Reflections on Paul Erd˝Os on His Birth Centenary

Total Page:16

File Type:pdf, Size:1020Kb

Reflections on Paul Erd˝Os on His Birth Centenary Reflections on Paul Erd˝os on His Birth Centenary Krishnaswami Alladi and Steven Krantz, Coordinating Editors This is Part I of a two-part feature on Paul Erd˝osfollowing his centennial. There are eleven articles by leading experts who have reflected on the remarkable life, contributions, and influence of this towering figure of twentieth century mathematics. Here in Part I we have contributions from Krishnaswami Alladi and Steven Krantz, László Lovász and Vera T. Sós, Ronald Graham and Joel Spencer, Jean-Pierre Kahane, and Mel Nathanson. Part II will contain articles by Noga Alon, Dan Goldston, András Sárközy, József Szabados, Gérald Tenenbaum, and Stephan Garcia and Amy Shoemaker. Krishnaswami Alladi and Steven Krantz One of the Most Influential Mathematicians of Our Time The 100th birth anniversary of the great Hun- garian mathematician Paul Erd˝oswas celebrated in Budapest in July 2013 with an international conference that attracted about 750 participants. Erd˝oswas one of the most influential mathemati- cians of the twentieth century for a variety of reasons. He made fundamental and pioneering contributions in several fields of mathematics, such as number theory, combinatorics, graph theory, analysis, geometry, and set theory. He was perhaps the most prolific mathematician in history after Euler, with more than 1,500 papers, but what was most interesting about this was that more than half of these were joint papers and many of his collaborators were very young. Thus through the fundamental ideas in his papers and through these Courtesy of Harold Diamond Krishnaswami Alladi is professor of mathematics at the Uni- Paul Erd˝osworking in his office at the Hungarian versity of Florida. His email address is [email protected]. Academy of Sciences, Budapest. Steven Krantz is professor of mathematics at Washington University in St. Louis. His email address is [email protected]. collaborations, he influenced several generations edu. of mathematicians and molded the careers of many. DOI: http://dx.doi.org/10.1090/noti1211 He was the greatest problem proposer in history, February 2015 Notices of the AMS 121 of Ramanujan’s proof when he wrote his first paper in 1932. Erd˝oshas often jokingly said that God has a book of the most beautiful proofs of the most important theorems. His desire was to glance through this book of God (after death)! It should be pointed out that Erd˝oswas an atheist and referred to God as the Supreme Fascist. But in the case of the proofs, he admitted that God possessed this wonderful Book. Martin Aigner and Gunter Ziegler have brought out a publication [1] entitled Proofs from The Book containing the most beautiful proofs of important theorems in various branches Photo courtesy of Krishnaswami Alladi of mathematics. There are several proofs of Erd˝os An emblem of Erd˝osmade for the Erd˝os in this book, since his proofs are extremely clever, Memorial Conference in Budapest, Hungary, July elegant, and elementary. 1999. A famous problem of Erd˝oswhich is still unsolved and for which he has offered US$3,000 is and for many of his problems he offered prize the following: If fang is a sequence of increasing money depending on their difficulty. These prob- positive integers such that P 1 is divergent, then an lems have shaped the development of several areas, prove that the sequence fang contains arbitrarily and most have remained unsolved. The lectures long arithmetic progressions. An important special at the Erd˝osCentennial Conference demonstrated case of this problem when the fang is the sequence that the influence of Paul Erd˝oson the growth of of primes has been settled, and this is the celebrated mathematics remains strong. Here we have gath- Green-Tao theorem [11]. In 1936 Erd˝osand Turán ered eleven articles by leading mathematicians on conjectured that if fang has upper positive density, various aspects of Erd˝os’swork and his influence then fang contains arbitrarily long arithmetic on current research. In our article we make some progressions. Erd˝osoffered US$1,000 for the personal reflections, touch upon some of Erd˝os’s resolution of this conjecture, which was proved by work in number theory, and describe ways in which Szemerédi [20]. his legacy has been honored. Prime numbers were among Erd˝os’sfavorite Like all great geniuses, Erd˝oshad his idiosyn- topics of investigation. The prime number theorem, crasies. But even in a mathematical world used which states that the number of primes up to x to the peculiarities of its luminaries, Erd˝oswas a is asymptotic to x= log x, implies that the average most unusual phenomenon. There are hundreds gap between the nth prime pn and the next one is of Erd˝osstories that are fondly recalled at various asymptotic to log n. Two questions immediately mathematical gatherings, and this feature has a arise: (i) Can the ratio rn = (pn+1 − pn)/ log n be good sampling of such recollections. arbitrarily large? (ii) How small can this ratio Like many of the greatest mathematicians in be infinitely often? The unsolved prime twins history, Erd˝osmade his entry into the world of conjecture is the extreme solution to (ii). The research very early in his life and in a grand manner. recent sensational result of Zhang [23] on bounded His very first paper [4] was a proof of Bertrand’s gaps between primes shows that the ratio is postulate, which states that for any n ≥ 1, there O(1= log n) infinitely often (there is more about is always a prime number in the interval [n; 2n]. this in Goldston’s article in Part II of this feature. The Russian mathematician Chebychev was the See also Note Added in Proof to this article). The first to prove this, but Erd˝os’sproof utilizing the famous US$10,000 problem of Erd˝osconcerns (i). study of the prime factors of the middle binomial Westzynthius [22] in 1931 showed that the ratio rn coefficient is so elegant and clever that it is this can be arbitrarily large. Subsequently, the Scottish proof that is given in all textbooks on number mathematician Rankin [17] was able to show more theory. News of Erd˝os’sproof spread like wildfire precisely that there exists a constant c such that and was accompanied by a rhyme:“Chebychev said c: log log n: log log log log n it and I say it again, there is always a prime between r > infinitely often: n 2 n and 2n.” During many of his lectures, and in (log log log n) particular in an article entitled “Ramanujan and I” Back in 1936, Erd˝os[5] had established a similar [7], published on the occasion of the Ramanujan result but without the loglogloglogn factor in the Centennial, Erd˝oshas pointed out that there numerator. The Erd˝osUS$10,000 problem is to are similarities between his proof of Bertrand’s prove or disprove that the constant c can be postulate and Ramanujan’s, but he was not aware chosen arbitrarily large. See "Note Added in Proof" 122 Notices of the AMS Volume 62, Number 2 in this article. Ron Graham, who was the financial caretaker of Erd˝osfor many years, has a pot of money left over to give out the prizes when the problems are solved. Among Erd˝os’smany fundamental contributions it is universally agreed that the two most important are (i) his joint paper with Mark Kac [9], which ushered in the subject of probabilistic number theory, and (ii) his elementary proof of the prime number theorem along with Atle Selberg. The first proof of the prime number theorem was given toward the end of the nineteenth century of Krishnaswami Alladi simultaneously by Hadamard and de la Vallee Poussin by utilizing the properties of the zeta function ζ(s) as a function of the complex variable Courtesy s as envisioned by Riemann. The method of this Paul Erd˝osand Ernst Straus on the campus of UC proof shows that the prime number theorem is Santa Barbara during the West Coast Number Theory Conference, December 1978. equivalent to the assertion that ζ(1 + it) 6= 0 for real t. This led to the belief that any proof of the prime number theorem had to rely on the theory and n are relatively prime. The Hardy-Ramanujan of functions of a complex variable. The noted and Turán results gave a hint of probabilistic British mathematician G. H. Hardy challenged the underpinnings, but this became clear only later. In world to produce an “elementary” proof of the 1939 the great probabilist Mark Kac was giving a prime number theorem, namely, a proof that uses lecture at Princeton outlining various applications only properties of real numbers. He proclaimed of probability. He constructed a model for the study that if such an elementary proof is found, then of additive functions and conjectured that the the books would have to be rewritten, since it distribution of a wide class of additive functions would change our view of how the subject hangs about their average order and with an appropriately together. In 1949 Erd˝osand Selberg created a defined variance would be Gaussian. Erd˝os,who sensation by producing such an elementary proof. was in the audience, perked up. He realized that The elementary proof was actually found by them Kac’s conjecture could be proved using the Brun jointly by starting with a fundamental lemma of sieve, a topic in which Erd˝oswas a master. He Selberg, but for various reasons (that we shall not spoke to Kac after the lecture and they proved get into here) they had a misunderstanding and the conjecture together.
Recommended publications
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Proofs from the BOOK.Pdf
    Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fourth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fourth Edition Including Illustrations by Karl H. Hofmann 123 Prof. Dr. Martin Aigner Prof.GünterM.Ziegler FB Mathematik und Informatik Institut für Mathematik, MA 6-2 Freie Universität Berlin Technische Universität Berlin Arnimallee 3 Straße des 17. Juni 136 14195 Berlin 10623 Berlin Deutschland Deutschland [email protected] [email protected] ISBN 978-3-642-00855-9 e-ISBN 978-3-642-00856-6 DOI 10.1007/978-3-642-00856-6 Springer Heidelberg Dordrecht London New York c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Paul Erdosliked˝ to talk aboutThe Book, in which God maintainsthe perfect proofsfor mathematical theorems, following the dictum of G.
    [Show full text]
  • Transactions American Mathematical Society
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY EDITED BY A. A. ALBERT OSCAR ZARISKI ANTONI ZYGMUND WITH THE COOPERATION OF RICHARD BRAUER NELSON DUNFORD WILLIAM FELLER G. A. HEDLUND NATHAN JACOBSON IRVING KAPLANSKY S. C. KLEENE M. S. KNEBELMAN SAUNDERS MacLANE C. B. MORREY W. T. REID O. F. G. SCHILLING N. E. STEENROD J. J. STOKER D. J. STRUIK HASSLER WHITNEY R. L. WILDER VOLUME 62 JULY TO DECEMBER 1947 PUBLISHED BY THE SOCIETY MENASHA, WIS., AND NEW YORK 1947 Reprinted with the permission of The American Mathematical Society Johnson Reprint Corporation Johnson Reprint Company Limited 111 Fifth Avenue, New York, N. Y. 10003 Berkeley Square House, London, W. 1 First reprinting, 1964, Johnson Reprint Corporation PRINTED IN THE UNITED STATES OF AMERICA TABLE OF CONTENTS VOLUME 62, JULY TO DECEMBER, 1947 Arens, R. F., and Kelley, J. L. Characterizations of the space of con- tinuous functions over a compact Hausdorff space. 499 Baer, R. Direct decompositions. 62 Bellman, R. On the boundedness of solutions of nonlinear differential and difference equations. 357 Bergman, S. Two-dimensional subsonic flows of a compressible fluid and their singularities. 452 Blumenthal, L. M. Congruence and superposability in elliptic space.. 431 Chang, S. C. Errata for Contributions to projective theory of singular points of space curves. 548 Day, M. M. Polygons circumscribed about closed convex curves. 315 Day, M. M. Some characterizations of inner-product spaces. 320 Dushnik, B. Maximal sums of ordinals. 240 Eilenberg, S. Errata for Homology of spaces with operators. 1. 548 Erdös, P., and Fried, H. On the connection between gaps in power series and the roots of their partial sums.
    [Show full text]
  • J´Ozef Marcinkiewicz
    JOZEF¶ MARCINKIEWICZ: ANALYSIS AND PROBABILITY N. H. BINGHAM, Imperial College London Pozna¶n,30 June 2010 JOZEF¶ MARCINKIEWICZ Life Born 4 March 1910, Cimoszka, Bialystok, Poland Student, 1930-33, University of Stefan Batory in Wilno (professors Stefan Kempisty, Juliusz Rudnicki and Antoni Zygmund) 1931-32: taught Lebesgue integration and trigono- metric series by Zygmund MA 1933; military service 1933-34 PhD 1935, under Zygmund 1935-36, Fellowship, U. Lw¶ow,with Kaczmarz and Schauder 1936, senior assistant, Wilno; dozent, 1937 Spring 1939, Fellowship, Paris; o®ered chair by U. Pozna¶n August 1939: in England; returned to Poland in anticipation of war (he was an o±cer in the reserve); already in uniform by 2 September Second lieutenant, 2nd Battalion, 205th In- fantry Regiment Defence of Lwo¶w12 - 21 September 1939; Lwo¶wsurrendered to Red (Soviet) Army Prisoner of war 25 September ("temporary in- ternment" by USSR); taken to Starobielsk Presumed executed Starobielsk, or Kharkov, or Kozielsk, or Katy¶n;Katy¶nMassacre commem- orated on 10 April Work We outline (most of) the main areas in which M's influence is directly seen today, and sketch the current state of (most of) his areas of in- terest { all in a very healthy state, an indication of M's (and Z's) excellent mathematical taste. 55 papers 1933-45 (the last few posthumous) Collaborators: Zygmund 15, S. Bergman 2, B. Jessen, S. Kaczmarz, R. Salem Papers (analysed by Zygmund) on: Functions of a real variable Trigonometric series Trigonometric interpolation Functional operations Orthogonal systems Functions of a complex variable Calculus of probability MATHEMATICS IN POLAND BETWEEN THE WARS K.
    [Show full text]
  • Marshall Stone Y Las Matemáticas
    MARSHALL STONE Y LAS MATEMÁTICAS Referencia: 1998. Semanario Universidad, San José. Costa Rica. Marshall Harvey Stone nació en Nueva York el 8 de abril de 1903. A los 16 años entró a Harvard y se graduó summa cum laude en 1922. Antes de ser profesor de Harvard entre 1933 y 1946, fue profesor en Columbia (1925-1927), Harvard (1929-1931), Yale (1931-1933) y Stanford en el verano de 1933. Aunque graduado y profesor en Harvard University, se conoce más por haber convertido el Departamento de Matemática de la University of Chicago -como su Director- en uno de los principales centros matemáticos del mundo, lo que logró con la contratación de los famosos matemáticos Andre Weil, S. S. Chern, Antoni Zygmund, Saunders Mac Lane y Adrian Albert. También fueron contratados en esa época: Paul Halmos, Irving Seal y Edwin Spanier. Para Saunders Mac Lane, el Departamento de Matemática que constituyó Stone en Chicago fue en su momento “sin duda el departamento de matemáticas líder en el país”., y probablemente, deberíamos añadir, en el mundo. Los méritos científicos de Stone fueron muchos. Cuando llegó a Chicago en 1946, por recomendación de John von Neumann al presidente de la Universidad de Chicago, ya había realizado importantes trabajos en varias áreas matemáticas, por ejemplo: la teoría espectral de operadores autoadjuntos en espacios de Hilbert y en las propiedades algebraicas de álgebras booleanas en el estudio de anillos de funciones continuas. Se le conoce por el famoso teorema de Stone Weierstrass, así como la compactificación de Stone Cech. Su libro más influyente fue Linear Transformations in Hilbert Space and their Application to Analysis.
    [Show full text]
  • Irving Kaplansky
    Portraying and remembering Irving Kaplansky Hyman Bass University of Michigan Mathematical Sciences Research Institute • February 23, 2007 1 Irving (“Kap”) Kaplansky “infinitely algebraic” “I liked the algebraic way of looking at things. I’m additionally fascinated when the algebraic method is applied to infinite objects.” 1917 - 2006 A Gallery of Portraits 2 Family portrait: Kap as son • Born 22 March, 1917 in Toronto, (youngest of 4 children) shortly after his parents emigrated to Canada from Poland. • Father Samuel: Studied to be a rabbi in Poland; worked as a tailor in Toronto. • Mother Anna: Little schooling, but enterprising: “Health Bread Bakeries” supported (& employed) the whole family 3 Kap’s father’s grandfather Kap’s father’s parents Kap (age 4) with family 4 Family Portrait: Kap as father • 1951: Married Chellie Brenner, a grad student at Harvard Warm hearted, ebullient, outwardly emotional (unlike Kap) • Three children: Steven, Alex, Lucy "He taught me and my brothers a lot, (including) what is really the most important lesson: to do the thing you love and not worry about making money." • Died 25 June, 2006, at Steven’s home in Sherman Oaks, CA Eight months before his death he was still doing mathematics. Steven asked, -“What are you working on, Dad?” -“It would take too long to explain.” 5 Kap & Chellie marry 1951 Family portrait, 1972 Alex Steven Lucy Kap Chellie 6 Kap – The perfect accompanist “At age 4, I was taken to a Yiddish musical, Die Goldene Kala. It was a revelation to me that there could be this kind of entertainment with music.
    [Show full text]
  • Exploring Topics of the Art Gallery Problem
    The College of Wooster Open Works Senior Independent Study Theses 2019 Exploring Topics of the Art Gallery Problem Megan Vuich The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Recommended Citation Vuich, Megan, "Exploring Topics of the Art Gallery Problem" (2019). Senior Independent Study Theses. Paper 8534. This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2019 Megan Vuich Exploring Topics of the Art Gallery Problem Independent Study Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Arts in the Department of Mathematics and Computer Science at The College of Wooster by Megan Vuich The College of Wooster 2019 Advised by: Dr. Robert Kelvey Abstract Created in the 1970’s, the Art Gallery Problem seeks to answer the question of how many security guards are necessary to fully survey the floor plan of any building. These floor plans are modeled by polygons, with guards represented by points inside these shapes. Shortly after the creation of the problem, it was theorized that for guards whose positions were limited to the polygon’s j n k vertices, 3 guards are sufficient to watch any type of polygon, where n is the number of the polygon’s vertices. Two proofs accompanied this theorem, drawing from concepts of computational geometry and graph theory.
    [Show full text]
  • Paul Erdős Mathematical Genius, Human (In That Order)
    Paul Erdős Mathematical Genius, Human (In That Order) By Joshua Hill MATH 341-01 4 June 2004 "A Mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more permanent that theirs, it is because the are made with ideas... The mathematician's patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colours of the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics." --G.H. Hardy "Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers are beautiful. If they aren't beautiful, nothing is." -- Paul Erdős "One of the first people I met in Princeton was Paul Erdős. He was 26 years old at the time, and had his Ph.D. for several years, and had been bouncing from one postdoctoral fellowship to another... Though I was slightly younger, I considered myself wiser in the ways of the world, and I lectured Erdős "This fellowship business is all well and good, but it can't go on for much longer -- jobs are hard to get -- you had better get on the ball and start looking for a real honest job." ... Forty years after my sermon, Erdős hasn't found it necessary to look for an "honest" job yet." -- Paul Halmos Introduction Paul Erdős (said "Air-daish") was a brilliant and prolific mathematician, who was central to the advancement of several major branches of mathematics.
    [Show full text]
  • Proofs from the BOOK Third Edition Springer-Verlag Berlin Heidelberg Gmbh Martin Aigner Gunter M
    Martin Aigner Gunter M. Ziegler Proofs from THE BOOK Third Edition Springer-Verlag Berlin Heidelberg GmbH Martin Aigner Gunter M. Ziegler Proofs from THE BOOK Third Edition With 250 Figures Including Illustrations by Karl H. Hofmann Springer Martin Aigner Gunter M. Ziegler Freie Universitat Berlin Technische Universitat Berlin Institut flir Mathematik II (WE2) Institut flir Mathematik, MA 6-2 Arnimallee 3 StraBe des 17. Juni 136 14195 Berlin, Germany 10623 Berlin, Germany email: [email protected] email: [email protected] Cataloging-in-Publication Data applied for A catalog record for this book is available from the Library of Congress Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de. Mathematics Subject Classification (2000): 00-01 (General) ISBN 978-3-662-05414-7 ISBN 978-3-662-05412-3 (eBook) DOl 10 .1007/978-3 -662-05412-3 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Viola­ tions are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1998,2001,2004 Originally published by Springer-Verlag Berlin Heidelberg New York in 2004.
    [Show full text]
  • Paul Erdos 1913-1996
    Paul Erdo˝s (1913–1996) L´aszl´o Babai and Joel Spencer In our century, in which mathematics is so strongly dominated by “theory constructors” he has remained the prince of problem solvers and the ab- solute monarch of problem posers. One of my friends—a great mathematician in his own right—complained to me that “Erdo˝s only gives us corollaries of the great metatheorems which remain unformulated in the back of his mind.” I think there is much truth to that ob- servation, but I don’t agree that it would have been either feasible or desirable for Erdo˝s to stop producing corollaries and concentrate on the formulation of his metatheorems. In many ways Paul Erdo˝s is the Euler of our times. Just as the “special” problems that Euler solved pointed the way to analytic and alge- braic number theory, topology, combi- Photograph copyright 1993 George Csicsery. natorics, function spaces, etc., so the methods and results of Erdo˝s’s work al- Uncle Paul ready let us see the outline of great new disciplines, such as combinatorial Joel Spencer and probabilistic number theory, com- Paul Erdo˝s was a searcher, a searcher for math- binatorial geometry, probabilistic and ematical truth. transfinite combinatorics and graph Paul’s place in the mathematical pantheon will theory, as well as many more yet to be a matter of strong debate, for in that rarefied arise from his ideas. atmosphere he had a unique style. The late Ernst Straus, who worked as an assistant to Albert Ein- Straus said it best in a commemoration of Erdo˝s’s stein, noted that Einstein chose physics over math- seventieth birthday.
    [Show full text]
  • Embedding Graphs Into Larger Graphs: Results, Methods, and Problems
    Embedding graphs into larger graphs: results, methods, and problems Mikl´os Simonovits and Endre Szemer´edi Alfr´ed R´enyi Institute of Mathematics, Hungarian Academy of Sciences, email: [email protected], [email protected] arXiv:1912.02068v1 [math.CO] 4 Dec 2019 2 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 Contents 1 Introduction.............................. 6 2 Thebeginnings............................ 9 2.1 Veryearlyresults....................... 9 2.2 Constructions......................... 13 2.3 Somehistoricalremarks . .. .. .. .. .. .. .. 13 2.4 Earlyresults ......................... 14 2.5 WhichUniverse? ....................... 16 2.6 Ramseyordensity? ..................... 21 2.7 Whyaretheextremalproblemsinteresting? . 22 2.8 Ramsey Theory and the birth of the Random Graph Method 23 2.9 Dichotomy, randomness and matrix graphs . 24 2.10 Ramsey problems similar to extremal problems . 25 2.11 Applications in Continuous Mathematics . 26 2.12 TheStabilitymethod .................... 26 2.13 The“typicalstructure” . 29 2.14 SupersaturatedGraphs . 31 2.15 Lov´asz-Simonovits Stability theorem . 32 2.16 Degeneratevs Non-degenerateproblems . 33 2.17 Diractheorem:introduction. 36 2.18 Equitable Partition . 36 2.19 Packing, Covering, Tiling, L-factors ............ 37 3 “Classicalmethods” ......................... 40 3.1 DetourI:Induction? ..................... 40 3.2 Detour II: Applications of Linear Algebra . 41 4 Methods: Randomness and the Semi-random method . 43 4.1 Various ways to use randomness in Extremal Graph Theory 44 4.2 Thesemi-randommethod . 45 4.3 Independentsetsinuncrowdedgraphs . 45 4.4 Uncrowdedhypergraphs . 47 4.5 Ramseyestimates ...................... 48 4.6 InfiniteSidonsequences . .. .. .. .. .. .. .. 49 4.7 The Heilbronn problem, old results . 50 4.8 Generalizations of Heilbronn’s problem, new results . 50 4.9 TheHeilbronnproblem,anupperbound. 51 4.10 TheGowersproblem..................... 51 3 4 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 4.11 Pippenger-Spencertheorem .
    [Show full text]
  • Waring's Problem
    MATHEMATICS MASTER’STHESIS WARING’SPROBLEM JANNESUOMALAINEN HELSINKI 2016 UNIVERSITYOFHELSINKI HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department Faculty of Science Department of Mathematics and Statistics Tekijä — Författare — Author Janne Suomalainen Työn nimi — Arbetets titel — Title Waring’s Problem Oppiaine — Läroämne — Subject Mathematics Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages Master’s Thesis 9/2016 36 p. Tiivistelmä — Referat — Abstract Waring’s problem is one of the two classical problems in additive number theory, the other being Goldbach’s conjecture. The aims of this thesis are to provide an elementary, purely arithmetic solution of the Waring problem, to survey its vast history and to outline a few variations to it. Additive number theory studies the patterns and properties, which arise when integers or sets of integers are added. The theory saw a new surge after 1770, just before Lagrange’s celebrated proof of the four-square theorem, when a British mathematician, Lucasian professor Edward Waring made the profound statement nowadays dubbed as Waring’s problem: for all integers n greater than one, there exists a finite integer s such that every positive integer is the sum of s nth powers of non- negative integers. Ever since, the problem has been taken up by many mathematicians and state of the art techniques have been developed — to the point that Waring’s problem, in a general sense, can be considered almost completely solved. The first section of the thesis works as an introduction to the problem. We give a profile of Edward Waring, state the problem both in its original form and using present-day language, and take a broad look over the history of the problem.
    [Show full text]