Sumsets and Structure Imre Z. Ruzsa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Circle Method Applied to Goldbach's Weak Conjecture
CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: The Circle Method Applied to Goldbach’s Weak Conjecture AUTHOR: Michael Cayanan SUPERVISOR: Brandon Fodden DATE: August 27, 2019 Acknowledgements First and foremost, I would like to thank my supervisor Brandon Fodden not only for all of his advice and guidance throughout the writing of this paper, but also for being such a welcoming and understanding instructor during my first year of undergraduate study. I would also like to thank the second reader Kenneth Williams for graciously providing his time and personal insight into this paper. Of course, I am also very grateful for the countless professors and instructors who have offered me outlets to explore my curiosity and to cultivate my appreciation of mathematical abstraction through the courses that they have organized. I am eternally indebted to the love and continual support provided by my family and my dearest friends throughout my undergraduate journey. They were always able to provide assurance and uplift me during my worst and darkest moments, and words cannot describe how grateful I am to be surrounded with so much compassion and inspiration. This work is as much yours as it is mine, and I love you all 3000. THE CIRCLE METHOD APPLIED TO GOLDBACH'S WEAK CONJECTURE Michael Cayanan August 27, 2019 Abstract. Additive number theory is the branch of number theory that is devoted to the study of repre- sentations of integers subject to various arithmetic constraints. One of, if not, the most popular question that additive number theory asks arose in a letter written by Christian Goldbach to Leonhard Euler, fa- mously dubbed the Goldbach conjecture. -
The Circle Method
The Circle Method Steven J. Miller and Ramin Takloo-Bighash July 14, 2004 Contents 1 Introduction to the Circle Method 3 1.1 Origins . 3 1.1.1 Partitions . 4 1.1.2 Waring’s Problem . 6 1.1.3 Goldbach’s conjecture . 9 1.2 The Circle Method . 9 1.2.1 Problems . 10 1.2.2 Setup . 11 1.2.3 Convergence Issues . 12 1.2.4 Major and Minor arcs . 13 1.2.5 Historical Remark . 14 1.2.6 Needed Number Theory Results . 15 1.3 Goldbach’s conjecture revisited . 16 1.3.1 Setup . 16 2 1.3.2 Average Value of |FN (x)| ............................. 17 1.3.3 Large Values of FN (x) ............................... 19 1.3.4 Definition of the Major and Minor Arcs . 20 1.3.5 The Major Arcs and the Singular Series . 22 1.3.6 Contribution from the Minor Arcs . 25 1.3.7 Why Goldbach’s Conjecture is Hard . 26 2 Circle Method: Heuristics for Germain Primes 29 2.1 Germain Primes . 29 2.2 Preliminaries . 31 2.2.1 Germain Integral . 32 2.2.2 The Major and Minor Arcs . 33 2.3 FN (x) and u(x) ....................................... 34 2.4 Approximating FN (x) on the Major arcs . 35 1 2.4.1 Boundary Term . 38 2.4.2 Integral Term . 40 2.5 Integrals over the Major Arcs . 42 2.5.1 Integrals of u(x) .................................. 42 2.5.2 Integrals of FN (x) ................................. 45 2.6 Major Arcs and the Singular Series . 46 2.6.1 Properties of Arithmetic Functions . -
13 Jan 2018 Waring's Theorem for Binary Powers
Waring’s Theorem for Binary Powers Daniel M. Kane∗ Mathematics University of California, San Diego 9500 Gilman Drive #0404 La Jolla, CA 92093-0404 USA [email protected] Carlo Sanna Dipartimento di Matematica “Giuseppe Peano” Universit`adegli Studi di Torino Via Carlo Alberto 10 10123 Torino Italy [email protected] Jeffrey Shallit† School of Computer Science University of Waterloo Waterloo, ON N2L 3G1 Canada [email protected] arXiv:1801.04483v1 [math.NT] 13 Jan 2018 January 16, 2018 Abstract A natural number is a binary k’th power if its binary representation consists of k consecutive identical blocks. We prove an analogue of Waring’s theorem for sums of binary k’th powers. More precisely, we show that for each integer k ≥ 2, there exists a ∗Supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellowship. †Supported by NSERC Discovery Grant #105829/2013. 1 k positive integer W (k) such that every sufficiently large multiple of Ek := gcd(2 − 1, k) is the sum of at most W (k) binary k’th powers. (The hypothesis of being a multiple of Ek cannot be omitted, since we show that the gcd of the binary k’th powers is Ek.) Also, we explain how our results can be extended to arbitrary integer bases b> 2. 1 Introduction Let N = {0, 1, 2,...} be the natural numbers and let S ⊆ N. The principal problem of additive number theory is to determine whether every integer N (resp., every sufficiently large integer N) can be represented as the sum of some constant number of elements of S, not necessarily distinct, where the constant does not depend on N. -