History of Nonlinear Oscillations Theory in France (1880–1940)

Total Page:16

File Type:pdf, Size:1020Kb

History of Nonlinear Oscillations Theory in France (1880–1940) Archimedes 49 New Studies in the History and Philosophy of Science and Technology Jean-Marc Ginoux History of Nonlinear Oscillations Theory in France (1880–1940) History of Nonlinear Oscillations Theory in France (1880–1940) Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 49 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, USA. ASSOCIATE EDITORS FOR MATHEMATICS AND PHYSICAL SCIENCES JEREMY GRAY, The Faculty of Mathematics and Computing, The Open University, UK. TILMAN SAUER, Johannes Gutenberg University Mainz, Germany ASSOCIATE EDITORS FOR BIOLOGICAL SCIENCES SHARON KINGSLAND, Department of History of Science and Technology, Johns Hopkins University, Baltimore, USA. MANFRED LAUBICHLER, Arizona State University, USA ADVISORY BOARD FOR MATHEMATICS, PHYSICAL SCIENCES AND TECHNOLOGY HENK BOS, University of Utrecht, The Netherlands MORDECHAI FEINGOLD, California Institute of Technology, USA ALLAN D. FRANKLIN, University of Colorado at Boulder, USA KOSTAS GAVROGLU, National Technical University of Athens, Greece PAUL HOYNINGEN-HUENE, Leibniz University in Hannover, Germany TREVOR LEVERE, University of Toronto, Canada JESPER LÜTZEN, Copenhagen University, Denmark WILLIAM NEWMAN, Indiana University, Bloomington, USA LAWRENCE PRINCIPE, The Johns Hopkins University, USA JÜRGEN RENN, Max Planck Institute for the History of Science, Germany ALEX ROLAND, Duke University, USA ALAN SHAPIRO, University of Minnesota, USA NOEL SWERDLOW, California Institute of Technology, USA ADVISORY BOARD FOR BIOLOGY MICHAEL DIETRICH, Dartmouth College, USA MICHEL MORANGE, Centre Cavaillès, Ecole Normale Supérieure, France HANS-JÖRG RHEINBERGER, Max Planck Institute for the History of Science, Germany NANCY SIRAISI, Hunter College of the City University of New York, USA Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and practical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer contact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series itself will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, broadly construed, as well as historically-engaged philosophy of science or technology. Taken as a whole, Archimedes will be of interest to historians, philosophers, and scientists, as well as to those in business and industry who seek to understand how science and industry have come to be so strongly linked. More information about this series at http://www.springer.com/series/5644 Jean-Marc Ginoux History of Nonlinear Oscillations Theory in France (1880–1940) 123 Jean-Marc Ginoux Archives Henri Poincaré, CNRS, UMR 7117 Université de Nancy France Laboratoire des Sciences de l’Information et des Systèmes, CNRS, UMR 7296 Université de Toulon La Valette du Var France ISSN 1385-0180 ISSN 2215-0064 (electronic) Archimedes ISBN 978-3-319-55238-5 ISBN 978-3-319-55239-2 (eBook) DOI 10.1007/978-3-319-55239-2 Library of Congress Control Number: 2017937654 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland to Elisa. If we wish to foresee the future of mathematics, our proper course is to study the history and present condition of the science.1 1Henri Poincaré, Science and Method, 1914, p. 25. Foreword I first heard of Jean-Marc Ginoux when he published his discovery of Poincaré’s lectures on oscillations and limit cycles at the School of Posts and Telegraphs in 1908. As he made clear, their significance was considerable. Because they had been omitted from the eleven volumes of Œuvres de Poincare and as a result had been completely forgotten, there was a gap in our understanding of the contributions of the great French mathematician and physicist. What Ginoux went on to investigate was the even greater gap that this pointed to in our understanding of oscillation theory. The household names in the field are those of the Dutchman Van der Pol and the Russian Aleksandr Andronov, who are remembered for their work in the 1920s, Van der Pol for the oscillator that bears his name and Andronov for among other things being apparently the first to connect the work of engineers and technologists with Poincaré’s discoveries in the early 1880s. The first thing that Ginoux’s discoveries made clear was that Poincaré had made this connection himself and had done so in lectures and in print to an audience of appropriate specialists. This was one of a number of contributions that he made to technology at the time, which makes its subsequent disappearance all the more striking. What Ginoux then discovered was that there had been a considerable investiga- tion into oscillation theory by many French investigators, and his account of this work forms the major part of this book. He introduces us to numerous mysterious devices, explains how experiments and theories of them evolved, and isolates their key novel feature, which was known at the time as the relaxation effect. His account sorts out numerous misconceptions and builds up to an important international conference, the Institut Henri Poincaré in 1933, that was dominated by Van der Pol and French and Russian speakers. Paradoxically, the meeting also lapsed from the community’s memory, and Ginoux traces this to the unequal development of the subject in the two countries. The French engineers did not build an adequate theoretical framework with a substantial commitment of people and resources; the Russians did. As a result, he suggests the subjects passed for a time in the Soviet Union, before awakening again the international interest in dynamical systems. ix x Foreword It is evident that Ginoux’s work is both interdisciplinary and international. It has much to say to both mathematicians and engineers; it establishes new features of the context for their work, both the interactions and the failures; it has a French core and a Russian dimension. It is based throughout on rich, often forgotten, archival material, and it establishes the historical record for the first time. Emeritus Professor Jeremy Gray Open University, Leeds, UK Preface In the history of mathematics, from the nineteenth century, the extraordinary growth of the theory of dynamical systems is distinguished by a hitherto unknown development. This history resulted in several publications. The latest is the excellent article “Writing the history of dynamical systems and chaos: long life and revo- lution, disciplines and culture” by D. Aubin and A. Dahan Dalmedico (Historia Mathematica, 29 (2002), 273–339). Before the present general historical survey that offers us Jean-Marc Ginoux, as far as I know, the only book on this subject, written at the specialist level, is that of E.S. Boïko, published under the Russian title Skola Akademika A.A. Andronova (The Academician A.A. Andronov School, Izdatelsvo Nauka, Moscow, 1983). Although the introduction is devoted to important results achieved outside the USSR, among them the first rank key role played by what might be called the French School and its Poincaré leader, Boïko’s book focuses primarily on the work carried on in Gorky (now Nizhny Novgorod), a city forbidden to foreigners at the time of the Soviet Union. Concerning this topic, it should be noted that some 60 years ago, American mathematicians J.P. La Salle and S. Lefschetz already noticed the lead taken by the researches in the USSR, in the framework of the Gorky School (qualitative methods) and the Kiev School (analytical methods), when they wrote: In USSR the study of differential equations has profound roots, and in this subject the USSR occupies incontestably the first place. One may also say that Soviet specialists, far from working in vacuum, are in intimate contact with applied mathematicians and front rank engineers. This has brought great benefits to the USSR and it is safe to say that USSR has no desire to relinquish these advantages.2 About the book History of Nonlinear Oscillations Theory by Jean-Marc Ginoux (Springer-Verlag, 2016), it is important to note that the germ of the theory of nonlinear oscillations, becoming after the theory of dynamical systems, occurred at a time when most mathematicians saw a source of inspiration for mathematical 2J.P. Lasalle and S. Lefschetz, “Recent soviet contributions to ordinary differential equations and nonlinear mechanics,” Journal of Mathematical Analysis and Applications, 2, 1961, pp 467–499.
Recommended publications
  • Les Pires Menaces Sont Étudiées En Secret À Spiez
    SALAIRES De la peine à suivre la hausse des prix HOCKEY Il devra faire trembler les filets Les rares augmentations n’égalent pas toujours Charles Bertrand a débarqué à Gottéron. le renchérissement bien que l’économie cartonne. L 7 Mais le Français ne jouera pas ce soir. L 19 QUOTIDIEN ROMAND ÉDITÉ À FRIBOURG MARDI 4 DÉCEMBRE 2018 N° 55 • 148 e année / Semaine Fr. 2.70 / Samedi Fr. 3.70 JA 1701 Fribourg Le bâtiment Les pires menaces sont de Yendi revit BULLE L’ancien centre logistique de l’enseigne bulloise de prêt-à-porter Yendi, tombée en faillite depuis, a trouvé preneur. étudiées en secret à Spiez PowerData, une entreprise vaudoise basée à Tolochenaz, près de Morges, espère prendre possession des lieux à partir du milieu de l’an prochain. Spécialisée dans la distribution de produits électroniques, la société compte y créer une douzaine d’emplois dans un premier temps. L 11 Dans la forêt du Burgerwald. Charly Rappo Des sapins locaux à bon prix NOËL Guidées par des traditions locales, de nombreuses communes fribourgeoises proposent des sapins à leurs citoyens pour un prix inférieur à celui du marché. Ces conifères, de qualité malgré la sécheresse de l’été dernier, viennent des forêts du canton. L 13 La loi sur le CO2 se concrétise CLIMAT Le National a empoigné hier la révision totale de la loi sur le CO2 qui Le laboratoire de Spiez est à la pointe de la recherche contre les menaces chimiques ou biologiques. Keystone-archives l’occupera plusieurs jours. L’UDC a tenté de bloquer le dossier, en vain: l’entrée en Situé au pied des majes- taine au total, y analysent les pires me- s’est retrouvé depuis septembre sous les matière a été largement acceptée.
    [Show full text]
  • Do Detetor De Hertz Ao Coesor
    Do detetor de Hertz ao coesor Em 1886, em Karlsruhe, Alemanha, Heinrich Hertz usava frequentemente as bobinas espirais acopladas de Peter Riess em demonstrações na lecionação das suas aulas de Física. Estas bobinas eram dois anéis metálicos abertos, com igual diâmetro, terminados em pequenas esferas metálicas, cuja distância (spark gap) podia ser ajustada por um parafuso micrométrico. Hertz verificou que era relativamente fácil gerar uma faísca num anel (primário) à custa de uma bobina de indução e observar uma réplica no outro anel (secundário), supostamente por efeito de indução eletromagnética. Hertz concluiu rapidamente que não se tratava de um efeito de indução, uma vez que o afastamento progressivo dos dois anéis não seguia a lei de decréscimo da indução eletromagnética. Hertz usou este dispositivo como detetor de ondas de rádio nos seus trabalhos sobre ondas eletromagnéticas (ver aqui). O anel de Hertz é, assim, o primeiro detetor de sinais de rádio. Este detetor tem uma sensibilidade muito baixa e a pequena faísca nunca pode ser vista por muitas pessoas. Vários investigadores sugeriram alterações para ampliar a visibilidade e estas foram desde a colocação do spark gap num frasco com uma mistura de oxigénio e hidrogénio, que explodiria assim que houvesse uma pequena faísca, e até à inclusão do spark gap dentro de um tubo de descarga de gás de Geissler para a faísca iniciar a descarga dentro do gás e iluminá-lo. Outros investigadores associaram galvanómetros às extremidades do anel de Hertz, para verem o deslocamento do ponteiro, ou até usaram auscultadores de alta impedância ligados às esferas do detetor para ouvir o sinal recebido.
    [Show full text]
  • Scientific Instrument Society
    Scientific Instrument Society Bulletin of the Scientific Instrument Society No. 46 September 1995 Bulletin of the Scientific Instrument Society LSSN0956-8271 For Table of Contents, see inside back cover President Gerard Turner Honorary Committee Howard Dawes, Chairman Stuart Talbot, Secretary John Didcock, Treasurer Willem Hackmann, Editor Michael Cowham, Ad~wtising Manager Trevor Waterman, Meetings Secretary Gloria Clifton Jane [nsley Arthur Middleton Alan Morton Membership and Administrative Matters The Executive Officer (Wing Cmdr. Geoffnm] Bennett) 31 High Street Stanford in the Vale Faringdon Tel: 01367 710223 Oxon SN7 8LH Fax: 01367 718963 See inside back cover for information on membership Editorial Matters Dr. Willem D. Hackmann Museum of the History of Science Old Ashmolean Building Tel: 01865 277282 (office) Broad Street Fax: 01865 277288 Oxford OXI 3AZ Tel: 01865 54058 (home) Advertising Mr Michael Cowham The Mount "loft Tel: 01223 263532/262684 Cambridge CB3 7RL Fax: 01223 263948 Organization of Meetings Mr Trevor Waterman 75a Jermyn Street Tel: 0171-930 2954 London SWIY 6NP Fax: 0171-321 0212 Typesetting and Printing Lithoflow Lid 26-36 Wharfdale Road Kings Cross Tel: 0171-833 2344 London NI 9RY Fax: 0171-833 8150 Price: £6 per issue, including back numbers where available. (Please enquire 04 Exec. Officer if sets are required.) The Scientific Instrument Society is Registered Charity No. 326733 © The Scientific lnsVument Society 19')5 Editorial X-ray image of a metal grid taken in THE EM)iF.'.; G.A,ZETTL Crookes' laboratory, but not by him as he -. + .__ was in South Africa when Rontgen's discovery was announced. There is also the metal grid and the X-ray tube used in producing this image.
    [Show full text]
  • History of Nonlinear Oscillations Theory in France (1880–1940)
    Archimedes 49 New Studies in the History and Philosophy of Science and Technology Jean-Marc Ginoux History of Nonlinear Oscillations Theory in France (1880–1940) History of Nonlinear Oscillations Theory in France (1880–1940) Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 49 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, USA. ASSOCIATE EDITORS FOR MATHEMATICS AND PHYSICAL SCIENCES JEREMY GRAY, The Faculty of Mathematics and Computing, The Open University, UK. TILMAN SAUER, Johannes Gutenberg University Mainz, Germany ASSOCIATE EDITORS FOR BIOLOGICAL SCIENCES SHARON KINGSLAND, Department of History of Science and Technology, Johns Hopkins University, Baltimore, USA. MANFRED LAUBICHLER, Arizona State University, USA ADVISORY BOARD FOR MATHEMATICS, PHYSICAL SCIENCES AND TECHNOLOGY HENK BOS, University of Utrecht, The Netherlands MORDECHAI FEINGOLD, California Institute of Technology, USA ALLAN D. FRANKLIN, University of Colorado at Boulder, USA KOSTAS GAVROGLU, National Technical University of Athens, Greece PAUL HOYNINGEN-HUENE, Leibniz University in Hannover, Germany TREVOR LEVERE, University of Toronto, Canada JESPER LÜTZEN, Copenhagen University, Denmark WILLIAM NEWMAN, Indiana University, Bloomington, USA LAWRENCE PRINCIPE, The Johns Hopkins University, USA JÜRGEN RENN, Max Planck Institute for the History of Science, Germany ALEX ROLAND, Duke University, USA ALAN SHAPIRO, University of Minnesota, USA NOEL SWERDLOW, California Institute of Technology,
    [Show full text]
  • White Paper Secured Time Synchronization
    WHITE PAPER SECURED TIME SYNCHRONIZATION SHARED TALENTS OF FRENCH EXPERTS IN TIME/FREQUENCY SUMMARY 2 EVOLUTION OF TIME PRODUCTION 10 EVOLUTION OF TIME SYNCHRONIZATION 16 EVOLUTION OF TIME BROADCASTING 26 THE SCPTime® PROJECT 53 PARTNERS Text: Maurice GORGY, Nicolas GORGY, Alexandre D’HERBOMEZ, with the participation of Patrick ROYET (Tyléos). Design: Emmanuel ANDRILLON 2 PREFACE Dear readers, Since the XVIIIth century, clockmakers have contributed to the growth in commercial exchanges and then, physicists started to master time measurement precise enough for scientific use. Today, the explosion of the digital economy that produces more than half of trade transactions is bringing a new revolution. Fortunately, French Observatories produce time scales precise to 10-15 seconds which means an error of only 1 second in a 300 million years period of time. France is the technological birthplace of the world’s Time/Frequency industry. Especially as the SYRTE (Paris Observatory, CNRS, UPMC, and LNE) delivers a legal time built on the UTC international time scale (Coordinated Universal Time). Within new digital organizations, time synchronization allows not only to distribute time to clocks but also to synchronized devices (the Internet of Things) and machines with no concern about distance with a precision that can reach a few nanoseconds, depending on the applications. Although high precision time production is perfectly mastered by the Observatories of Paris and Besançon, the actual technological challenge is to master the security and traceability of the date and time from their source to the final user. This is key to fighting cyberattacks that interfere with the time message. Time cybersecurity… a new challenge.
    [Show full text]
  • Vie De La Société Bulletin De La S
    BULLETIN DE LA S. M. F. SMF Vie de la société Bulletin de la S. M. F., tome 58 (1930), p. 1-48 (supplément spé- cial) <http://www.numdam.org/item?id=BSMF_1930__58__v1_0> © Bulletin de la S. M. F., 1930, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SOCIÉTÉ MATHÉMATIQUE DE FRANCE COMPTES RENDUS DES SÉANCES DE L'ANNÉE 1930. s SOCIÉTÉ MATHÉMATIQUE DE FRANCE ÉTAT DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE AU 15 JANVIER 1931 (1). MM. BOREL. BRILLOUliN. COSSERAT (E.). OEMOULIN. DERUYTS. DRACH. GOURSAT. HADAMARD. Membres honoraires du Bureau.... / JOUGUET. KOENIGS. LEBESGUE. LECORNU. OCAGNE (D'). PAINLEVÉ. PICARD. VALLÉE POUSSIN (I»K LA). VOLTERRA. Président. ..... MM. DENJOY. JULIA. Vice-Président» TRESSE. VILLAT. ESCLANGON. CHAZY. Secrétaires. MICHEL. CHAPELON. Vice-Secrétaires. GOT. Archiviste...... BARRÉ. Trésorier. ...... TURMEL. AURIC, 1933. BIOCHE, 1933. FRÉCHET, 1933. GARN1ER, 193'2. JOUGUET, 1934. LECONTE, 1932. Membres du Conseil (2) LIÉNARO, 1934. MAROTTE, 1933. POMEY (J.-B.), 1933. RISSER, 1932. THYBAUT, 1932. TRIPIER, 1933. (1) MM. les Membres de la Société sont instamment prie» (t'adresser an Secrétariat les rectifications qu'il y aurait lien de faire à cette liste. (3) La date qui suit le nom d'un membre du Conseil indique l'année au corn- mencement de laquelle expire le mandat de ce membre.
    [Show full text]
  • History of Nonlinear Oscillations Theory in France (1880-1940)
    History of Nonlinear Oscillations Theory in France (1880-1940) Jean-Marc GINOUX Archives Henri Poincaré, CNRS UMR 7117, Université de Nancy II, http://ginoux.univ-tln.fr Le 13 mars 2016 to Elisa. “If we wish to foresee the future of mathematics, our proper course, is to study the history and present condition of the science. 1.» 1. Henri Poincaré, Science and Method, 1914, p. 25. Introduction From the end of the 19th century until the middle of the 1920s, the term “sustained oscillations” designated oscillations that are produced by systems moved by an external power such as maintai- ned pendulum. It also referred to oscillations that are produced by self-sustaining systems such as the series-dynamo machine, the singing arc, or the triode. The numerous researches conducted in the domain of oscillations in France and around the world during this time period have never been the subject of an in-depth study. Until now the historiography has primarily been focused on Balthazar Van der Pol’s contribution entitled : “On relaxation-oscillations” (Van der Pol 1926d). In this publi- cation he introduced this terminology in order to distinguish a specific type of sustained oscillation and the history of relaxation oscillation appears to establish itself with his work. In his essay titled Mathématisation du Réel (Mathematisation of Reality), Giorgio Israel announces as follows : “Whilst searching for an explanation of how a triode assembled as an oscillator functio- ned, Van der Pol realized that the standard mathematical equations for oscillations
    [Show full text]
  • T T-\Yf-T Dissertation U I V L L Information Service University Microfilms Intemational a Bell & Howell Information Company 300 N
    INFORMATiOîi TO USERS This reproduction was made from .1 copy of a manuscript sent to us for publication and microfilming. While the most advanced te.:hnology has been used to pho­ tograph and reproduce this manuscript, tfje quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been Aimed. The following explariation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. E%ach oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. • 4. Most photographs reproduce acceptably on positive microfilm or micro- Oche but lack clarity on xerographic copies made from the microAlm. Fbr an additional charge, all photographs are available in black and white standard 35mm slide format.* «For more information about black and white slides or enlarged paper reproductions, please contact the Dissertatlona Customer Services Department. T T-\yf-T Dissertation U i V l l Information Service University Microfilms Intemational A Bell & Howell Information Company 300 N.
    [Show full text]
  • Catholic Directory
    CATHOLIC DIRECTORY ' M OF INDIA, rAXLSTArt, B uRm a * tfb C £ Yl a- tf< 1922 72nd ANNUAL ISSUE OF THE MADRAS CATHOLIC DIRECTORY AND ANNUAL GENERAL REGISTER PUBLISHED BY THE CATHOLIC SUPPLY SOCIETY, MADRAS. PRINTED AT THE “ GOOD PASTOR ” PRESS, BROADWAY, MADRAS, M T +Z / , 7 1 Nihil obstet : J. BEUKERS, Censor Deputatus. Imprimatur : * J. AELEN, Archiepiscopus Madraspatanus. Madras, die 21a mensis Decembris, 1921. PREFACE Another year has been added to the cen­ turies buried in the past, another year has been ushered in by joyful hymns. It is the old, old story. On the threshold of the new year we always resolve to spend the ensuing one better in the light we gained during the preceding twelve months. It is the old, old story. The 1921 edition of the Catholic Directory of India, Burma and Ceylon was far from complete, and the respective Chancellarles seeing this resolved no doubt that 1922 would see a copy unheard of for accuracy even in the life of this useful publication. All the ’ reports came in. Not one point—if we except Statistics—for the Compiler to complain about. To all and every one our best thanks. Y et there is in the present issue one omis­ sion which we regret. Three times we wrote asking for a photo and a brief sketch of the ^ new Vicar Apostolic of Trichur, and we were disappointed not to receive either in time for insertion. The notes inserted will be appreciated by all our readers. The contributors are heartily thanked for these sketches. It may be recorded that the Compiler is grateful for any useful suggestion.
    [Show full text]
  • Virginia State Co||-) 69 P G3/46 0170805
    F i NASA-CR-193182 J L r N94-I1355 (NASA-CR-I93182) MAGNETIC EARTH 10NOSPHERE RESONANT FREQUENCIES (MEIRF) pROJECT Semiannual Progress Unclas Report, Sep. 1992 - Mar. 1993 (West virginia State Co||-) 69 p G3/46 0170805 ()RT 1993 i MAGNETIC EARTH IONOSPHERE RESONANT FREQUENCIES NAG- 5- 1267 Prepared for Dr. John Sutton Technical officer, NASA Project Goddard Space Flight Center Greenbelt, Maryland 20771 Prepared by Research Assistant Groups NASA MEIRF Project Community College Division West Virginia State College June 15, 1993 GeorgeBiUcic,Dean Community College Division West Virginia State Colle_,e -z JohnSutton CralgSpaniol G_orlaBlanclmrd PrindpalInvesUgator NASA ProJectOfllcer TechnicalOfficer NASA_J_ CarlAnderson ProjectManager NASAPro_ect PeggyMiner OflkeManager l NAsAProject .l RESEARCH GROUPS t . ELECTRONICS COMPUTER GROUP GROUP PROJECT PERSONNEL Administration Dean, Community College Division Dr. George Bilicic Staff Principal Investigator ........ Dr. Craig Spaniol Project Manager .......... Carl Anderson office Manager .......... Peggy Miller Research Assistant Groups Computer Group ............ Joe Adams * Barbara Adams Tom Rowsey Electronic Group ......... Bill Bailey Janine Patterson * Bill Ross Don Bishop * Supports both groups Table of Contents Message from the Dean of Community College Division • • • • • • • 1 Overview ********************************************** 2 4 Computer Division ************************************ 7 Electronics Division ************************************ 8 Experimental Progress Report .,,..,,,...
    [Show full text]
  • Download Facsimile
    55 Iv. Le rôLe propre et L’organIsatIon du coLLège de france de cet historique des chaires, il ressort que le Collège de France a servi souvent, selon l’esprit de son royal fondateur, à des enseignements nouveaux qui n’avaient pas encore reçu ailleurs droit de cité. C’est ce qui a fait dire à ernest renan qu’« à côté des établissements où se garde le dépôt des connaissances acquises, il est donc nécessaire qu’il y ait des chaires indépendantes où s’enseignent, non les branches de la science qui sont faites, mais celles qui sont en voie de se faire ». Le Collège de France recrute sans condition de grades universitaires ; et par là, il lui est possible d’appeler à lui des savants qui ne sont pas des professeurs de carrière mais qui se sont signalés par des découvertes, par des vues personnelles, par des travaux originaux. il suffit qu’on soit en droit d’attendre d’eux, dans le domaine de leurs recherches propres, des résultats nouveaux. d’autre part, il ne prépare à aucun examen et, par conséquent, ses enseignements ne sont assujettis à d’autre programme que celui défini chaque année par le titulaire de la chaire et approuvé par l’assemblée des Professeurs. nulle part, la recherche scientifique ne jouit d’une indépendance aussi large. de plus en plus, cette liberté est devenue sa loi, parce qu’elle est sa raison d’être ; et, de plus en plus, elle a déterminé son organisation. n’étant pas enfermé dans un cycle d’études invariables, le Collège de France n’a pas, en principe, de chaires permanentes.
    [Show full text]
  • Vie De La Société Bulletin De La S
    BULLETIN DE LA S. M. F. SMF Vie de la société Bulletin de la S. M. F., tome 55 (1927), p. 1-34 (supplément spé- cial) <http://www.numdam.org/item?id=BSMF_1927__55__v1_0> © Bulletin de la S. M. F., 1927, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SOCIÉTÉ MATHÉMATIQUE DE FRANCE. COMPTES RENDUS DES SÉANCES DE L'ANNÉE 1927. SOCIÉTÉ MATHÉMATIQUE DE FRANCE 11, rue Pierre Curie, PARIS 5* s SOCIÉTÉ MATHÉMATIQUE DE FRANCE. ÉTAT DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE EN JANVIER 1927 (1). MM. ANDOYER. APPELL. BOREL. BRILLOUIN. COSSERAT (E.). DEMOULIN. DERUYTS. COURSAT. GREENH1LL. Membres honoraires du Bureau.... HADAMARD. HATON DE LA GOUPILLIÈRE. KOENIGS. LEBESGUE. LECORNU. MITTAG-LEFFLRR. OCAGNE (D'). PAÏNLEVÉ. PICARD. VALLÉE POUSSIN (DE LA). VOLTERRA. Présidente...... MM. BEBTRAND DE F9NTVIOLANT. AURÏC. Vice-Présidents. DENJOY. JOUGUET. THYBAUT. CHAZY. Secrétaires. MICHEL. CHAPELON. Vice-Secrétaires. GOT. Archiviste...... BARRÉ. Trésorier....... COLLIN. BIOCHE, 1930. BRICARD, 1930. URACH, 1929. EYDOUX, 1930. FATOU, 1930. 2 GRÉVY, 1928. Membres du conseil ( ) LABROUSSE 1930. LÉVY (P.), 1928. MONTEL, 1929. TRESSE, 1929. VERGNE, 1929. VESSIOT, 1928. (1) MM. left M^mbi^es de la Société sont instamment priés d'à dresser au Secrétariat les rectifications qu'il y auraU lieu de faire à cette liste.
    [Show full text]