COMBINATORIAL NUMBER THEORY 1St Lecture Perhaps, You Have
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Waring's Problem
MATHEMATICS MASTER’STHESIS WARING’SPROBLEM JANNESUOMALAINEN HELSINKI 2016 UNIVERSITYOFHELSINKI HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department Faculty of Science Department of Mathematics and Statistics Tekijä — Författare — Author Janne Suomalainen Työn nimi — Arbetets titel — Title Waring’s Problem Oppiaine — Läroämne — Subject Mathematics Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages Master’s Thesis 9/2016 36 p. Tiivistelmä — Referat — Abstract Waring’s problem is one of the two classical problems in additive number theory, the other being Goldbach’s conjecture. The aims of this thesis are to provide an elementary, purely arithmetic solution of the Waring problem, to survey its vast history and to outline a few variations to it. Additive number theory studies the patterns and properties, which arise when integers or sets of integers are added. The theory saw a new surge after 1770, just before Lagrange’s celebrated proof of the four-square theorem, when a British mathematician, Lucasian professor Edward Waring made the profound statement nowadays dubbed as Waring’s problem: for all integers n greater than one, there exists a finite integer s such that every positive integer is the sum of s nth powers of non- negative integers. Ever since, the problem has been taken up by many mathematicians and state of the art techniques have been developed — to the point that Waring’s problem, in a general sense, can be considered almost completely solved. The first section of the thesis works as an introduction to the problem. We give a profile of Edward Waring, state the problem both in its original form and using present-day language, and take a broad look over the history of the problem. -
Adding Prime Numbers
Adding Prime Numbers University of Cambridge Faculty of Mathematics Department of Pure Mathematics and Mathematical Statistics Author Markus Schepke BSc College Wolfson College Home address Robert-Beltz-Str. 49, 19059 Schwerin, Germany eMail [email protected] Adviser Professor Ben J. Green I declare that this essay is work done as part of the Part III Examination. I have read and understood the Statement on Plagiarism for Part III and Graduate Courses issued by the Faculty of Mathematics, and have abided by it. This essay is the result of my own work, and except where explicitly stated otherwise, only includes material undertaken since the publication of the list of essay titles, and includes nothing which was performed in collaboration. No part of this essay has been submitted, or is concurrently being submitted, for any degree, diploma or similar qualification at any university or similar institution. Cambridge, November 20, 2011 Adding Prime Numbers University of Cambridge Faculty of Mathematics Department of Pure Mathematics and Mathematical Statistics Contents 1 Introduction 1 1.1 Historical Remarks and Outline . .1 1.2 Notations and Definitions . .1 2 Schnirelmann’s Theorem 3 2.1 Schnirelmann Density . .3 2.2 Proof of Schnirelmann’s Theorem . 11 2.3 Generalisations . 13 3 Chebyshev’s Theorem 16 3.1 Preliminary Notes . 17 3.2 Proof of Chebyshev’s Theorem . 20 4 The Selberg Sieve 22 4.1 Preliminary Notes . 22 4.2 Deduction of Schnirelmann’s Theorem . 28 4.3 Proof of the Selberg Sieve . 32 4.4 Applications to Twin Primes . 36 5 Waring’s Problem 40 5.1 Preliminary Notes . -
Effective Schnirelmann's Method for O-Regular
EFFECTIVE SCHNIRELMANN'S METHOD FOR O-REGULAR SEQUENCES CHRISTIAN TAFULA´ Abstract. In this paper we introduce the notion of pre-basis, which is a sequence such that some of its h-fold sumsets has positive lower asymptotic density, the least such h being its pre-order. Schnirelmann's classical theory of sumsets is reinterpreted as characterizing additive bases in terms of pre-bases, and estimates for the order in terms of the pre-order are derived from the deep theorems of Mann and Kneser. Under certain regularity assumptions on the representation functions, we then derive estimates to the pre-order. This is achieved by studying sequences A = fa0 < a1 < a2 < : : :g ⊆ N for which A(2x) = O(A(x)) and a2n = O(an), and ends up providing a small shortcut to the proofs of the Schnirelmann-Goldbach theorem and Linnik's elementary solution of Waring's problem. 1. Introduction Given A = fa0 < a1 < a2 < : : :g ⊆ N an infinite sequence and h ≥ 2 an Ph integer, the h-fold sumset hA is the set f i=1 ki : k1; : : : ; kh 2 A g. We say that A is an additive basis (resp. additive asymptotic basis) when there is h ≥ 2 such that N n hA is empty (resp. finite), and the least such h is called the order (resp. asymptotic order) of A , denoted by O(A ) (resp. O(A )). The representation functions rA ;h(n) and sA ;h(x) count the number of solutions of k1 + k2 + ::: + kh = n and k1 + k2 + ::: + kh ≤ x resp., where h ≥ 1 is a fixed integer and ki 2 A , considering permutations in the sense of the formal series: h ! P ah X X z X (1.1) za = r (n)zn; a2A = s (n)zn: A ;h 1 − z A ;h a2A n≥0 n≥0 Certain regularity properties on representation functions are essential to the elementary arguments showing that primes (Schnirelmann-Goldbach theorem, cf. -
On Additive Bases in Infinite Abelian Semigroups 3
ON ADDITIVE BASES IN INFINITE ABELIAN SEMIGROUPS PIERRE-YVES BIENVENU, BENJAMIN GIRARD, AND THAI´ HOANG` LEˆ Abstract. Building on previous work by Lambert, Plagne and the third author, we study various aspects of the behavior of additive bases in infinite abelian groups. We show that, for every such group T , the number of essential subsets of any additive basis is finite, and also that the number of essential subsets of cardinality k contained in an additive basis of order at most h can be bounded in terms of h and k alone. These results extend the reach of two theorems, one due to Deschamps and Farhi and the other to Hegarty, bearing upon N. Also, using invariant means, we address a classical problem, initiated by Erd˝os and Graham and then generalized by Nash and Nathanson both in the case of N, of estimating the maximal order XT (h, k) that a basis of cocardinality k contained in an additive basis of order at most 2k+1 h can have. Among other results, we prove that XT (h, k)= O(h ) for every integer k > 1. This result is new even in the case where k = 1. Besides the maximal order XT (h, k), the typical order ST (h, k) is also studied. Our methods actually apply to a wider class of infinite abelian semigroups, thus unifying in a single axiomatic frame the theory of additive bases in N and in abelian groups. 1. Introduction Let (T, +) be an abelian semigroup. If A, B are two subsets of T whose symmetric difference is finite, we write A ∼ B. -
Andrew Granville Introduction for A, B Subsets of an Additive Group Z, We
ADDITIVE COMBINATORICS (WINTER 2005) Andrew Granville Introduction For A,B subsets of an additive group Z, we define A + B to be the sumset a + b : a A,b B , and kA to be the k-fold sum A + A + + A of A. We also{ let A B ∈= a ∈b : a } A,b B and b+A = b +A for a single··· element set b ,a translate of−A. Note{ − that A∈ A is∈ not} 0 unless A {=} 1. We let k A = ka : a { }A , a dilate of A. There are many− obvious properties| of| “+” that can be⋄ checked{ like commutativity,∈ } associativity and the distributive law A +(B C)=(A + B) (A + C). ∪ ∪ Prove that k A kA and classify when they are equal. Prove that b + A = A . Show that A ⋄ ⊆ | | | | | | ≤ A + B A B . Describe the situations when we get equality. Improve this last upper bound for A + A | |≤| || | | | and for A A . | − | We shall be most interested in understanding the size and structure of sumsets which are subsets of the integers Z, often working with Z≥m (where A≥m denotes the integers in A that are m), or of Z/NZ for some positive integer N. That every integer is the sum of four squares≥ of integers can be written down as 4Z2 = Z (where here Z2 denotes the squares of the integers); if h(A 0 ) Z≥m for some m then we say that A is a basis of order h for the integers, and thus∪{Z2}is⊇ a basis of order 4. -
Reflections on Paul Erd˝Os on His Birth Centenary
Reflections on Paul Erd˝os on His Birth Centenary Krishnaswami Alladi and Steven Krantz, Coordinating Editors This is Part I of a two-part feature on Paul Erd˝osfollowing his centennial. There are eleven articles by leading experts who have reflected on the remarkable life, contributions, and influence of this towering figure of twentieth century mathematics. Here in Part I we have contributions from Krishnaswami Alladi and Steven Krantz, László Lovász and Vera T. Sós, Ronald Graham and Joel Spencer, Jean-Pierre Kahane, and Mel Nathanson. Part II will contain articles by Noga Alon, Dan Goldston, András Sárközy, József Szabados, Gérald Tenenbaum, and Stephan Garcia and Amy Shoemaker. Krishnaswami Alladi and Steven Krantz One of the Most Influential Mathematicians of Our Time The 100th birth anniversary of the great Hun- garian mathematician Paul Erd˝oswas celebrated in Budapest in July 2013 with an international conference that attracted about 750 participants. Erd˝oswas one of the most influential mathemati- cians of the twentieth century for a variety of reasons. He made fundamental and pioneering contributions in several fields of mathematics, such as number theory, combinatorics, graph theory, analysis, geometry, and set theory. He was perhaps the most prolific mathematician in history after Euler, with more than 1,500 papers, but what was most interesting about this was that more than half of these were joint papers and many of his collaborators were very young. Thus through the fundamental ideas in his papers and through these Courtesy of Harold Diamond Krishnaswami Alladi is professor of mathematics at the Uni- Paul Erd˝osworking in his office at the Hungarian versity of Florida. -
Sumsets and Structure Imre Z. Ruzsa
Sumsets and structure Imre Z. Ruzsa Alfred¶ Renyi¶ Institute of Mathematics, Budapest, Pf. 127, H-1364 Hungary, E-mail address: [email protected] Contents Foreword 1 Overview 3 Notation 4 Exercises and problems 4 Chapter 1. Cardinality inequalities 5 1. Introduction 5 2. PlÄunnecke's method 6 3. Magni¯cation and disjoint paths 8 4. Layered product 10 5. The independent addition graph 11 6. Di®erent summands 13 7. PlÄunnecke's inequality with a large subset 14 8. Sums and di®erences 15 9. Double and triple sums 18 10. A + B and A + 2B 20 11. On the noncommutative case 22 Chapter 2. Structure of sets with few sums 27 1. Introduction 27 2. Torsion groups 30 3. Freiman isomorphism and small models 32 4. Elements of Fourier analysis on groups 34 5. Bohr sets in sumsets 38 6. Some facts from the geometry of numbers 40 7. A generalized arithmetical progression in a Bohr set 41 8. Freiman's theorem 43 9. Arithmetic progressions in sets with small sumset 44 Chapter 3. Location and sumsets 47 1. Introduction 47 2. The Cauchy-Davenport inequality 47 3. Kneser's theorem 48 4. Sumsets and diameter, part 1 51 5. The impact function 52 6. Estimates for the impact function in one dimension 54 7. Multidimensional sets 56 8. Results using cardinality and dimension 58 9. The impact function and the hull volume 60 10. The impact volume 62 iii iv CONTENTS 11. Hovanskii's theorem 66 Chapter 4. Density 69 1. Asymptotic and Schnirelmann density 69 2. Schirelmann's inequality 71 3. -
Arxiv:1401.7598V1 [Math.NT]
PAUL ERDOS˝ AND ADDITIVE BASES MELVYN B. NATHANSON Abstract. This is a survey of some of Erd˝os’s work on bases in additive number theory. 1. Additive bases Paul Erd˝os, while he was still in his 20s, wrote a series of extraordinarily beautiful papers in additive and combinatorial number theory. The key concept is additive basis. Let A be a set of nonnegative integers, let h be a positive integer, and let hA denote the set of integers that can be represented as the sum of exactly h elements of A, with repetitions allowed. A central problem in additive number theory is to describe the sumset hA. The set A is called an additive basis of order h if every nonnegative integer can be represented as the sum of exactly h elements of A. For example, the set of squares is a basis of order 4 (Lagrange’s theorem) and the set of nonnegative cubes is a basis of order 9 (Wieferich’s theorem). The set A of nonnegative integers is an asymptotic basis of order h if hA contains every sufficiently large integer. For example, the set of squares is an asymptotic basis of order 4 but not of order 3. The set of nonnegative cubes is an asymptotic basis of order at most 7 (Linnik’s theorem), and, by considering congruences modulo 9, an asymptotic basis of order at least 4. The Goldbach conjecture implies that the set of primes is an asymptotic basis of order 3. The modern theory of additive number theory begins with the work of Lev Genrikhovich Shnirel’man (1905-1938).