhalt verwandt ist, die genau wie E. platani früher zur Gat- from 2011. We assume that the species has come from tung Microsphaera gestellt wurden. the Rhone valley and the Burgundian Gate finally en- tering Germany in the Upper Rhine plain. Autoren The molecular phylogenetic analyses of material of Dr. Ma r k u s Sc h o l l e r , Dipl.-Geoökol. Ve r e n a He mm , different geographic origins indicate that specimens Staatliches Museum für Naturkunde, Abt. Biowissen- from Germany and Italy are identical, differ slightly schaften, Erbprinzenstr. 13, 76133 Karlsruhe, E-Mail: from those from Greece and strongly from extraeuro- [email protected] pean (Australia, USA) material. This might indicate a Dr. Ma t t h i a s Lu t z , Universität Tübingen, Institut für considerable rate of mutation of this powdery mildew Evolution & Ökologie, Auf der Morgenstelle 1, 72076 with North American origin in the new European area. Tübingen In addition, the phylogenetic analyses confirm that E. platani is related to other tree-inhabiting powdery mil- dew species previously accommodated in the genus 1 Introduction Microsphaera. Powdery mildews (, ) are Kurzfassung obligate plant-parasitic microfungi predominantly Erysiphe platani: Monitoring einer epidemischen on dicots forming white conspicuous “powdery” Ausbreitung in Deutschlandund molekulare Cha- conidial layers on plant surfaces, predominantly rakterisierung basierend auf rDNS-Sequenzdaten on leaves, which are often deformed (Fig. 1). Die vorliegende Arbeit fasst die Ergebnisse zweier Untersuchungen des aus Nordamerika stammenden Fruitbodies are black, globose, without opening Echten Mehltaupilzes der Platane, Erysiphe platani, (called cleistothecia or chasmothecia) and with zusammen: Eine epidemiologische Untersuchung und appendages. Conidia, ascospores and fruitbodies eine Sequenzanalyse von rDNS ITS-Sequenzen. Die may be dispersed by the wind, conidia in highest vermutlich Anfang der 1960er Jahre nach Südeuropa quantities (e.g. Bl u m e r 1967). In an unpublished eingewanderte Art wurde 2007 erstmals in Deutsch- inventory, Sc h o l l e r et al. (2011) list 141 pow- land bei Freiburg (SW-Deutschland) nachgewiesen. dery mildew species for Germany. Fifty species, Für den Zeitraum von August 2009 bis 2011 wird die i.e. more than 1/3 of all species, are introduced epidemische Ausbreitung der Art innerhalb Deutsch- (so-called neomycetes and ephemeromycetes; lands dokumentiert. Von 2007 bis 2009 breitete sich Erysiphe platani nur langsam aus und erreichte ver- Kr e i s e l & Sc h o l l e r 1994) with a culmination of mutlich noch nicht die anderen Bundesländer. Danach introductions in the past two decades. Interest- beschleunigte sich die Ausbreitung auf rund 190 km/ ingly, many species have woody host plants. One Jahr und die Art breitete sich kontinuierlich nord- und of the most recently introduced species in Ger- nordostwärts aus. Der nördlichste Nachweis von 2011 many is the plane powdery mildew Erysiphe pla- ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

264 andrias, 19 (2012)

Figure 1. The anamorph of the Plane Powdery Mildew Erysiphe platani on deformed leaves of Platanus acerifolia in Karlsruhe, Main Railway Station, August 27, 2009. – Photograph: M. Sc h o l l e r .

tani (Ho w e ) U. Br a u n & S. Ta k a m . (= Microsphaera climates (An s e l m i et al. 1994)1. Erysiphe platani platani Ho w e ) with North American origin. The was reported on the host plants Platanus occi- species was recorded for the first time in Europe dentalis L., P. orientalis L., and the hybrid P. aceri- by Ci f e r r i & Ca m e r a (1962) on Platanus orientalis folia (Ai t o n ) Wi l l d . forming the anamorph only. In in Italy. However, the authors did not provide any the beginning of the 1990s the species appeared record data. Later Gu l l i n o & Ra p e t t i (1978) found in south and southwestern Switzerland near lake the species in Liguria in Italy and documented Geneva (Bo l a y 2005) indicating that the species its spread toward the French Mediterranean is spreading northward and may be expected in coast. In the following years the species spread Germany as well. Although there are several “first throughout the warm regions of the Mediterrane- record” publications from some countries with an countries, southern Switzerland, the mild at- morphological descriptions in Europe, ­little is lantic France, and southern UK but not to Central known about the details of the spreading mode, or Eastern Europe with increasingly continental e.g. speed of expansion and if progressing over long or short distances. This lack of information

1 In their distribution map An s e l m i et al. (1994: 165, Fig. 3) does not concern only Erysiphe platani, but al- report of isolated records of Erysiphe platani in Southern most all other powdery mildew species intro- Sweden. Since the fungus was not observed in neighboring duced to Europe. In the following we present the countries we wanted to get this confirmed and asked the results of a monitoring of the epidemic spread authors directly, but did not get any response. The Swedish Erysiphales expert Le n a Jo n s e l l could not confirm the occur- of E. platani in Germany. In addition to this, mo- rence of E. platani in Sweden. lecular phylogenetic analyses were carried out ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

Sc h o l l e r et al.: Erysiphe platani – monitoring of an epidemic spread in Germany 265

in order to elucidate the phylogenetic placement ITS1-F (Ga r d e s & Br u n s 1993) and ITS4 (Wh i t e and compare sequence data from specimens of et al. 1990). The 5´-end of the nuclear large sub- different geographic origin. unit ribosomal DNA (LSU) was amplified using the primer pair NL1 and NL4 (O´Do n n e l l 1993). Primers were used for both PCR and cycle se- 2 Materials and methods quencing. For amplification the annealing tempe- rature was adjusted to 45° C. DNA sequences 2.1 Documentation of the epidemic spread determined in this study were deposited in Gen- in Germany Bank. GenBank accession numbers are given in After finding Erysiphe platani at a parking lot in Fig. 2 and Table 1. Tul (Lorraine, France) in 2008 the first author looked methodically for this fungus in the Karls­ Phylogenetic analyses ruhe region (Baden-Württemberg, Germany). The Erysiphe specimens examined in this study ­After finding it in August 2009 a call to mycolo- are listed in Table 1. For molecular phylogenet- gists and botanists was started in September ic analyses the following ITS sequences from 2009 to look for this fungus and help to document GenBank were additionally used (At t a n a y a k e its spread in Germany. Collaborators were asked et al. 2010; Br a u n et al. 2006; Co o k et al. 2004, via email to provide both positive and negative 2006; Cu n n i n g t o n et al. 2003; Fr a n c i s et al. 2007; record data and voucher specimens. They were He l u t a et al. 2009; Hi r a t a & Ta k a m a t s u 1996; Kh o ­ regularly informed about the present distribu- d a p a r a s t et al. 2003; Ki r s c h n e r 2010; Ko v a c s et tion of the fungus in order to look for it where al. 2011; Le e et al. 2011; Li m k a i s a n g et al. 2006; it was still missing. Voucher specimens were all Mo r i et al. 2000; Sa e n z & Ta y l o r 1999; Se k o et checked by the first author and finally deposited al. 2011; Sh i r o y a & Ta k a m a t s u 2009; St a n o s z et in the fungus herbarium of the Natural History al. 2009; and Ta k a m a t s u et al. 1998, 1999, 2006, Museum in Karlsruhe (KR). A few specimens are 2007, 2008): Erysiphe abbreviata (Pe c k ) U. Br a u n also deposited in the fungus herbarium in Görlitz & S. Ta k a m . AB271785, E. adunca (Wa l l r .) Fr. (GLM). All specimen data including information var. adunca D84382, E. alphitoides (Gr i f f o n & on anamorph and teleomorph formation, hyper- Ma u b l .) U. Br a u n & S. Ta k a m . AB292710, E. aqui- parasites etc. will be available via diversity collec- legiae DC. HQ286643, E. arcuata U. Br a u n , V. P. tion and IMDAS online databases. The following He l u t a & S. Ta k a m . AB252462, E. astragali DC. is a list of collaborators (authors not mentioned): AB104515, E. baeumleri (Ma g n u s ) U. Br a u n & He r b e r t Bo y l e , Ad r i e n Bo l a y , Uw e Br a u n , Wa l t e r S. Ta k a m . AB015933, E. betae (Vaňh a ) We l t z i e n Ga ms , Pa t r i c k Do r n e s , Ho r s t Ja g e , Ro l a n d Kir­ DQ164436, E. buhrii U. Br a u n AB128924, E. car- s c h n e r , Fr i e d e m a n n Kl e n k e , Ha n n s Kr e i s e l , Ju l i a pinicola (Ha r a ) U. Br a u n & S. Ta k a m . AB252469, Kr u s e , Vo l k e r Ku mm e r , Di r k Mata l l a , Be r t o l d E. carpini-laxifloraeU . Br a u n , V. P. He l u t a & S. Ta­ Me t z l e r , Be r n d Oe r t e l , Ha r a l d Os t r o w , Ma r ç i n k a m . AB252470, E. catalpae Si m o n y a n DQ359695, Pi a t e k , Ud o Ri c h t e r , Ha r r y Re g i n , An n e m a r t h e E. circaeae L. Ju n e l l AB104517, E. clandestina Ru b n e r , An k e Sc h m i d t , Ma r t i n Sc h n i t t l e r , Di e t ­ Biv. AB475115, E. convolvuli DC. AF011298, r i c h Sc h o l l e r , Ka t h a r i n a Sc h o l l e r , Ma n f r e d E. corylopsidis Sh i r o y a & S. Ta k a m . AB478990, Sc h u b e r t , Le o p o l d Sc h r i m p l , Ho r s t St a u b , and E. cruciferarum Op i z e x L. Ju n e l l EU140958, Hj a l m a r Th i e l . E. densa Be r k . DQ005439, E. deutziae (Bu n k i ­ n a ) U. Br a u n & S. Ta k a m . GU196146, E. eleva- 2.2 Molecular analyses ta (Bu r r i l l ) U. Br a u n & S. Ta k a m . AY587013, E. DNA extraction, PCR, and sequencing euonymi-japonici (Vi e n n .-Bo u r g .) U. Br a u n & S. The specimens examined in the course of this Ta k a m . AB250228, E. fimbriata S. Ta k a m ., Ma s u ­ study are listed in Table 1. The voucher speci- y a & Y. No m u r a AB333839, E. friesii var. dahuri- mens are deposited in KR. Genomic DNA was ca (U. Br a u n ) U. Br a u n & S. Ta k a m . AB000939; isolated directly from the herbarium specimens. E. glycines F. L. Ta i var. glycines AB015934, E. For methods of isolation and crushing of fungal glycines var. lespedezae (R.Y. Zh e n g & U. Br a u n ) material, DNA extraction, amplification, purifica- U. Br a u n & R. Y. Zh e n g AB015923, E. helwingi- tion of PCR products, sequencing, and proces- ae (Sa w a d a ) U. Br a u n & S. Ta k a m . AB015916, E. sing of the raw data see Lu t z et al. (2004). ITS 1 heraclei DC. AB104510, E. howeana U. Br a u n and ITS 2 regions of the rDNA including the 5.8S AF011301, E. huayinenesis R. Y. Zh e n g & G. rDNA (ITS) were amplified using the primer pair Q. Ch e n AB015914, E. hypogena S. Ta k a m . & ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

266 andrias, 19 (2012)

Figure 2. Bayesian inference of phylogenetic relationships within the sampled Erysiphe species: Markov chain Monte Carlo analysis of an alignment of ITS base sequences using the GTR+I+G model of DNA substitution with gamma-distributed substitution rates and estimation of invariant sites, random starting trees and default starting parameters of the DNA substitution model. A 50% majority-rule consensus tree is shown computed from 45.000 trees that were sampled after the process had reached stationarity. The topology was rooted with Erysiphe adunca var. adunca, E. clandestina, E. prunastri, and E. trinae. Numbers on branches before slashes are estimates for a ­posteriori probabilities, numbers after slashes are ML bootstrap support values. Branch lengths were averaged over the sampled trees. They are scaled in terms of expected numbers of nucleotide substitutions per site. Speci- mens examined in this study are printed in bold. E. = Erysiphe. ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

Sc h o l l e r et al.: Erysiphe platani – monitoring of an epidemic spread in Germany 267

Table 1. List of Erysiphe platani specimens examined in the course of this study with host plants, GenBank acces- sion numbers, and reference specimens.

Platanus GenBank acc. no. Reference specimens1 Host (ITS/LSU)

P. acerifolia JQ365940/JQ365936 Germany, Baden-Württemberg, Tübingen, (Ai t o n ) Wi l l d . Herrenberger Straße, 21.08.2010, leg. M. Lu t z , KR26134.

P. acerifolia JQ365941/JQ365937 Italy, Toscana, Livorno, Isola d‘Elba, Capoliveri, 30.06.2011, leg. M. Lu t z , KR27975

P. acerifolia JQ365942/JQ365938 Germany, Baden-Württemberg, Denzlingen, 22.10.2007, leg. B. Me t z l e r , KR26434

P. orientalis L. JQ365943/JQ365939 Greece, Évia, Karystos, Palaia Styra (Old Styra), 24.08.2011, leg. M. Sc h o l l e r , KR29265

1 KR – Fungus collections of the herbarium of Staatliches Museum für Naturkunde, Karlsruhe, Germany.

U. Br a u n AB292726, E. hypophylla (Ne v o d .) U. geliae Z. X. Ch e n & S. B. Lu o AB015931. Br a u n & Cu n n i n g t . AB257431, E. juglandis (Go l o ­ To elucidate the phylogenetic position of Erysi­ v i n ) U. Br a u n & S. Ta k a m . AB015928, E. katumo- phe platani ITS sequences were analysed within toi (U. Br a u n ) U. Br a u n & S. Ta k a m . AB015917, E. a dataset covering all Erysiphe species of which ligustri (Ho mm a ) U. Br a u n & S. Ta k a m . AB295457, sequences were available in GenBank. E. liriodendri Sc h w e i n . AF011302, E. macleayae Sequence alignment was obtained using MAFFT R. Y. Zh e n g & G. Q. Ch e n AB016048, E. magni- 6.853 (Ka t o h et al. 2002, 2005, Ka t o h & To h 2008) fica (U. Br a u n ) U. Br a u n & S. Ta k a m . GU195045, using the L-INS-i option. To obtain reproducible E. monascigera Sh i r o y a , C. Na k a s h . & S. Ta k a m . results, manipulation of the alignment by hand as AB331646, E. multappendicis (Z.Y. Zh a o & Y.N. well as manual exclusion of ambiguous sites were Yu) U. Br a u n & S. Ta k a m . AB104520, E. necator avoided as suggested by Gi r i b e t & W h e e l e r (1999) Sc h w e i n . EF080860, E. nomurae (U. Br a u n ) U. and Ga t e s y et al. (1993), respectively. Highly diver- Br a u n AB331648, E. ornata (U. Br a u n ) U. Br a u n gent portions of the alignment were omitted using & S. Ta k a m . var. ornata HM057441, E. paeoniae GBlocks 0.91b (Ca s t r e s a n a 2000) with the follow- R. Y. Zh e n g & G. Q. Ch e n AB257436, E. palczew- ing options: ‘Minimum Number of Sequences for skii (Ja c z .) U. Br a u n & S. Ta k a m . GQ497277, E. a Conserved Position’ to 34, ‘Minimum Number of pisi DC. GU361635, E. platani (Ho w e ) U. Br a u n Sequences for a Flank Position’ to 34, ‘Maximum & S. Ta k a m . AF011311, AF073349, E. polygoni Number of Contiguous Non-conserved Positions’ DC. AF011308, E. prunastri DC. AB046983, E. to 8, ‘Minimum Length of a Block’ to 5 and ‘Allowed pseudocarpinicola (Y. No m u r a & Ta n d a ) U. Br a u n Gap Positions’ to ‘With half’. & S. Ta k a m . AB252466, E. pseudolonicerae (E. S. The resulting alignment [new number of positions: Sa l m o n ) U. Br a u n & S. Ta k a m . AB015915, E. pulch- 526 (31% of the original 1645 positions) number ra var. japonica (P. He n n ) U. Br a u n AB000941, of variable sites: 213] was used for phylogenetic E. quercicola S. Ta k a m . & U. Br a u n HQ328834, analyses using a Bayesian Approach (BA) and E. staphyleae (Sa w a d a ) U. Br a u n & S. Ta k a m . Maximum Likelihood (ML). For BA a phylogenet- AB015922, E. symphoricarpi (Ho w e ) U. Br a u n ic inference using a Markov chain Monte Carlo & S. Ta k a m . AY322494, E. syringae Sc h w e i n . technique was used as implemented in the com- DQ184478, E. togashiana (U. Br a u n ) U. Br a u n puter program MrBayes 3.1.2 (Hu e l s e n b e c k & & S. Ta k a m . AB091775, E. trifoliorum (Wa l l r .) U. Ro n q u i s t 2001, Ro n q u i s t & Hu e l s e n b e c k 2003). Br a u n GU361633, E. trinae Ha r k n . AB022351; Four incrementally heated simultaneous Markov E. urticae (Wa l l r .) S. Bl u m e r AB104524, E. van- chains were run over 5 000 000 generations us- bruntiana var. sambuci-racemosae (U. Br a u n ) U. ing the general time-reversible model of DNA Br a u n & S. Ta k a m . AB015925, E. wallrothii (U. substitution with gamma-distributed substitution Br a u n ) U. Br a u n & S. Ta k a m . AB015930, E. wei- rates and estimation of invariant sites, random ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

268 andrias, 19 (2012) starting trees and default starting parameters of one bp from the others. Considering the two Ery- the DNA substitution model as recommended by siphe platani sequences available in GenBank Hu e l s e n b e c k & Ra n n a l a (2004). Trees were sam- AF011311 differed in five bp in four loci, from the pled every 100th generation, resulting in an over- above three specimens and in four bp in three all sampling of 50 001 trees. From these, the first loci from KR29265; AF073349 differed in one bp 5 001 trees were discarded (burnin = 5 001). The from KR26134, KR26434, and KR27975. LSU trees sampled after the process had reached sta- sequences were identical. tionarity (45 000 trees) were used to compute a The different runs of BA performed were congru- 50 % majority rule consensus tree to obtain esti- ent with the results of the ML analysis in respect mates for the a posteriori probabilities of groups to well-supported branchings (ML bootstrap sup- of species. This Bayesian approach to phyloge- port values greater than 58). To illustrate the re- netic analysis was repeated five times to test the sults, the consensus tree of one run of the Baye- independence of the results from topological pri- sian phylogenetic analyses is presented (Fig. 2). ors (Hu e l s e n b e c k et al. 2002). Estimates for a posteriori probabilities are indi- Maximum likelyhood analysis (Fe l s e n s t e i n 1981) cated on branches before slashes, numbers on was conducted with the RAxML 7.2.6 software branches after slashes are ML bootstrap support (St a m a t a k i s 2006), using raxmlGUI (Si l v e s t r o & values. Mi c h a l a k 2010), invoking the GTRCAT and the In all analyses the Erysiphe platani specimens rapid bootstrap option (St a m a t a k i s et al. 2008) formed a well-supported clade that clustered with 1000 replicates. within Erysiphe. The subgrouping of Erysiphe In line with the results of molecular analyses of platani with E. elevata, E. magnifica, and E. syrin- a sampling that covered both all Erysiphe ITS gae received only weak support. sequences available in GenBank and represent- atives of all erysiphalean genera of which se- quences were available in GenBank, trees were 4 Discussion rooted with E. adunca var. adunca, E. clandes- tina, E. prunastri, and E. trinae. Epidemic spread The species was found for the first time in SW Germany in the Upper Rhine Plain near Freiburg. 3 Results Together with the Upper Rhone valley/Saône val- ley and the Belfort Gap (Burgundian Gate), the Spread of Erysiphe platani in Germany Upper Rhine Plain forms a passage that allows After starting the public monitoring in Sep- warm Mediterranean flows to advect northeast- tember 2009 an earlier German record from wards into Germany. Numerous authors think 2007 was reported by one of the collaborators that a great part of southern plant and animal (Baden-Württemberg, Kr. Emmendingen, Denz­ species entered the Rhine plain via this passage lingen, Hauptstr., 22.10.2007, leg. B. Me t z l e r , (e.g. Nä h r i g & Ha r ms 2003, Le n z i n et al. 2011). teleomorph and anamorph with hyperparasite This may also count for fungi such as the oc- Ampelomyces quisqualis Ce s ., voucher speci- topus stinkhorn Clathrus archeri (Be r k .) Dr i n g men KR26434). The methodical documentation (St r i c k e r 1955) and the Asteraceae rust Puc- of the distribution and spread from September cinia lagenophorae Co o k e (Sc h o l l e r 1996), both 2009 to December 2011 showed that the fungus species native of Australia, or the vine white rot was heading continuously north(east)ward. The fungus Fomitiporia mediterranea M. Fi s c h e r (see northernmost record in 2011, Sep. 17 is from the contribution by M. Fi s c h e r in this issue). So Arendsee in northern Sachsen-Anhalt (ca. 52.8° did Erysiphe platani, most probably. This theory latitude). The fungus progressed northward for is not only supported because of the first German approximately 375 km in about two years, i.e. al- record in the Upper Rhine Plain. It is also sup- most 190 km/year (Figs. 3a-d). All records were ported by two additional observations: First, the found on London plane (Platanus acerifolia). fungus has been widespread in the Rhone val- ley around the lake Geneva before 2007 (Bo l a y Phylogenetic analyses 2005, Fi s c h e r Hu e l i n et al. 2008) and secondly, The ITS sequences of the Erysiphe platani there were no records from other German states specimens KR26134, KR26434, and KR27975 until 2009 such as Bayern with its eastern pas- were identical, the ITS of KR29265 differed in sage, the Danube valley. ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

Sc h o l l e r et al.: Erysiphe platani – monitoring of an epidemic spread in Germany 269

Figure 3a-d. Distribution of Erysiphe platani in the federal states (thin lines) of Germany from 2007 to 2011. The unfilled circles in figure d stand for negative records in 2011. ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

270 andrias, 19 (2012)

We can hardly reconstruct the spread of the Phylogenetic placement fungus in Germany between 2007 and August Molecular phylogenetic analyses of the ITS clearly 2009. We assume, however, that the species has place Erysiphe platani within Erysiphe, how­ever, spread rather slowly and may have reached only they do neither resolve well the placement of E. a major part of Baden-Württemberg in September platani within Erysiphe nor reveal any groups of 2009. From 2009 onward, however, the spread of species that can be correlated with morphologi- E. platani could be documented in much detail cal traits or relatedness of host plants. and probably better than in any other fungal spe- Fig. 2 shows E. platani forming a subclade to- cies before in Germany. In 2009 we traced it in gether with three other Erysiphe spp. (E. elevata, northern Baden-Württemberg (Mannheim) and E. magnifica, and E. syringae) on woody plants in central Baden-Württemberg (Stuttgart), but not of three different families formerly placed in the in the south at Lake Constance. Also, the species genus Microsphaera. This subclade, however, could not be recorded in the neighboring states received only very low support. Many Erysiphe of Bayern, Hessen and Rheinland-Pfalz the same species have recurved dichotomous branchings year. Negative records were also sent from Nord­ at the end of the fruitbody appendages, so do rhein-Westfalen, Saarland and Sachsen-Anhalt. all species of this subclade. However, species So most probably, the species had not reached previously accommodated in Microsphaera (see states other than Baden-Württemberg in 2009. Br a u n & Ta k a m a t s u 2000) and/or having woody From this point, the monitoring shown in plant hosts also occur in other clades. This has Fig. 3 b-d documents the spread of this fungus in already been found by previous authors (e.g. Germany. Considering the northernmost records Ta k a m a t s u et al. 1999). in 2009 (Mannheim, Baden-Württemberg) and Analyses of ITS sequence data may not be suit- in 2011 (Arendsee, Sachsen-Anhalt) the fungus able for resolving the phylogeny of Erysiphe. progressed appr. 190 km/year, i.e. much faster However, the analyses including specimens than in the previous years. Given, that the fungus from distant places in Europe, the USA (Sa e n z was introduced in SW Germany and wandered & Ta y l o r 1999), and Australia (Cu n n i n g t o n et al. also northward to Sachsen-Anhalt, the spread 2003) show that Erysiphe platani can clearly be is even 215 km/year. For powdery mildews with distinguished by its ITS sequence from other – in woody plant hosts, this fast progressing is not several cases – morphologically similar Erysiphe exceptional. We know from powdery mildew epi- species (e.g. E. alphitoides, E. magnifica, E. or- demic spreads of the 19th and the first part of the nata, E. syringae, E. wallrothii). That is in line with 20th century (see compilation and description in Sc h o c h et al. (2012) who proposed the ITS as Bl u m e r 1967) and more recently introduced spe- universal DNA barcode marker for fungi. cies such as the elder powdery mildew Erysiphe The genetic distance of Erysiphe platani to its vanbruntiana var. sambuci-racemosae (U. Br a u n ) closest relatives of which ITS sequences are U. Br a u n & S. Ta k a m . (Sc h o l l e r 1996 as Micro- available is considerable. That may be explained sphaera sambucicola Henn.) that other powdery by a high phylogenetic age of the species, a high mildews may progress even faster. mutation rate or simply by missing data of the Ki r s c h n e r (2011) provided two possible explana- closest relatives. tions for the sudden migration northward: Firstly, The relatively high variability of the ITS of speci- the global warming as it is assumed for many mens from different geographic regions (up to other migrating southern fungal species (e.g. five bp in four loci) points at the potential of the Sc h o l l e r & Mü l l e r 2008) and secondly, the for- ITS as marker in mycogeographical studies of mation of fruitbodies which are better adapted spreading powdery mildews. to overwintering than mycelium or conidia. They were first recorded between 2000 and 2002 in Montenegro (Ra n k o v i ć 2003), in 2006 in Hungary (Pa s t i r čá k o v á & Pa s t i r čá k 2008) and finally 2007 Acknowledgements in Switzerland (Fi s c h e r et al. 2008) and in Ger- We thank the many collaborators for the monitoring of many. So migrating northward goes along with Erysiphe platani (names listed in chapter 2.2), Al e x a n ­ the formation of the sexual state. We agree with d r a Pi n t y e for providing literature and Wa l t e r Ga ms and this and considering our results we expect this Ro l a n d Ki r s c h n e r for reviewing the manuscript and species to appear in the northernmost European Mi c h a e l We i ss , Si g i s f r e d o Ga r n i c a and Ro b e r t Ba u e r plane plantations within the next years. for providing the molecular lab. ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

Sc h o l l e r et al.: Erysiphe platani – monitoring of an epidemic spread in Germany 271

References Gi r i b e t , G. & Wh e e l e r , W. C. (1999): On gaps. – Molecu- An s e l m i , N., Ca r d i n , L. & Ni c o l o t t i , G. (1994): Plane lar Phylogenetics and Evolution, 13: 132-143. decline in European and Mediterranean countries: Gu l l i n o , G. & Ra p e t t i , S. (1978): Un mal bianco del Pla- associated pests and their interactions. – Bulletin tano. – Inf.tore Fitopatol., 11/12: 65-66. OEPP / EPPO Bulletin, 24: 159-171. He l u t a ,V., Ta k a m a t s u , S., Vo y t y u k , S. & Sh i r o y a , Y. At t a n a y a k e , R. N., Gl a w e , D. A., McPh e e , K. E., Du g a n , (2009): Erysiphe kenjiana (Erysiphales), a new inva- F. M. & Ch e n , W. (2010) Erysiphe trifolii - a newly re- sive fungus in Europe. – Mycol. Prog., 8: 367-375. cognized powdery mildew pathogen of pea. – Plant Hi r a t a , T. & Ta k a m a t s u , S. (1996): Nucleotide sequence Pathol., 59: 712-720. diversity of rDNA internal transcribed spacers ex- Bl u m e r , S. (1967): Echte Mehltaupilze. Ein Bestim- tracted from conidia and cleistothecia of several mungsbuch für die in Mitteleuropa vorkommenden powdery mildew fungi. – Mycoscience, 37: 283- Arten. – Jena (G. Fischer). 288. Bo l a y , A. (2005): Les Oïdiums de Suisse (Erysipha- Hu e l s e n b e c k , J. P. & Ra n n a l a , B. (2004): Frequentist cées). – Cryptogamica Helvetica, 20: 1-176. properties of Bayesian posterior probabilities of phy- Br a u n , U. & Ta k a m a t s u , S. (2000): Phylogeny of Erysiphe, logenetic trees under simple and complex substitu- Microsphaera, Uncinula (Erysipheae) and Cystothe- tion models. – Systematic Biology, 53: 904-913. ca, Podosphaera, Sphaerotheca (Cystotheceae) in- Hu e l s e n b e c k , J. P. & Ro n q u i s t , F. (2001): MRBAYES: ferred from rDNA ITS sequences – some taxonomic bayesian inference of phylogenetic trees. – Bioinfor- consequences. – Schlechtendalia, 4: 1-33. matics Applications Note, 17: 754-755. Br a u n , U., Ta k a m a t s u , S., He l u t a , V., Li m k a i s a n g , S., Di­ Hu e l s e n b e c k , J. P., La r g e t , B., Mi l l e r R. E. & Ro n q u i s t , v a r a n g k o o n , R., Co o k , R. & Bo y l e , H. (2006): Phylog- F. (2002): Potential applications and pitfalls of Baye- eny and of powdery mildew fungi of Ery- sian inference of phylogeny. – Systematic Biology, siphe sect. Uncinula on Carpinus species. – Mycol. 51: 673-688. Prog., 5: 139-153. Ka t o h , K., Ku m a , K., To h , H. & Mi y a t a , T. (2005): ­MAFFT Ca s t r e s a n a , J. (2000): Selection of conserved blocks from version 5: improvement in accuracy of multiple se- multiple alignments for their use in phylogenetic analy- quence alignment. – Nucleic Acids Research, 33: sis. – Molecular Biology and Evolution, 17: 540-552. 511-518. Ci f e r r i R. & Ca m e r a , C. (1962): Tentativo di elencazione Ka t o h , K., Mi s a w a , K., Ku m a , K. & Mi y a t a , T. (2002): dei funghi italiani. – Istituto Botanico della Università ­MAFFT: a novel method for rapid multiple sequence Laboratorio crittogamico, 21: 1-46. alignment based on fast Fourier transform. – Nucleic Co o k , R. T., He n r i c o t , B., He n r i c i , A. & Be a l e s , P. (2006): Acids Research, 30: 3059-3066. Morphological and phylogenetic comparisons Ka t o h , K. & To h , H. (2008): Recent developments in amongst powdery mildews on Catalpa in the UK. – the MAFFT multiple sequence alignment program Mycol. Res., 110: 672-685. (outlines version 6). – Briefings in Bioinformatics, 9: Co o k , R. T., He n r i c o t , B. & Ki ss , L. (2004): First record 286-298. of Erysiphe elevata on Catalpa bignonioides in the Kh o d a p a r a s t , S. A., He d j a r o u d e , G. A. & Ta k a m a t s u , S. UK. – Plant Pathol., 53: 807-807. (2003): Phylogenetic relationships between Iranian Cu n n i n g t o n , J. H., Ta k a m a t s u , S., La w r i e , A. C. & Pa s c o e , isolates of Microsphaera and Erysiphe s. lat. based I. G. (2003): Molecular identification of anamorphic on rDNA internal transcribed spacers sequences. – powdery mildew fungi. – Australas. Plant Pathol., 32: Rostaniha, 4: 79-86. 421-428. Ki r s c h n e r , R. (2010): First record of Erysiphe magnifica Fe l s e n s t e i n , J. (1981): Evolutionary trees from DNA se- on lotus, a host outside the Magnoliales. – Mycol. quences: a maximum likelihood approach. – Journal Prog., 9: 417-424. of Molecular Evolution, 17: 368-376. Ki r s c h n e r , R. (2011): Observations on Erysiphe platani Fi s c h e r Hu e l i n , D., Je a n m o n o d , D. & Lo i z e a u , P.-A. (2008): in Germany. – Plant Pathology & Quarantine, 1(2): Conservatoire et Jardin Botaniques de la ville de 115-119. Genève. – Rapport annuel 2007. Ko v a c s , G. M., Ja n k o v i c s , T. & Ki ss , L. (2011): Varia- Fr a n c i s , S. A., Ro d e n , B. C., Ad a ms , M. J., We i l a n d , J. & tion in the nrDNA ITS sequences of some powdery As h e r , M. J. (2007): Comparison of ITS sequences mildew species: do routine molecular identification from UK and North American sugar-beet powdery procedures hide valuable information? – Eur. J. Plant mildews and the designation of Erysiphe betae. – Pathol., 131: 135-141. Mycol. Res., 111: 204-212. Kr e i s e l , H. & Sc h o l l e r , M. (1994): Chronology of phy- Ga r d e s , M. & Br u n s , T. D. (1993): ITS primers with en- toparasitic fungi introduced to Germany and adja- hanced specificity for basidiomycetes – application cent countries. – Bot. Acta, 107: 387-392. to the identification of mycorrhizae and rusts. – Mo- Le e , H. B., Kim, C. J., Mu n , H. Y. & Le e , K.-H. (2011): First lecular Ecology, 2: 113-118. report of Erysiphe quercicola causing powdery mil- Ga t e s y J., DeSa l l e , R. & Wh e e l e r , W. (1993): Align- dew on Ubame oak in Korea. – Plant Dis., 95: 77. ment-ambiguous nucleotide sites and the exclusion Le n z i n , H., Na g e l , P. Gr o ss , A. & Hu c k , C. (2011): Ni- of systematic data. – Molecular Phylogenetics and schendifferenzierung zweier nah verwandter Neo- Evolution, 2: 152-157. phyten im urbanen Raum. – Bauhinia, 21: 17-24. ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at

272 andrias, 19 (2012)

Li m k a i s a n g , S., Cu n n i n g t o n , J. H., Wu i , L. K., Sa l l e h , B., Se k o , Y., He l u t a , V., Gr i g a l i u n a i t e , B. & Ta k a m a t s u , S. Sa t o , Y., Di v a r a n g k o o n , R., Fa n g f u k , W., To-a n u n , C. & (2011): Morphological and molecular characteriza- Ta k a m a t s u , S. (2006): Molecular phylogenetic analy- tion of two ITS groups of Erysiphe (Erysiphales) oc- ses reveal a close relationship between powdery curring on Syringa and Ligustrum (Oleaceae). – My- mildew fungi on some tropical trees and Erysiphe coscience, 52: 174-182. alphitoides, an oak powdery mildew. – Mycoscience, Sh i r o y a , Y. & Ta k a m a t s u , S. (2009): Erysiphe corylopsi- 47: 327-335. dis sp. nov., a new powdery mildew fungus found on Lu t z , M., Ba u e r , R., Be g e r o w , D., Ob e r w i n k l e r , F. & Corylopsis spicata and C. pauciflora. – Mycoscience, Tr i e b e l , D. (2004): Tuberculina, rust relatives attack 50: 409-414. rusts. – Mycologia, 96: 614-626. Si l v e s t r o , D. & Mi c h a l a k , I. (2010): raxmlGUI: a graphi- Nä h r i g , D. & Ha r ms , K. H. (2003): Rote Listen und cal front-end for RAxML. Available at http://source- Checklisten der Spinnentiere (Arachnida) Baden- forge.net/projects/raxmlgui/. Württembergs. – Naturschutzpraxis, Artenschutz, 7: St a m a t a k i s , A. (2006): RAxML-VI-HPC: maximum like- 1-204. lihood-based phylogenetic analyses with thousands Mo r i , Y., Sa t o , Y. & Ta k a m a t s u , S. (2000): Evolutionary of taxa and mixed models. – Bioinformatics, 22: analysis of the powdery mildew fungi nucleotide se- 2688-2690. quences of the nuclear ribosomal DNA. – Mycologia, St a m a t a k i s , A., Ho o v e r , P. & Ro u g e m o n t , J. (2008): A 92: 74-93. rapid bootstrap algorithm for the RAxML web ser­ O´Do n n e l l , K. L. (1993): Fusarium and its near rela- vers. – Systematic Biology, 57: 758-771. tives. In: Re y n o l d s . D. R. & Ta y l o r , J. W. (eds.): The St a n o s z , G., Sm i t h , D., & Be r n i e r , L. (2009): First report fungal holomorph: mitotic, meiotic and pleomorphic of Erysiphe palczewskii powdery mildew of Siberian speciation in fungal systematics: 225-233; Walling- pea tree (Caragana arborescens) in Wisconsin and ford (CABI). Quebec. – Plant Dis., 93: 1352. Pa s t i r čá k o v á , K. & Pa s t i r čá k , M. (2008): Erysiphe pla- St r i c k e r , P. (1955): Die Ausbreitung des Tintenfisch- tani causing powdery mildew of London plane in pilzes. – Beiträge Naturk. Forschung Südwest- Hungary. – Acta Phytopathologica et Entomologica deutschland, 13: 93-98. Hungarica, 43: 31-36. Ta k a m a t s u , S., Bo l a y , A., Li m k a i s a n g , S., Ko m -u n , S. & Ra n k o v i ć, B. (2003): Powdery mildew fungi (order Ery- To-a n u n , C. (2006): Identity of a powdery mildew fun- siphales) on plants in Montenegro (Chernogoria). – gus occurring on Paeonia and its relationship with Mikol. Fitopatol., 37: 42-52. Erysiphe hypophylla on oak. – Mycoscience, 47: Ro n q u i s t , F. R. & Hu e l s e n b e c k , J. P. (2003): MRBAYES 367-373. 3: Bayesian phylogenetic inference under mixed Ta k a m a t s u , S., Br a u n , U., Li m k a i s a n g , S., Ko m -Un, S., models. – Bioinformatics, 19: 1572-1574. Sa t o , Y. & Cu n n i n g t o n , J. H. (2007): Phylogeny and Sa e n z , G. S. & Ta y l o r , J. W. (1999): Phylogeny of the taxonomy of the oak powdery mildew Erysiphe alphi- Erysiphales (powdery mildews) inferred from inter- toides sensu lato. – Mycol. Res., 111: 809–826. nal transcribed spacer ribosomal DNA sequences. Ta k a m a t s u , S., Hi r a t a , T. & Sa t o , Y. (1998): Phylogenetic – Can. J. Bot., 77: 150-168. analysis and predicted secondary structures of the Sc h o c h, C. L., Se i f e r t, K. A., Hu h n d o r f, S., Ro b e r t, V., rDNA internal transcribed spacers of the powdery Sp o u g e, J. L., Le v e sq u e, C. A., Ch e n, W. and Fungal mildew fungi (Erysiphaceae). – Mycoscience, 39: Barcoding Consortium (2012): Nuclear ribosomal in- 441-453. ternal transcribed spacer (ITS) region as a universal Ta k a m a t s u , S., Hi r a t a , T., Sa t o , Y., No m u r a , Y. & Sa t o , Y. DNA barcode marker for Fungi. – Proc. Natl. Acad. (1999): Phylogenetic relationships of Microsphaera Sci., 109(16): 6241-6246. and Erysiphe section Erysiphe (powdery mildews) Sc h o l l e r , M. (1996): Die Erysiphales, Pucciniales und inferred from the rDNA ITS sequences. – Myco- Ustilaginales der Vorpommerschen Boddenland- science, 40: 259-268. schaft. Ökologisch-floristische, florengeschichtliche Ta k a m a t s u , S., Ma s u y a , H., Di v a r a n g k o o n , R. & No m u r a , und morphologisch-taxonomische Untersuchungen. Y. (2008): Erysiphe fimbriata sp. nov.: a powdery – Regensb. Mykol. Schr., 6: 1-325. mildew fungus found on Carpinus laxiflora. – Myco- Sc h o l l e r , M., Kl e n k e , F., Ku mm e r , V. & Ja g e , H. (2011): science, 49: 185-191. Checklist und Rote Liste der obligat-pflanzenparasi- Wh i t e , T. J, Br u n s , T., Le e S. & Ta y l o r , J. (1990): Am- tischen Kleinpilze (Erysiphales, Microbotryales, Pe- plification and direct sequencing of fungal ribosomal ronosporales, Pucciniales, Ustilaginales) Deutsch- RNA genes for phylogenetics. In: In n i s , M. A., Ge l ­ lands (unpublished manuscript). f a n d , D. H., Sn i n s k y , J. J. & Wh i t e , T. J. (eds.): PCR Sc h o l l e r , M. & Mü l l e r , G. (2008). Projekt „Pilzflora von protocols, a guide to methods and applications. 315- Karlsruhe“ – erste Ergebnisse. – Carolinea, 66: 87-93. 322; San Diego (Academic Press).