Various Arithmetic Functions and Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

Various Arithmetic Functions and Their Applications University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2016 Various Arithmetic Functions and their Applications Florentin Smarandache University of New Mexico, [email protected] Octavian Cira Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Applied Mathematics Commons, Logic and Foundations Commons, Number Theory Commons, and the Set Theory Commons Recommended Citation Smarandache, Florentin and Octavian Cira. "Various Arithmetic Functions and their Applications." (2016). https://digitalrepository.unm.edu/math_fsp/256 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Octavian Cira Florentin Smarandache Octavian Cira and Florentin Smarandache Various Arithmetic Functions and their Applications Peer reviewers: Nassim Abbas, Youcef Chibani, Bilal Hadjadji and Zayen Azzouz Omar Communicating and Intelligent System Engineering Laboratory, Faculty of Electronics and Computer Science University of Science and Technology Houari Boumediene 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria Octavian Cira Florentin Smarandache Various Arithmetic Functions and their Applications PONS asbl Bruxelles, 2016 © 2016 Octavian Cira, Florentin Smarandache & Pons. All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners Pons asbl Quai du Batelage no. 5 1000 Bruxelles Belgium ISBN 978-1-59973-372-2 Preface Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathemat- ical criteria, etc. on integer sequences, numbers, quotients, residues, expo- nents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factori- als, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State Uni- versity (Tempe): "The Florentin Smarandache papers" special collections, Uni- versity of Craiova Library, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, România). The book is based on various articles in the theory of numbers (starting from 1975), updated many times. Special thanks to C. Dumitrescu and V. Se- leacufrom the University of Craiova (see their edited book "Some Notions and Questions in Number Theory", Erhus Press, Glendale, 1994), M. Bencze, L. Tu- tescu, E. Burton, M. Coman, F. Russo, H. Ibstedt, C. Ashbacher, S. M. Ruiz, J. Sandor, G. Policarp, V. Iovan, N. Ivaschescu, etc. who helped incollecting and editing this material. This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equa- tions", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to pro- pose new areas of study in number theory, and Octavian Cira – with his algo- rithmic thinking and knowledge of Mathcad. The work has been edited in LATEX. March 23, 2016 Authors I Contents Preface I Contents III List of Figure XI List of Tables XII Introduction XVII 1 Prime Numbers 1 1.1 Generating Primes . 1 1.1.1SieveofEratosthenes .......................... 1 1.1.2SieveofSundaram............................ 2 1.1.3 Sieve of Atkin . 3 1.2 Primality Criteria . 4 1.2.1 Smarandache Primality Criterion . 4 1.3Luhnprimes.................................... 5 1.3.1 Luhn Primes of First Rank . 6 1.3.2 Luhn Primes of Second Rank . 7 1.4 Endings the Primes . 8 1.5 Numbers of Gap between Primes . 9 1.6 Polynomials Generating Prime Numbers . 10 1.7 Primorial . 14 1.7.1 Double Primorial . 16 1.7.2 Triple Primorial . 18 2 Arithmetical Functions 21 2.1 Function of Counting the Digits . 21 2.2 Digits the Number in Base b ........................... 21 2.3 Prime Counting Function . 21 2.4 Digital Sum . 22 2.4.1 Narcissistic Numbers . 23 2.4.2 Inverse Narcissistic Numbers . 33 III IV CONTENTS 2.4.3 Münchhausen Numbers . 35 2.4.4 Numbers with Digits Sum in Ascending Powers . 37 2.4.5 Numbers with Digits Sum in Descending Powers . 41 2.5 Multifactorial . 44 2.5.1Factorions................................. 45 2.5.2 Double Factorions . 47 2.5.3 Triple Factorials . 49 2.5.4 Factorial Primes . 51 2.6 Digital Product . 55 2.7Sum–Product................................... 57 2.8CodePuzzle.................................... 60 2.9 Pierced Chain . 60 2.10 Divisor Product . 60 2.11 Proper Divisor Products . 61 2.12n–MultiplePowerFreeSieve.......................... 61 2.13 Irrational Root Sieve . 62 2.14OddSieve...................................... 63 2.15 n –aryPowerSieve................................ 63 2.16 k – ary Consecutive Sieve . 65 2.17 Consecutive Sieve . 66 2.18PrimePart..................................... 67 2.18.1InferiorandSuperiorPrimePart.................... 67 2.18.2 Inferior and Superior Fractional Prime Part . 69 2.19SquarePart..................................... 70 2.19.1 Inferior and Superior Square Part . 70 2.19.2 Inferior and Superior Fractional Square Part . 71 2.20CubicPart..................................... 71 2.20.1 Inferior and Superior Cubic Part . 71 2.20.2 Inferior and Superior Fractional Cubic Part . 73 2.21 Factorial Part . 74 2.21.1 Inferior and Superior Factorial Part . 74 2.22 Function Part . 76 2.22.1 Inferior and Superior Function Part . 76 2.22.2 Inferior and Superior Fractional Function Part . 77 2.23SmarandachetypeFunctions.......................... 78 2.23.1 Smarandache Function . 78 2.23.2 Smarandache Function of Order k . 79 2.23.3 Smarandache–Cira Function of Order k . 81 2.24 Smarandache–Kurepa Functions . 82 2.24.1 Smarandache–Kurepa Function of Order 1 . 82 2.24.2 Smarandache–Kurepa Function of order 2 . 83 2.24.3 Smarandache–Kurepa Function of Order 3 . 84 2.25 Smarandache–Wagstaff Functions . 86 CONTENTS V 2.25.1 Smarandache–Wagstaff Function of Order 1 . 86 2.25.2 Smarandache–Wagstaff Function of Order 2 . 87 2.25.3 Smarandache–Wagstaff Function of Order 3 . 87 2.26 Smarandache Near to k–Primorial Functions . 89 2.26.1 Smarandache Near to Primorial Function . 89 2.26.2 Smarandache Near to Double Primorial Function . 89 2.26.3 Smarandache Near to Triple Primorial Function . 90 2.27 Smarandache Ceil Function . 90 2.28 Smarandache–Mersenne Functions . 91 2.28.1 Smarandache–Mersenne Left Function . 91 2.28.2 Smarandache–Mersenne Right Function . 92 2.29 Smarandache–X-nacci Functions . 93 2.29.1 Smarandache–Fibonacci Function . 93 2.29.2 Smarandache–Tribonacci Function . 93 2.29.3 Smarandache–Tetranacci Function . 94 2.30Pseudo–SmarandacheFunctions........................ 94 2.30.1 Pseudo–Smarandache Function of the Order 1 . 94 2.30.2 Pseudo–Smarandache Function of the Order 2 . 97 2.30.3 Pseudo–Smarandache Function of the Order 3 . 101 2.30.4 Alternative Pseudo–Smarandache Function . 104 2.30.5 General Smarandache Functions . 105 2.31 Smarandache Functions of the k-thKind................... 105 2.31.1 Smarandache Function of the First Kind . 105 2.31.2 Smarandache Function of the Second Kind . 105 2.31.3 Smarandache Function of the Third Kind . 105 2.32 The Generalization of the Factorial . 106 2.32.1 Factorial for Real Numbers . 106 2.32.2 Smarandacheial . 108 2.33 Analogues of the Smarandache Function . 112 2.34 Power Function . 113 2.34.1 Power Function of Second Order . 113 2.34.2 Power Function of Third Order . 114 3 Sequences of Numbers 115 3.1 Consecutive Sequence . 115 3.2 Circular Sequence . 120 3.3 Symmetric Sequence . 123 3.4 Deconstructive Sequence . 123 3.5 Concatenated Sequences . 125 3.5.1 Concatenated Prime Sequence . 125 3.5.2 Back Concatenated Prime Sequence . 127 3.5.3 Concatenated Fibonacci Sequence . 129 3.5.4 Back Concatenated Fibonacci Sequence . 129 VI CONTENTS 3.5.5 Concatenated Tetranacci Sequence . 130 3.5.6 Concatenated Mersenne Sequence . 132 3.5.7 Concatenated 6k − 5Sequence..................... 134 3.5.8 Concatenated Square Sequence . 136 3.5.9 Back Concatenated Square Sequence . 137 3.6 Permutation Sequence . 138 3.7 Generalized Permutation Sequence . 139 3.8 Combinatorial Sequences . 139 3.9 Simple Numbers . 141 3.10 Pseudo–Smarandache Numbers . 144 3.10.1 Pseudo–Smarandache Numbers of First Kind . 145 3.10.2 Pseudo–Smarandache Numbers of Second Kind . 149 3.10.3 Pseudo–Smarandache Numbers of Third Kind . 152 3.11 General Residual Sequence . 156 3.12 Goldbach–Smarandache Table . 157 3.13 Vinogradov–Smarandache Table . 160 3.14 Smarandacheian Complements . 165 3.14.1 Square Complements . 165 3.14.2 Cubic Complements . 165 3.14.3 m−power Complements . 166 3.15 m−factorialComplements........................... 166 3.16 Prime Additive Complements . ..
Recommended publications
  • 4 VI June 2016
    4 VI June 2016 www.ijraset.com Volume 4 Issue VI, June 2016 IC Value: 13.98 ISSN: 2321-9653 International Journal for Research in Applied Science & Engineering Technology (IJRASET) Special Rectangles and Narcissistic Numbers of Order 3 And 4 G.Janaki1, P.Saranya2 1,2Department of Mathematics, Cauvery College for women, Trichy-620018 Abstract— We search for infinitely many rectangles such that x2 y2 3A S 2 k2 SK Narcissistic numbers of order 3 and 4 respectively, in which x, y represents the length and breadth of the rectangle. Also the total number of rectangles satisfying the relation under consideration as well as primitive and non-primitive rectangles are also present. Keywords—Rectangle, Narcissistic numbers of order 3 and 4, primitive,non-primitive. I. INTRODUCTION The older term for number theory is arithmetic, which was superseded as number theory by early twentieth century. The first historical find of an arithmetical nature is a fragment of a table, the broken clay tablet containing a list of Pythagorean triples. Since then the finding continues. For more ideas and interesting facts one can refer [1].In [2] one can get ideas on pairs of rectangles dealing with non-zero integral pairs representing the length and breadth of rectangle. [3,4] has been studied for knowledge on rectangles in connection with perfect squares , Niven numbers and kepriker triples.[5-10] was referred for connections between Special rectangles and polygonal numbers, jarasandha numbers and dhuruva numbers Recently in [11,12] special pythagorean triangles in connections with Narcissistic numbers are obtained. In this communication, we search for infinitely many rectangles such that x2 y2 3A S 2 k2 SK Narcissistic numbers of order 3 and 4 respectively, in which x,y represents the length and breadth of the rectangle.
    [Show full text]
  • Pseudoprime Reductions of Elliptic Curves
    Mathematical Proceedings of the Cambridge Philosophical Society VOL. 146 MAY 2009 PART 3 Math. Proc. Camb. Phil. Soc. (2009), 146, 513 c 2008 Cambridge Philosophical Society 513 doi:10.1017/S0305004108001758 Printed in the United Kingdom First published online 14 July 2008 Pseudoprime reductions of elliptic curves BY ALINA CARMEN COJOCARU Dept. of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045, U.S.A. and The Institute of Mathematics of the Romanian Academy, Bucharest, Romania. e-mail: [email protected] FLORIAN LUCA Instituto de Matematicas,´ Universidad Nacional Autonoma´ de Mexico,´ C.P. 58089, Morelia, Michoacan,´ Mexico.´ e-mail: [email protected] AND IGOR E. SHPARLINSKI Dept. of Computing, Macquarie University, Sydney, NSW 2109, Australia. e-mail: [email protected] (Received 10 April 2007; revised 25 April 2008) Abstract Let b 2 be an integer and let E/Q be a fixed elliptic curve. In this paper, we estimate the number of primes p x such that the number of points n E (p) on the reduction of E modulo p is a base b prime or pseudoprime. In particular, we improve previously known bounds which applied only to prime values of n E (p). 1. Introduction Let b 2 be an integer. Recall that a pseudoprime to base b is a composite positive integer m such that the congruence bm ≡ b (mod m) holds. The question of the distri- bution of pseudoprimes in certain sequences of positive integers has received some in- terest. For example, in [PoRo], van der Poorten and Rotkiewicz show that any arithmetic 514 A.
    [Show full text]
  • Recent Progress in Additive Prime Number Theory
    Introduction Arithmetic progressions Other linear patterns Recent progress in additive prime number theory Terence Tao University of California, Los Angeles Mahler Lecture Series Terence Tao Recent progress in additive prime number theory Introduction Arithmetic progressions Other linear patterns Additive prime number theory Additive prime number theory is the study of additive patterns in the prime numbers 2; 3; 5; 7;:::. Examples of additive patterns include twins p; p + 2, arithmetic progressions a; a + r;:::; a + (k − 1)r, and prime gaps pn+1 − pn. Many open problems regarding these patterns still remain, but there has been some recent progress in some directions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together Long arithmetic progressions in the primes I’ll first discuss a theorem of Ben Green and myself from 2004: Theorem: The primes contain arbitrarily long arithmetic progressions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together It was previously established by van der Corput (1929) that the primes contained infinitely many progressions of length three. In 1981, Heath-Brown showed that there are infinitely many progressions of length four, in which three elements are prime and the fourth is an almost prime (the product of at most
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • Maths Secrets of Simpsons Revealed in New Book
    MONDAY 7 OCTOBER 2013 WWW.THEDAY.CO.UK Maths secrets of Simpsons revealed in new book The most successful TV show of all time is written by a team of brilliant ‘mathletes’, says writer Simon Singh, and full of obscure mathematical jokes. Can numbers really be all that funny? MATHEMATICS Nerd hero: The smartest girl in Springfield was created by a team of maths wizards. he world’s most popular cartoon a perfect number, a narcissistic number insist that their love of maths contrib- family has a secret: their lines are and a Mersenne Prime. utes directly to the more obvious humour written by a team of expert mathema- Another of these maths jokes – a black- that has made the show such a hit. Turn- Tticians – former ‘mathletes’ who are board showing 398712 + 436512 = 447212 ing intuitions about comedy into concrete as happy solving differential equa- – sent shivers down Simon Singh’s spine. jokes is like wrestling mathematical tions as crafting jokes. ‘I was so shocked,’ he writes, ‘I almost hunches into proofs and formulas. Comedy Now, science writer Simon Singh has snapped my slide rule.’ The numbers are and maths, says Cohen, are both explora- revealed The Simpsons’ secret math- a fake exception to a famous mathemati- tions into the unknown. ematical formula in a new book*. He cal rule known as Fermat’s Last Theorem. combed through hundreds of episodes One episode from 1990 features a Mathletes and trawled obscure internet forums to teacher making a maths joke to a class of Can maths really be funny? There are many discover that behind the show’s comic brilliant students in which Bart Simpson who will think comparing jokes to equa- exterior lies a hidden core of advanced has been accidentally included.
    [Show full text]
  • On the First Occurrences of Gaps Between Primes in a Residue Class
    On the First Occurrences of Gaps Between Primes in a Residue Class Alexei Kourbatov JavaScripter.net Redmond, WA 98052 USA [email protected] Marek Wolf Faculty of Mathematics and Natural Sciences Cardinal Stefan Wyszy´nski University Warsaw, PL-01-938 Poland [email protected] To the memory of Professor Thomas R. Nicely (1943–2019) Abstract We study the first occurrences of gaps between primes in the arithmetic progression (P): r, r + q, r + 2q, r + 3q,..., where q and r are coprime integers, q > r 1. ≥ The growth trend and distribution of the first-occurrence gap sizes are similar to those arXiv:2002.02115v4 [math.NT] 20 Oct 2020 of maximal gaps between primes in (P). The histograms of first-occurrence gap sizes, after appropriate rescaling, are well approximated by the Gumbel extreme value dis- tribution. Computations suggest that first-occurrence gaps are much more numerous than maximal gaps: there are O(log2 x) first-occurrence gaps between primes in (P) below x, while the number of maximal gaps is only O(log x). We explore the con- nection between the asymptotic density of gaps of a given size and the corresponding generalization of Brun’s constant. For the first occurrence of gap d in (P), we expect the end-of-gap prime p √d exp( d/ϕ(q)) infinitely often. Finally, we study the gap ≍ size as a function of its index in thep sequence of first-occurrence gaps. 1 1 Introduction Let pn be the n-th prime number, and consider the difference between successive primes, called a prime gap: pn+1 pn.
    [Show full text]
  • On Hardy's Apology Numbers
    ON HARDY’S APOLOGY NUMBERS HENK KOPPELAAR AND PEYMAN NASEHPOUR Abstract. Twelve well known ‘Recreational’ numbers are generalized and classified in three generalized types Hardy, Dudeney, and Wells. A novel proof method to limit the search for the numbers is exemplified for each of the types. Combinatorial operators are defined to ease programming the search. 0. Introduction “Recreational Mathematics” is a broad term that covers many different areas including games, puzzles, magic, art, and more [31]. Some may have the impres- sion that topics discussed in recreational mathematics in general and recreational number theory, in particular, are only for entertainment and may not have an ap- plication in mathematics, engineering, or science. As for the mathematics, even the simplest operation in this paper, i.e. the sum of digits function, has application outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa- pers about generalizations of the sum of digits function are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong numbers, has applications in “data security” [16]. In number theory, functions are usually non-continuous. This inhibits solving equations, for instance, by application of the contraction mapping principle because the latter is normally for continuous functions. Based on this argument, questions about solving number-theoretic equations ramify to the following: (1) Are there any solutions to an equation? (2) If there are any solutions to an equation, then are finitely many solutions? (3) Can all solutions be found in theory? (4) Can one in practice compute a full list of solutions? arXiv:2008.08187v1 [math.NT] 18 Aug 2020 The main purpose of this paper is to investigate these constructive (or algorith- mic) problems by the fixed points of some special functions of the form f : N N.
    [Show full text]
  • Arxiv:Math/0412262V2 [Math.NT] 8 Aug 2012 Etrgae Tgte Ihm)O Atnscnetr and Conjecture fie ‘Artin’S Number on of Cojoc Me) Domains’
    ARTIN’S PRIMITIVE ROOT CONJECTURE - a survey - PIETER MOREE (with contributions by A.C. Cojocaru, W. Gajda and H. Graves) To the memory of John L. Selfridge (1927-2010) Abstract. One of the first concepts one meets in elementary number theory is that of the multiplicative order. We give a survey of the lit- erature on this topic emphasizing the Artin primitive root conjecture (1927). The first part of the survey is intended for a rather general audience and rather colloquial, whereas the second part is intended for number theorists and ends with several open problems. The contribu- tions in the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Woj- ciec Gajda wrote a section on ‘Artin for K-theory of number fields’, and Hester Graves (together with me) on ‘Artin’s conjecture and Euclidean domains’. Contents 1. Introduction 2 2. Naive heuristic approach 5 3. Algebraic number theory 5 3.1. Analytic algebraic number theory 6 4. Artin’s heuristic approach 8 5. Modified heuristic approach (`ala Artin) 9 6. Hooley’s work 10 6.1. Unconditional results 12 7. Probabilistic model 13 8. The indicator function 17 arXiv:math/0412262v2 [math.NT] 8 Aug 2012 8.1. The indicator function and probabilistic models 17 8.2. The indicator function in the function field setting 18 9. Some variations of Artin’s problem 20 9.1. Elliptic Artin (by A.C. Cojocaru) 20 9.2. Even order 22 9.3. Order in a prescribed arithmetic progression 24 9.4. Divisors of second order recurrences 25 9.5. Lenstra’s work 29 9.6.
    [Show full text]
  • Hidden Multiscale Order in the Primes
    HIDDEN MULTISCALE ORDER IN THE PRIMES SALVATORE TORQUATO, GE ZHANG, AND MATTHEW DE COURCY-IRELAND Abstract. We study the pair correlations between prime numbers in an in- terval M ≤ p ≤ M + L with M → ∞, L/M → β > 0. By analyzing the structure factor, we prove, conditionally on the Hardy-Littlewood conjecture on prime pairs, that the primes are characterized by unanticipated multiscale order. Specifically, their limiting structure factor is that of a union of an in- finite number of periodic systems and is characterized by dense set of Dirac delta functions. Primes in dyadic intervals are the first examples of what we call effectively limit-periodic point configurations. This behavior implies anomalously suppressed density fluctuations compared to uncorrelated (Pois- son) systems at large length scales, which is now known as hyperuniformity. Using a scalar order metric τ calculated from the structure factor, we iden- tify a transition between the order exhibited when L is comparable to M and the uncorrelated behavior when L is only logarithmic in M. Our analysis for the structure factor leads to an algorithm to reconstruct primes in a dyadic interval with high accuracy. 1. Introduction While prime numbers are deterministic, by some probabilistic descriptors, they can be regarded as pseudo-random in nature. Indeed, the primes can be difficult to distinguish from a random configuration of the same density. For example, assuming a plausible conjecture, Gallagher proved that the gaps between primes follow a Poisson distribution [13]. Thus the number of M X such that there are exactly N primes in the interval M<p<M + L of length≤ L λ ln X is given asymptotically by ∼ e λλN # M X such that π(M + L) π(M)= N X − .
    [Show full text]
  • From Apollonian Circle Packings to Fibonacci Numbers
    From Apollonian Circle Packings to Fibonacci Numbers Je↵Lagarias, University of Michigan March 25, 2009 2 Credits Results on integer Apollonian packings are joint work with • Ron Graham, Colin Mallows, Allan Wilks, Catherine Yan, ([GLMWY]) Some of the work on Fibonacci numbers is an ongoing joint • project with Jon Bober.([BL]) Work of J. L. was partially supported by NSF grant • DMS-0801029. 3 Table of Contents 1. Exordium 2. Apollonian Circle Packings 3. Fibonacci Numbers 4. Peroratio 4 1. Exordium (Contents of Talk)-1 The talk first discusses Apollonian circle packings. Then it • discusses integral Apollonian packings - those with all circles of integer curvature. These integers are describable in terms of integer orbits of • a group of 4 4 integer matrices of determinant 1, the A ⇥ ± Apollonian group, which is of infinite index in O(3, 1, Z), an arithmetic group acting on Lorentzian space. [Technically sits inside an integer group conjugate to O(3, 1, Z).] A 5 Contents of Talk-2 Much information on primality and factorization theory of • integers in such orbits can be read o↵using a sieve method recently developed by Bourgain, Gamburd and Sarnak. They observe: The spectral geometry of the Apollonian • group controls the number theory of such integers. One notable result: integer orbits contain infinitely many • almost prime vectors. 6 Contents of Talk-3 The talk next considers Fibonacci numbers and related • quantities. These can be obtained an orbit of an integer subgroup of 2 2 matrices of determinant 1, the F ⇥ ± Fibonacci group. This group is of infinite index in GL(2, Z), an arithmetic group acting on the upper and lower half planes.
    [Show full text]
  • Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
    Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]