Melvyn B. Nathanson 1 X2a X the Shnirel’Man Density of a Is Paul Erd˝Osand Additive Number Theory A(N) Additive Bases (A) Inf
[Sh] Pablo Shmerkin, On the exceptional set for abso- new density for a set of integers that is exactly the lute continuity of Bernoulli convolutions, Geom. right density for the investigation of additive bases. Funct. Anal. 24 (2014), 946–958. (For a survey of the classical bases in additive [So] Boris Solomyak, On the random series λn (an ± number theory, see Nathanson [28].) Erd˝osproblem), Ann. of Math. (2), 142 P(3) (1955), 611–625. [W] Hermann Weyl, Über die Gleichverteilung von Shnirel’man Density and Essential Components Zahlen mod. Eins, Math. Annalen 77 (1916), 313– The counting function A(x) of a set A of nonnegative 352, Satz 21. integers counts the number of positive integers in [Z] Antoni Zygmund, Trigonometric Series. I, II, A that do not exceed x, that is, Cambridge Univ. Press, 1959. A(x) 1. = a A Melvyn B. Nathanson 1 X2a x The Shnirel’man density of A is Paul Erd˝osand Additive Number Theory A(n) Additive Bases σ(A) inf . = n 1,2,... n Paul Erd˝os,while he was still in his twenties, = The sum of the sets A and B is the set A B wrote a series of extraordinarily beautiful papers + = a b : a A and b B . Shnirel’man proved the in additive and combinatorial number theory. The { + 2 2 } fundamental sumset inequality: key concept is additive basis. Let be a set of nonnegative integers, let be σ(A B) σ(A) σ(B) σ(A)σ(B). A h + ≥ + − a positive integer, and let hA denote the set of This implies that if σ(A) > 0, then A is a basis of integers that can be represented as the sum of order h for some h.