On Some Conjectures in Additive Number Theory Huixi Li Clemson University, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pseudoprime Reductions of Elliptic Curves
Mathematical Proceedings of the Cambridge Philosophical Society VOL. 146 MAY 2009 PART 3 Math. Proc. Camb. Phil. Soc. (2009), 146, 513 c 2008 Cambridge Philosophical Society 513 doi:10.1017/S0305004108001758 Printed in the United Kingdom First published online 14 July 2008 Pseudoprime reductions of elliptic curves BY ALINA CARMEN COJOCARU Dept. of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045, U.S.A. and The Institute of Mathematics of the Romanian Academy, Bucharest, Romania. e-mail: [email protected] FLORIAN LUCA Instituto de Matematicas,´ Universidad Nacional Autonoma´ de Mexico,´ C.P. 58089, Morelia, Michoacan,´ Mexico.´ e-mail: [email protected] AND IGOR E. SHPARLINSKI Dept. of Computing, Macquarie University, Sydney, NSW 2109, Australia. e-mail: [email protected] (Received 10 April 2007; revised 25 April 2008) Abstract Let b 2 be an integer and let E/Q be a fixed elliptic curve. In this paper, we estimate the number of primes p x such that the number of points n E (p) on the reduction of E modulo p is a base b prime or pseudoprime. In particular, we improve previously known bounds which applied only to prime values of n E (p). 1. Introduction Let b 2 be an integer. Recall that a pseudoprime to base b is a composite positive integer m such that the congruence bm ≡ b (mod m) holds. The question of the distri- bution of pseudoprimes in certain sequences of positive integers has received some in- terest. For example, in [PoRo], van der Poorten and Rotkiewicz show that any arithmetic 514 A. -
Recent Progress in Additive Prime Number Theory
Introduction Arithmetic progressions Other linear patterns Recent progress in additive prime number theory Terence Tao University of California, Los Angeles Mahler Lecture Series Terence Tao Recent progress in additive prime number theory Introduction Arithmetic progressions Other linear patterns Additive prime number theory Additive prime number theory is the study of additive patterns in the prime numbers 2; 3; 5; 7;:::. Examples of additive patterns include twins p; p + 2, arithmetic progressions a; a + r;:::; a + (k − 1)r, and prime gaps pn+1 − pn. Many open problems regarding these patterns still remain, but there has been some recent progress in some directions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together Long arithmetic progressions in the primes I’ll first discuss a theorem of Ben Green and myself from 2004: Theorem: The primes contain arbitrarily long arithmetic progressions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together It was previously established by van der Corput (1929) that the primes contained infinitely many progressions of length three. In 1981, Heath-Brown showed that there are infinitely many progressions of length four, in which three elements are prime and the fourth is an almost prime (the product of at most -
New Formulas for Semi-Primes. Testing, Counting and Identification
New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa. -
The Circle Method Applied to Goldbach's Weak Conjecture
CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: The Circle Method Applied to Goldbach’s Weak Conjecture AUTHOR: Michael Cayanan SUPERVISOR: Brandon Fodden DATE: August 27, 2019 Acknowledgements First and foremost, I would like to thank my supervisor Brandon Fodden not only for all of his advice and guidance throughout the writing of this paper, but also for being such a welcoming and understanding instructor during my first year of undergraduate study. I would also like to thank the second reader Kenneth Williams for graciously providing his time and personal insight into this paper. Of course, I am also very grateful for the countless professors and instructors who have offered me outlets to explore my curiosity and to cultivate my appreciation of mathematical abstraction through the courses that they have organized. I am eternally indebted to the love and continual support provided by my family and my dearest friends throughout my undergraduate journey. They were always able to provide assurance and uplift me during my worst and darkest moments, and words cannot describe how grateful I am to be surrounded with so much compassion and inspiration. This work is as much yours as it is mine, and I love you all 3000. THE CIRCLE METHOD APPLIED TO GOLDBACH'S WEAK CONJECTURE Michael Cayanan August 27, 2019 Abstract. Additive number theory is the branch of number theory that is devoted to the study of repre- sentations of integers subject to various arithmetic constraints. One of, if not, the most popular question that additive number theory asks arose in a letter written by Christian Goldbach to Leonhard Euler, fa- mously dubbed the Goldbach conjecture. -
Arxiv:Math/0412262V2 [Math.NT] 8 Aug 2012 Etrgae Tgte Ihm)O Atnscnetr and Conjecture fie ‘Artin’S Number on of Cojoc Me) Domains’
ARTIN’S PRIMITIVE ROOT CONJECTURE - a survey - PIETER MOREE (with contributions by A.C. Cojocaru, W. Gajda and H. Graves) To the memory of John L. Selfridge (1927-2010) Abstract. One of the first concepts one meets in elementary number theory is that of the multiplicative order. We give a survey of the lit- erature on this topic emphasizing the Artin primitive root conjecture (1927). The first part of the survey is intended for a rather general audience and rather colloquial, whereas the second part is intended for number theorists and ends with several open problems. The contribu- tions in the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Woj- ciec Gajda wrote a section on ‘Artin for K-theory of number fields’, and Hester Graves (together with me) on ‘Artin’s conjecture and Euclidean domains’. Contents 1. Introduction 2 2. Naive heuristic approach 5 3. Algebraic number theory 5 3.1. Analytic algebraic number theory 6 4. Artin’s heuristic approach 8 5. Modified heuristic approach (`ala Artin) 9 6. Hooley’s work 10 6.1. Unconditional results 12 7. Probabilistic model 13 8. The indicator function 17 arXiv:math/0412262v2 [math.NT] 8 Aug 2012 8.1. The indicator function and probabilistic models 17 8.2. The indicator function in the function field setting 18 9. Some variations of Artin’s problem 20 9.1. Elliptic Artin (by A.C. Cojocaru) 20 9.2. Even order 22 9.3. Order in a prescribed arithmetic progression 24 9.4. Divisors of second order recurrences 25 9.5. Lenstra’s work 29 9.6. -
The Circle Method
The Circle Method Steven J. Miller and Ramin Takloo-Bighash July 14, 2004 Contents 1 Introduction to the Circle Method 3 1.1 Origins . 3 1.1.1 Partitions . 4 1.1.2 Waring’s Problem . 6 1.1.3 Goldbach’s conjecture . 9 1.2 The Circle Method . 9 1.2.1 Problems . 10 1.2.2 Setup . 11 1.2.3 Convergence Issues . 12 1.2.4 Major and Minor arcs . 13 1.2.5 Historical Remark . 14 1.2.6 Needed Number Theory Results . 15 1.3 Goldbach’s conjecture revisited . 16 1.3.1 Setup . 16 2 1.3.2 Average Value of |FN (x)| ............................. 17 1.3.3 Large Values of FN (x) ............................... 19 1.3.4 Definition of the Major and Minor Arcs . 20 1.3.5 The Major Arcs and the Singular Series . 22 1.3.6 Contribution from the Minor Arcs . 25 1.3.7 Why Goldbach’s Conjecture is Hard . 26 2 Circle Method: Heuristics for Germain Primes 29 2.1 Germain Primes . 29 2.2 Preliminaries . 31 2.2.1 Germain Integral . 32 2.2.2 The Major and Minor Arcs . 33 2.3 FN (x) and u(x) ....................................... 34 2.4 Approximating FN (x) on the Major arcs . 35 1 2.4.1 Boundary Term . 38 2.4.2 Integral Term . 40 2.5 Integrals over the Major Arcs . 42 2.5.1 Integrals of u(x) .................................. 42 2.5.2 Integrals of FN (x) ................................. 45 2.6 Major Arcs and the Singular Series . 46 2.6.1 Properties of Arithmetic Functions . -
Hidden Multiscale Order in the Primes
HIDDEN MULTISCALE ORDER IN THE PRIMES SALVATORE TORQUATO, GE ZHANG, AND MATTHEW DE COURCY-IRELAND Abstract. We study the pair correlations between prime numbers in an in- terval M ≤ p ≤ M + L with M → ∞, L/M → β > 0. By analyzing the structure factor, we prove, conditionally on the Hardy-Littlewood conjecture on prime pairs, that the primes are characterized by unanticipated multiscale order. Specifically, their limiting structure factor is that of a union of an in- finite number of periodic systems and is characterized by dense set of Dirac delta functions. Primes in dyadic intervals are the first examples of what we call effectively limit-periodic point configurations. This behavior implies anomalously suppressed density fluctuations compared to uncorrelated (Pois- son) systems at large length scales, which is now known as hyperuniformity. Using a scalar order metric τ calculated from the structure factor, we iden- tify a transition between the order exhibited when L is comparable to M and the uncorrelated behavior when L is only logarithmic in M. Our analysis for the structure factor leads to an algorithm to reconstruct primes in a dyadic interval with high accuracy. 1. Introduction While prime numbers are deterministic, by some probabilistic descriptors, they can be regarded as pseudo-random in nature. Indeed, the primes can be difficult to distinguish from a random configuration of the same density. For example, assuming a plausible conjecture, Gallagher proved that the gaps between primes follow a Poisson distribution [13]. Thus the number of M X such that there are exactly N primes in the interval M<p<M + L of length≤ L λ ln X is given asymptotically by ∼ e λλN # M X such that π(M + L) π(M)= N X − . -
From Apollonian Circle Packings to Fibonacci Numbers
From Apollonian Circle Packings to Fibonacci Numbers Je↵Lagarias, University of Michigan March 25, 2009 2 Credits Results on integer Apollonian packings are joint work with • Ron Graham, Colin Mallows, Allan Wilks, Catherine Yan, ([GLMWY]) Some of the work on Fibonacci numbers is an ongoing joint • project with Jon Bober.([BL]) Work of J. L. was partially supported by NSF grant • DMS-0801029. 3 Table of Contents 1. Exordium 2. Apollonian Circle Packings 3. Fibonacci Numbers 4. Peroratio 4 1. Exordium (Contents of Talk)-1 The talk first discusses Apollonian circle packings. Then it • discusses integral Apollonian packings - those with all circles of integer curvature. These integers are describable in terms of integer orbits of • a group of 4 4 integer matrices of determinant 1, the A ⇥ ± Apollonian group, which is of infinite index in O(3, 1, Z), an arithmetic group acting on Lorentzian space. [Technically sits inside an integer group conjugate to O(3, 1, Z).] A 5 Contents of Talk-2 Much information on primality and factorization theory of • integers in such orbits can be read o↵using a sieve method recently developed by Bourgain, Gamburd and Sarnak. They observe: The spectral geometry of the Apollonian • group controls the number theory of such integers. One notable result: integer orbits contain infinitely many • almost prime vectors. 6 Contents of Talk-3 The talk next considers Fibonacci numbers and related • quantities. These can be obtained an orbit of an integer subgroup of 2 2 matrices of determinant 1, the F ⇥ ± Fibonacci group. This group is of infinite index in GL(2, Z), an arithmetic group acting on the upper and lower half planes. -
Which Polynomials Represent Infinitely Many Primes?
Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 1 (2018), pp. 161-180 © Research India Publications http://www.ripublication.com/gjpam.htm Which polynomials represent infinitely many primes? Feng Sui Liu Department of Mathematics, NanChang University, NanChang, China. Abstract In this paper a new arithmetical model has been found by extending both basic operations + and × into finite sets of natural numbers. In this model we invent a recursive algorithm on sets of natural numbers to reformulate Eratosthene’s sieve. By this algorithm we obtain a recursive sequence of sets, which converges to the set of all natural numbers x such that x2 + 1 is prime. The corresponding cardinal sequence is strictly increasing. Test that the cardinal function is continuous with respect to an order topology, we immediately prove that there are infinitely many natural numbers x such that x2 + 1 is prime. Based on the reasoning paradigm above we further prove a general result: if an integer valued polynomial of degree k represents at least k +1 positive primes, then this polynomial represents infinitely many primes. AMS subject classification: Primary 11N32; Secondary 11N35, 11U09,11Y16, 11B37. Keywords: primes in polynomial, twin primes, arithmetical model, recursive sieve method, limit of sequence of sets, Ross-Littwood paradox, parity problem. 1. Introduction Whether an integer valued polynomial represents infinitely many primes or not, this is an intriguing question. Except some obvious exceptions one conjectured that the answer is yes. Example 1.1. Bouniakowsky [2], Schinzel [35], Bateman and Horn [1]. In this paper a recursive algorithm or sieve method adds some exotic structures to the sets of natural numbers, which allow us to answer the question: which polynomials represent infinitely many primes? 2 Feng Sui Liu In 1837, G.L. -
Various Arithmetic Functions and Their Applications
University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2016 Various Arithmetic Functions and their Applications Florentin Smarandache University of New Mexico, [email protected] Octavian Cira Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Applied Mathematics Commons, Logic and Foundations Commons, Number Theory Commons, and the Set Theory Commons Recommended Citation Smarandache, Florentin and Octavian Cira. "Various Arithmetic Functions and their Applications." (2016). https://digitalrepository.unm.edu/math_fsp/256 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Octavian Cira Florentin Smarandache Octavian Cira and Florentin Smarandache Various Arithmetic Functions and their Applications Peer reviewers: Nassim Abbas, Youcef Chibani, Bilal Hadjadji and Zayen Azzouz Omar Communicating and Intelligent System Engineering Laboratory, Faculty of Electronics and Computer Science University of Science and Technology Houari Boumediene 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria Octavian Cira Florentin Smarandache Various Arithmetic Functions and their Applications PONS asbl Bruxelles, 2016 © 2016 Octavian Cira, Florentin Smarandache & Pons. All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners Pons asbl Quai du Batelage no. -
Series of Reciprocal Powers of K-Almost Primes
SERIES OF RECIPROCAL POWERS OF k−ALMOST PRIMES RICHARD J. MATHAR Abstract. Sums over inverse s-th powers of semiprimes and k-almost primes are transformed into sums over products of powers of ordinary prime zeta functions. Multinomial coefficients known from the cycle decomposition of permutation groups play the role of expansion coefficients. Founded on a known convergence acceleration for the ordinary prime zeta functions, the sums and first derivatives are tabulated with high precision for indices k = 2,..., 6 and integer powers s = 2,..., 8. 1. Overview Series over rational polynomials evaluated at integer arguments contain sub- series summing over integers classified by the count of their prime factors. The core example is the Riemann zeta function ζ which accumulates the prime zeta function P1 plus what we shall define the almost-prime zeta functions Pk (Section 2). The central observation of this manuscript is that the almost-prime zeta functions are combinatorial sums over the prime zeta function (Section 3). Since earlier work by Cohen, Sebah and Gourdon has pointed at efficient numerical algorithms to compute P1, series over reciprocal almost-primes—which may suffer from slow convergence in their defining format—may be computed efficiently by reference to the P1. In consequence, any converging series over the positive integers which has a Taylor expansion in reciprocal powers of these integers splits into k-almost prime components. Section 4 illustrates this for the most basic formats. Number theory as such will not be advanced. The meromorphic landscape of the prime zeta functions as a function of their main variable appears to be more complicated than what is known for their host, the Riemann zeta function; so only some remarks on the calculation of first derivatives are dropped. -
Additive Combinatorics with a View Towards Computer Science And
Additive Combinatorics with a view towards Computer Science and Cryptography An Exposition Khodakhast Bibak Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1 [email protected] October 25, 2012 Abstract Recently, additive combinatorics has blossomed into a vibrant area in mathematical sciences. But it seems to be a difficult area to define – perhaps because of a blend of ideas and techniques from several seemingly unrelated contexts which are used there. One might say that additive combinatorics is a branch of mathematics concerning the study of combinatorial properties of algebraic objects, for instance, Abelian groups, rings, or fields. This emerging field has seen tremendous advances over the last few years, and has recently become a focus of attention among both mathematicians and computer scientists. This fascinating area has been enriched by its formidable links to combinatorics, number theory, harmonic analysis, ergodic theory, and some other arXiv:1108.3790v9 [math.CO] 25 Oct 2012 branches; all deeply cross-fertilize each other, holding great promise for all of them! In this exposition, we attempt to provide an overview of some breakthroughs in this field, together with a number of seminal applications to sundry parts of mathematics and some other disciplines, with emphasis on computer science and cryptography. 1 Introduction Additive combinatorics is a compelling and fast growing area of research in mathematical sciences, and the goal of this paper is to survey some of the recent developments and notable accomplishments of the field, focusing on both pure results and applications with a view towards computer science and cryptography. See [321] for a book on additive combinatorics, [237, 238] for two books on additive number theory, and [330, 339] for two surveys on additive 1 combinatorics.