Waring's Problem for Beatty Sequences and a Local to Global
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
943 Estimates Stemming from Carleman for Operators Having an Imagi- Nary Part Lying in a £-Ideal. the Latter Results Make Exten
I97i] BOOK REVIEWS 943 estimates stemming from Carleman for operators having an imagi nary part lying in a £-ideal. The latter results make extensive use of the theory of analytic functions and especially of entire functions. The principal application of these results in this volume is to the completeness problem of root spaces. Approximately one-third of the book is devoted to this problem along with a study of the various kinds of bases which can exist in Hubert space and the notion of expansion appropriate to each. The early and fundamental results of M. V. Keldys in this area are presented in complete detail. A rather thorough presentation of this area is given with various tech niques being illustrated. Lastly, various asymptotic properties of the spectrum of weakly perturbed operators are given. In summary this book is a thorough and complete treatment along with many worthy contributions of some important but relatively neglected areas of abstract operator theory with applications to more immediate and concrete problems. We eagerly await the remaining two volumes. RONALD DOUGLAS Introduction to analytic number theory, by K. Chandrasekharan, Springer, 1968; Arithmetic functions, by K. Chandrasekharan, Springer, 1970; Multiplicative number theory, by Harold Davenport, Markham, 1967; Sequences, by H. Halberstam and K. F. Roth, Oxford University Press, 1966. Recent years have seen an explosion in the number of books in most branches of mathematics and this is true of number theory. Most books contain little that is new, even in book form. This is the case of 8/3 of the four books in this review. -
KLAUS FRIEDRICH ROTH 29 October 1925 — 10 November 2015
KLAUS FRIEDRICH ROTH 29 October 1925 — 10 November 2015 KLAUS FRIEDRICH ROTH 29 October 1925 — 10 November 2015 Elected FRS 1960 By William Chen1* and Robert Vaughan FRS2∗∗ 1Macquarie University, Sydney, New South Wales, Australia 2Pennsylvania State University, University Park, Pennsylvania, USA Klaus Friedrich Roth, who died in Inverness on 10 November 2015 aged 90, made fundamental contributions to different areas of number theory, including diophantine approximation, the large sieve, irregularities of distribution and what is nowadays known as arithmetic combinatorics. He was the first British winner of the Fields Medal, awarded in 1958 for his solution in 1955 of the famous Siegel conjecture concerning approximation of algebraic numbers by rationals. He was elected a Fellow of the Royal Society in 1960, and received its Sylvester Medal in 1991. He was also awarded the De Morgan Medal of the London Mathematical Society in 1983, and elected Fellow of University College London in 1979, Honorary Fellow of Peterhouse in 1989, Honorary Fellow of the Royal Society of Edinburgh in 1993 and Fellow of Imperial College London in 1999. Life and career Klaus Roth, son of Franz and Matilde (née Liebrecht), was born on 29 October 1925 in the German city of Breslau, in Lower Silesia, Prussia, now Wrocław in Poland. To escape from Nazism, he and his parents moved to England in 1933 and settled in London. He would recall that the flight from Berlin to London took eight hours and they landed in Croydon. Franz, a solicitor by training, had suffered from gas poisoning during the First World War and he died a few years after their arrival in England. -
Sumsets and Structure Imre Z. Ruzsa
Sumsets and structure Imre Z. Ruzsa Alfred¶ Renyi¶ Institute of Mathematics, Budapest, Pf. 127, H-1364 Hungary, E-mail address: [email protected] Contents Foreword 1 Overview 3 Notation 4 Exercises and problems 4 Chapter 1. Cardinality inequalities 5 1. Introduction 5 2. PlÄunnecke's method 6 3. Magni¯cation and disjoint paths 8 4. Layered product 10 5. The independent addition graph 11 6. Di®erent summands 13 7. PlÄunnecke's inequality with a large subset 14 8. Sums and di®erences 15 9. Double and triple sums 18 10. A + B and A + 2B 20 11. On the noncommutative case 22 Chapter 2. Structure of sets with few sums 27 1. Introduction 27 2. Torsion groups 30 3. Freiman isomorphism and small models 32 4. Elements of Fourier analysis on groups 34 5. Bohr sets in sumsets 38 6. Some facts from the geometry of numbers 40 7. A generalized arithmetical progression in a Bohr set 41 8. Freiman's theorem 43 9. Arithmetic progressions in sets with small sumset 44 Chapter 3. Location and sumsets 47 1. Introduction 47 2. The Cauchy-Davenport inequality 47 3. Kneser's theorem 48 4. Sumsets and diameter, part 1 51 5. The impact function 52 6. Estimates for the impact function in one dimension 54 7. Multidimensional sets 56 8. Results using cardinality and dimension 58 9. The impact function and the hull volume 60 10. The impact volume 62 iii iv CONTENTS 11. Hovanskii's theorem 66 Chapter 4. Density 69 1. Asymptotic and Schnirelmann density 69 2. Schirelmann's inequality 71 3.