Paul Erdos 1913-1996
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Embedding Graphs Into Larger Graphs: Results, Methods, and Problems
Embedding graphs into larger graphs: results, methods, and problems Mikl´os Simonovits and Endre Szemer´edi Alfr´ed R´enyi Institute of Mathematics, Hungarian Academy of Sciences, email: [email protected], [email protected] arXiv:1912.02068v1 [math.CO] 4 Dec 2019 2 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 Contents 1 Introduction.............................. 6 2 Thebeginnings............................ 9 2.1 Veryearlyresults....................... 9 2.2 Constructions......................... 13 2.3 Somehistoricalremarks . .. .. .. .. .. .. .. 13 2.4 Earlyresults ......................... 14 2.5 WhichUniverse? ....................... 16 2.6 Ramseyordensity? ..................... 21 2.7 Whyaretheextremalproblemsinteresting? . 22 2.8 Ramsey Theory and the birth of the Random Graph Method 23 2.9 Dichotomy, randomness and matrix graphs . 24 2.10 Ramsey problems similar to extremal problems . 25 2.11 Applications in Continuous Mathematics . 26 2.12 TheStabilitymethod .................... 26 2.13 The“typicalstructure” . 29 2.14 SupersaturatedGraphs . 31 2.15 Lov´asz-Simonovits Stability theorem . 32 2.16 Degeneratevs Non-degenerateproblems . 33 2.17 Diractheorem:introduction. 36 2.18 Equitable Partition . 36 2.19 Packing, Covering, Tiling, L-factors ............ 37 3 “Classicalmethods” ......................... 40 3.1 DetourI:Induction? ..................... 40 3.2 Detour II: Applications of Linear Algebra . 41 4 Methods: Randomness and the Semi-random method . 43 4.1 Various ways to use randomness in Extremal Graph Theory 44 4.2 Thesemi-randommethod . 45 4.3 Independentsetsinuncrowdedgraphs . 45 4.4 Uncrowdedhypergraphs . 47 4.5 Ramseyestimates ...................... 48 4.6 InfiniteSidonsequences . .. .. .. .. .. .. .. 49 4.7 The Heilbronn problem, old results . 50 4.8 Generalizations of Heilbronn’s problem, new results . 50 4.9 TheHeilbronnproblem,anupperbound. 51 4.10 TheGowersproblem..................... 51 3 4 Mikl´os Simonovits and Endre Szemer´edi: March29, 2019 4.11 Pippenger-Spencertheorem . -
Of the American Mathematical Society ABCD Springer.Com
ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society November 2009 Volume 56, Number 10 NEW NEW NEW Andrew M. Gleason (1921–2008) This book stresses applications of real Starting with basic principles, this book This accessible book offers a general analysis, detailing how its principles and provides a comprehensive classification introduction to delay differential page 1236 theory can be applied in a variety of of the various types of finite reflection equations. It is a revised version of a settings in subjects ranging from groups and describes their underlying series of lectures given at the Université Fourier series and polynomial geometric properties. Numerous Libre de Bruxelles and then at the approximation to discrete dynamical exercises at various levels of difficulty Université Joseph Fourier (Grenoble) Interview with systems and nonlinear optimization. are included. during the spring of 2003. Yuri Manin 2009. Approx. 520 p. 80 illus. 2010. XII, 172 p. 74 illus. (Universitext) 2009. XII, 204 p. (Surveys and Tutorials in (Undergraduate Texts in Mathematics) Softcover the Applied Mathematical Sciences, page 1268 Hardcover ISBN 978-0-387-79065-7 7 $49.95 Volume 3) Softcover ISBN 978-0-387-98097-3 7 $79.95 ISBN 978-0-387-74371-4 7 $39.95 Review of For access check with your librarian The Princeton Companion to Mathematics Colorado Mathematical Deformation Theory A Course in Mathematical page 1276 Olympiad R. Hartshorne , University of California, Logic for Mathematicians The First Twenty Years and Further Berkeley, CA, USA Y. I. -
Reflections on Paul Erd˝Os on His Birth Centenary
Reflections on Paul Erd˝os on His Birth Centenary Krishnaswami Alladi and Steven Krantz, Coordinating Editors This is Part I of a two-part feature on Paul Erd˝osfollowing his centennial. There are eleven articles by leading experts who have reflected on the remarkable life, contributions, and influence of this towering figure of twentieth century mathematics. Here in Part I we have contributions from Krishnaswami Alladi and Steven Krantz, László Lovász and Vera T. Sós, Ronald Graham and Joel Spencer, Jean-Pierre Kahane, and Mel Nathanson. Part II will contain articles by Noga Alon, Dan Goldston, András Sárközy, József Szabados, Gérald Tenenbaum, and Stephan Garcia and Amy Shoemaker. Krishnaswami Alladi and Steven Krantz One of the Most Influential Mathematicians of Our Time The 100th birth anniversary of the great Hun- garian mathematician Paul Erd˝oswas celebrated in Budapest in July 2013 with an international conference that attracted about 750 participants. Erd˝oswas one of the most influential mathemati- cians of the twentieth century for a variety of reasons. He made fundamental and pioneering contributions in several fields of mathematics, such as number theory, combinatorics, graph theory, analysis, geometry, and set theory. He was perhaps the most prolific mathematician in history after Euler, with more than 1,500 papers, but what was most interesting about this was that more than half of these were joint papers and many of his collaborators were very young. Thus through the fundamental ideas in his papers and through these Courtesy of Harold Diamond Krishnaswami Alladi is professor of mathematics at the Uni- Paul Erd˝osworking in his office at the Hungarian versity of Florida.