Glaciers Name ______ANSWERS ____ Physical Elements (Geography 1) Circle Class: 7:45 Am 9:30 Am 11:15 Am

Total Page:16

File Type:pdf, Size:1020Kb

Glaciers Name ______ANSWERS ____ Physical Elements (Geography 1) Circle Class: 7:45 Am 9:30 Am 11:15 Am Homework #20: Glaciers Name _____________________________________ANSWERS ____ Physical Elements (Geography 1) Circle Class: 7:45 am 9:30 am 11:15 am A. GLACIAL LANDFORM MATCHING Match each of the following terms to the appropriate description below. NOTE: There are two landforms listed for which there are no matching descriptions. a. Arête f. Glacial Trough k Outwash Plain b. Cirque g Hanging Valley l. Proglacial Lake c. Finger Lake h. Horn m. Striation d. Fjord i. Kettle Lake n. Till e. Glacial Erratic j. Moraine 1. Long linear pile of glacial debris left by a retreating glacier _________J 2. Pyramid formation carved by three or more cirques _________H 3. Unsorted rock debris carried by glacial ice _________N 4. Large boulder carried by glacial ice to a location far from its parent rock _________E 5. Submerged glacial valley found along a coast _________D 6. Lake formed in depressions left by ice blocks in outwash plains _________I 7. Gouge or mark left on rock by the abrasion of debris carried by a glacier _________M 8. Valley that’s distinctly deepened, widened and straightened by glacial erosion _________F 9. Lake formed from glacial meltwater trapped by an ice dam or glacial debris _________L 10. Broad circular basin hollowed out by ice at the head of a glacial valley _________B 11. Valley that plunges into a deep trough carved out by a glacier _________G 12. Smooth flat plain formed in front of a glacier by deposition of sediment carried _________K by meltwater B. GLACIAL LANDFORM PHOTO & MAP EXERCISE Use the photos & topographic maps on the class website to answer the following questions: 1. Topographic Map: Mt. Jackson, Colorado 1:24,000 USGS a. Letter “A” is pointing to Avalanche Peak. What type of glacial landform is this? _____________________________________________________________________________Glacial Horn ______________________ b. The letter “C” is on a lake in a cirque. On which side of the cirque is its headwall? (Circle one) Northwest Northeast Southeast Southwest c. How did the shape & spacing of the contour lines help you find the headwall? ___________________________________The close spacing of the_____________________________________________ contours indentifies the steep slope of ___________________the headwall ___________________________________________________________________________________________________ 2. Topographic Map: Mt. Rainier East, Washington 1:24,000 USGS a. What do we call the landforms shown by arrows “A” & “B”? __________Moraines_______________________ b. Is that landform created by erosion or deposition? (Circle one) Erosion / Deposition 3. Find the following glacial landforms in the photo below: a cirque, an arête, a glacial trough, and a horn. Label each with a blue pen, using arrows to point to their location in the photo. Glacial trough Arête Cirques **There are more than one of most of these Horn landforms in the photo so there are many correct answers. C. GLACIAL MELTING 1. How much of Earth’s surface was covered during the peak of the last Ice Age? About _______ %33 2. How much of Earth’s surface is still covered by ice? About _______ %10 3. Why are scientists so concerned about the current melting of the Earth’s glaciers? The melting of continental ice sheets will change Earth’s albedo & its energy balance. The melting of continental ice sheets will also add to sea level rise. The melting of mtn/ alpine glaciers will reduce local freshwater supplies. The melting of mtn/ alpine glaciers could also cause flooding in some areas. Local areas dependent on winter sports are very concerned about the loss of tourist income too. 4. Why are they concerned about the loss of ice shelves? The loss of major ice shelves will lower Earth’s albedo & contribute to the warming of the ocean since less of the Sun’s energy will be reflected back to space. It could also affect the ocean’s salinity and impact ocean currents. Although loss of ice shelves is not expected to contribute much to sea level rise, their loss is a sign that Earth’s polar areas are getting hotter than usual—it’s a warning that the ice caps are warming too. .
Recommended publications
  • Ice on the Rocks: a Glacier Shapes the Land
    Title Advance Preparation Ice on the Rocks: A Glacier Shapes the 1. Place rocks and sand in each bowl and add Land 2.5 cm of water. Allow the sand to settle, and freeze the contents solid. Later, add water until Investigative Question the bowls are nearly full and again freeze What are glaciers and how did they change the solid. These are the "glaciers" for part 1. landscape of Illinois? 2. Assemble the other materials. You may wish to do parts 1 and 3 in a laboratory setting Overview or out-of-doors because these activities are Students learn how glaciers, through abrasion, likely to be messy. transportation, and deposition, change the 3. Copy the student pages. surfaces over which they flow. Introducing the Activity Objective Hold up a square, normal-sized ice cube. Next Students conduct simulations and demonstrate to it hold up a toothpick that is as tall as the what a glacier does and how it can change the cube is thick. Ask students to picture the tallest landscape. building in Chicago, the Sears Tower. If the toothpick represents the Sears Tower, the ice Materials cube represents a glacier. The Sears Tower is Introductory activity: an ice cube and a about as tall as a glacier was thick! That was toothpick. the Wisconsinan glacier that was over 400 Part 1. For each group of five students: two meters thick and covered what is now the city plastic 1- or 2-qt. bowls; several small, of Chicago! irregularly shaped rocks or pebbles; a handful of coarse sand; a common, unglazed brick or a Procedure masonry brick (washed and cleaned); several Part 1 flat paving stones (limestone); water; access to 1.
    [Show full text]
  • WELLESLEY TRAILS Self-Guided Walk
    WELLESLEY TRAILS Self-Guided Walk The Wellesley Trails Committee’s guided walks scheduled for spring 2021 are canceled due to Covid-19 restrictions. But… we encourage you to take a self-guided walk in the woods without us! (Masked and socially distanced from others outside your group, of course) Geologic Features Look for geological features noted in many of our Self-Guided Trail Walks. Featured here is a large rock polished by the glacier at Devil’s Slide, an esker in the Town Forest (pictured), and a kettle hole and glacial erratic at Kelly Memorial Park. Devil’s Slide 0.15 miles, 15 minutes Location and Parking Park along the road at the Devil’s Slide trailhead across the road from 9 Greenwood Road. Directions From the Hills Post Office on Washington Street, turn onto Cliff Road and follow for 0.4 mile. Turn left onto Cushing Road and follow as it winds around for 0.15 mile. Turn left onto Greenwood Road, and immediately on your left is the trailhead in patch of woods. Walk Description Follow the path for about 100 yards to a large rock called the Devil’s Slide. Take the path to the left and climb around the back of the rock to get to the top of the slide. Children like to try out the slide, which is well worn with use, but only if it is dry and not wet or icy! Devil’s Slide is one of the oldest rocks in Wellesley, more than 600,000,000 years old and is a diorite intrusion into granite rock.
    [Show full text]
  • Model by Keven
    High-quality constraints on the glacial isostatic adjustment process over North America: The ICE-7G_NA (VM7) model by Keven Roy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Physics University of Toronto © Copyright 2017 by Keven Roy Abstract High-quality constraints on the glacial isostatic adjustment process over North America: The ICE-7G_NA (VM7) model Keven Roy Doctor of Philosophy Graduate Department of Physics University of Toronto 2017 The Glacial Isostatic Adjustment (GIA) process describes the response of the Earth’s surface to variations in land ice cover. Models of the phenomenon, which is dominated by the influence of the Late Pleistocene cycle of glaciation and deglaciation, depend on two fundamental inputs: a history of ice-sheet loading and a model of the radial variation of mantle viscosity. Various geophysical observables enable us to test and refine these models. In this work, the impact of the GIA process on the rotational state of the planet will be analyzed, and new estimates of the long-term secular trend associated with the GIA process will be provided. It will be demonstrated that it has undertaken a significant change since the mid-1990s. Other important observables include the vast amount of geological inferences of past sea level change that exist for all the main coasts of the world. The U.S. Atlantic coast is a region of particular interest in this regard, due to the fact that data from the length of this coast provides a transect of the forebulge associated with the former Laurentide ice sheet.
    [Show full text]
  • During the Last Ice Age As Ice Sheets Moved Southward Over Our Region, Glaciers Broke Off and Carried Pieces of the Underlying Bedrocks
    “Glacial Erratics and Fieldstones” Boulders and other rocks broken off and carried by ice sheets covering this region were left in place when the glaciers melted. Geologists call these “erratics.”. Early settlers called them “fieldstones” and used them to build their house walls. During the last Ice Age as ice sheets moved southward over our region, glaciers broke off and carried pieces of the underlying bedrocks. When the ice melted, the fragments were left scattered over the surface. Geologists call such transported rocks “glacial erratics,” because they are different from the native bedrock. Most of these were pebble- and boulder-sized, mixed into sands and clay. A few are more than 10 feet high, such as Haring Rock in the Tenafly Nature Center (Fig 1A) and Tripod Rock in Sussex County (Fig. 1b). Fig. 2 shows images of erratics of various sized in a state park. As the ice sheets moved, rocks underneath often scratched parallel grooves in the bedrocks. These are called “glacial striations” (Fig. 3). Until Englewood Township was formally organized in 1859, most of what is now our City consisted of small farms which stretched from Overpeck Creek uphill to the Hudson River. Like other early European settlers, the farmers needed to move the boulders and other glacial erratics to create plowable fields. Rocks were gathered to build stone walls typical of New England and other glaciated parts of the Northeast. (Fig. 4). Many of the stones collected from the fields (“fieldstones”) were trimmed to make the walls of homes and other buildings. Many of the remaining buildings from the Dutch/English colonial period and the early 19th Century here in Englewood and vicinity incorporated “fieldstones” in their walls.
    [Show full text]
  • The Early Wisconsinan History of the Laurentide Ice Sheet
    Document généré le 30 sept. 2021 19:59 Géographie physique et Quaternaire The Early Wisconsinan History of the Laurentide Ice Sheet L’évolution de la calotte glaciaire laurentidienne au Wisconsinien inférieur Geschichte der laurentischen Eisdecke im frühen glazialen Wisconsin Jean-Serge Vincent et Victor K. Prest La calotte glaciaire laurentidienne Résumé de l'article The Laurentide Ice Sheet L'identification, surtout en périphérie de l'inlandsis, de dépôts glaciaires que Volume 41, numéro 2, 1987 l'on croit postérieurs à la mise en place de sédiments non glaciaires ou de paléosols datant de l'interglaciaire sangamonien (phase 5) et antérieurs aux URI : https://id.erudit.org/iderudit/032679ar sédiments non glaciaires ou des sols mis en place au Wisconsinien moyen DOI : https://doi.org/10.7202/032679ar (phase 3) a amené de nombreux chercheurs à supposer que la calotte laurentidienne s'est d'abord développée au Sangamonien ou au Wisconsinien inférieur (phase 4). On passe en revue les différentes preuves associées au Aller au sommaire du numéro début de la formation de la calotte glaciaire wisconsinienne recueillies au Canada et au nord des États-Unis. En l'absence quasi généralisée de données géochronométriques sûres pour déterminer l'âge des dépôts glaciaires datant Éditeur(s) probablement du Sangamonien ou du Wisconsinien inférieur, on peut aussi bien supposer, pour une période donnée, que les glaces ont entièrement envahi Les Presses de l'Université de Montréal une région ou en étaient tout à fait absentes. En tenant pour acquis (?) que la calotte laurentidienne était en fait très étendue au Wisconsinien inférieur, on ISSN présente une carte montrant son étendue maximale et un tableau de 0705-7199 (imprimé) corrélation entre les unités glaciaires.
    [Show full text]
  • Glaciers and Glaciation
    M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 482 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 483 Glaciers and Glaciation CHAPTER 18 A small boat nears the seaward margin of an Antarctic glacier. (Photo by Sergio Pitamitz/ CORBIS) 483 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 484 limate has a strong influence on the nature and intensity of Earth’s external processes. This fact is dramatically illustrated in this chapter because the C existence and extent of glaciers is largely controlled by Earth’s changing climate. Like the running water and groundwater that were the focus of the preceding two chap- ters, glaciers represent a significant erosional process. These moving masses of ice are re- sponsible for creating many unique landforms and are part of an important link in the rock cycle in which the products of weathering are transported and deposited as sediment. Today glaciers cover nearly 10 percent of Earth’s land surface; however, in the recent ge- ologic past, ice sheets were three times more extensive, covering vast areas with ice thou- sands of meters thick. Many regions still bear the mark of these glaciers (Figure 18.1). The basic character of such diverse places as the Alps, Cape Cod, and Yosemite Valley was fashioned by now vanished masses of glacial ice. Moreover, Long Island, the Great Lakes, and the fiords of Norway and Alaska all owe their existence to glaciers. Glaciers, of course, are not just a phenomenon of the geologic past. As you will see, they are still sculpting and depositing debris in many regions today.
    [Show full text]
  • Geology, Utah State University, Logan, Utah Topography and Is Composed of Highly Resistant, Fractured Gabbroic Rock
    Using inherited cosmogenic 36Cl to constrain glacial erosion rates of the Cordilleran ice sheet Jason P. Briner* Terry W. Swanson Department of Geological Sciences and Quaternary Research Center, University of Washington, Box 351310, Seattle, Washington 98195 ABSTRACT Cosmogenic 36Cl/Cl ratios measured from glacially eroded bedrock provide the first quan- titative constraints on the magnitude, rate, and spatial distribution of glacial erosion over the last glacial cycle. Of 23 36Cl/Cl ratios, 8 yield exposure ages that predate the well-constrained deglaciation of the Puget Lowland, Washington, and are inferred to result from 36Cl inherited from prior exposure during the last interglaciation where ice did not erode enough rock (~1.80–2.95 m) to reset 36Cl/Cl ratios to background levels. Surfaces possessing inherited 36Cl evidently were abraded only 0.25–1.06 m, corresponding to abrasion rates of 0.09–0.35 mm˙yr –1. These results indicate that in the absence of glacial quarrying, the Cordilleran ice sheet may have abraded as little as 1–2 m of bedrock near its equilibrium-line altitude over the last glacial cycle, equating to only tens of meters over the entire Quaternary. INTRODUCTION Where independent age control constrains the timing of surface expo- Although many researchers have discussed the glacial origin of stoss- sure following a given geomorphic event, such as a glaciation, 36Cl concen- and-lee topography (e.g., Jahns, 1943; Hallet, 1979), only Jahns (1943) at- trations that are higher than expected can be inferred to reflect 36Cl inherited tempted to determine quantitative estimates of glacial erosion by using ex- from prior exposure, presumably attributable to a lack of sufficient glacial ero- foliation patterns in granitic domes that were differentially eroded by the sion to remove the surface rock in which 36Cl accumulated prior to glaciation.
    [Show full text]
  • Lower Devonian Glacial Erratics from High Mountain, Northern New Jersey, USA: Discovery, Provenance, and Significance
    Lower Devonian glacial erratics from High Mountain, northern New Jersey, USA: Discovery, provenance, and significance Martin A. Becker1*and Alex Bartholomew2 1. Department of Environmental Science, William Paterson University, Wayne, New Jersey 07470, USA 2. Geology Department, SUNY, New Paltz, New York 12561, USA *Corresponding author <[email protected]> Date received 31 January 2013 ¶ Date accepted 22 November 2013 ABSTRACT Large, fossiliferous, arenaceous limestone glacial erratics are widespread on High Mountain, Passaic County, New Jersey. Analysis of the invertebrate fossils along with the distinct lithology indicates that these erratics belong to the Rickard Hill Facies of the Schoharie Formation (Lower Devonian, Tristates Group). Outcrops of the Rickard Hill Facies of the Schoharie Formation occur in a narrow belt within the Helderberg Mountains Region of New York due north of High Mountain. Reconstruction of the glacial history across the Helderberg Mountains Region and New Jersey Piedmont indicates that the Rickard Hill Erratics were transported tens of kilometers from their original source region during the late Wisconsinan glaciation. The Rickard Hill Erratics provide a unique opportunity to reconstruct an additional element of the complex surficial geology of the New Jersey Piedmont and High Mountain. Palynology of kettle ponds adjacent to High Mountain along with cosmogenic-nuclide exposure studies on glacial erratics from the late Wisconsinan terminal moraine and the regional lake varve record indicate that the final deposition of the Rickard Hill Erratics occurred within a few thousand years after 18 500 YBP. RÉSUMÉ Les grand blocs erratiques fossilifères apparaissent disperses dans les formations basaltiques de Preakness (Jurassique Inférieur) sur le mont High, dans le conte de Passaïc, dans l’État du New Jersey (NJ).
    [Show full text]
  • Diagnosing Ice Sheet Grounding Line Stability from Landform Morphology
    Supplementary Information: Diagnosing ice sheet grounding line stability from landform morphology Lauren M. Simkins1, Sarah L. Greenwood2, John B. Anderson1 5 1 Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005, USA 2 Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden *Equal contributions Correspondence to: Lauren M. Simkins ([email protected]) 1 Supplementary Methods 10 Grounding line landforms were mapped into three groups including grounding zone wedges, recessional moraines, and crevasse squeeze ridges in ArcGIS using NBP1502A and legacy multibeam data collected aboard the RVIB Nathaniel B. Palmer. Landforms displaying asymmetric morphologies and smeared surficial appearances resulting from relatively broad stoss widths (compared to lee widths) were interpreted as grounding zone wedges, whereas symmetric, quasi-linear landforms with regular spacing were interpreted as recessional moraines. Identified landforms are within fields of like 15 landforms. Within one field of recessional moraines, erratically shaped landforms with variable orientations and irregular amplitudes that are generally greater than that of the recessional moraines were interpreted as crevasse squeeze ridges. Morphometrics for grounding zone wedges and recessional moraines were generated from transects across landforms using the ‘findpeaks’ function in Matlab. Measured properties include (1) amplitude measured from landform crestlines, (2) width in the along-flow direction, (3) spacing between adjacent landform peaks, and (4) asymmetry measured as the ratio of offset 20 between the peak location and the half width point, where a landform with a value of 0 has a peak directly above the half width point and is classified as symmetric and a landform with an asymmetry of 1 has a peak furthest from the half width point and displays the most pronounced asymmetry.
    [Show full text]
  • The Scenic Geology of Calgary – a Walk at Nose Hill – Dale Leckie 1
    The Scenic Geology of Calgary – A Walk at Nose Hill – Dale Leckie 1 The Scenic Geology of Calgary – A Walk at Nose Hill Nose Hill – so much geology to be seen Nose Hill Park is one of the best places to appreciate the geology of Calgary. The park overlooks the city and surrounding area, providing panoramic overviews in all directions. The Bow River valley is several kilometres wide and 200 metres deep, with a complicated geological history. The Rocky Mountains dominate the horizon to the west and the Plains stretch into the distance to the north, east and southeast. Directions Nose Hill Park and the associated hikes are best accessed from two locations. For the best overviews of the Bow River valley, the Rocky Mountains to the west, and to picture the glaciations and Glacial Lake Calgary, park at Edgemont Boulevard parking lot at the intersection of Shaganappi Trail and Edgemont Boulevard. A second location for an overview and to access the glacial erratic, park at the 64th Avenue parking lot, at the intersection of 14 Street NW and 64 Avenue. Use the figure below as a reference to the Scenic Geology of Calgary, as viewed from Nose Hill. The Scenic Geology of Calgary – A Walk at Nose Hill – Dale Leckie 2 • Meandering river sands and floodplain mudstones of the Paleocene Porcupine Hills Formation extend down about 600 metres below the city. These ancient rivers flowed into Alberta during the last mountain-building phase of the Rocky Mountains 62.5 to 58.5 million years ago. Sediment originated from the ancestral Rocky Mountains at the time.
    [Show full text]
  • Dating Glacial Landforms I: Archival, Incremental, Relative Dating Techniques and Age- Equivalent Stratigraphic Markers
    TREATISE ON GEOMORPHOLOGY, 2ND EDITION. Editor: Umesh Haritashya CRYOSPHERIC GEOMORPHOLOGY: Dating Glacial Landforms I: archival, incremental, relative dating techniques and age- equivalent stratigraphic markers Bethan J. Davies1* 1Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX *[email protected] Manuscript Code: 40019 Abstract Combining glacial geomorphology and understanding the glacial process with geochronological tools is a powerful method for understanding past ice-mass response to climate change. These data are critical if we are to comprehend ice mass response to external drivers of change and better predict future change. This chapter covers key concepts relating to the dating of glacial landforms, including absolute and relative dating techniques, direct and indirect dating, precision and accuracy, minimum and maximum ages, and quality assurance protocols. The chapter then covers the dating of glacial landforms using archival methods (documents, paintings, topographic maps, aerial photographs, satellite images), relative stratigraphies (morphostratigraphy, Schmidt hammer dating, amino acid racemization), incremental methods that mark the passage of time (lichenometry, dendroglaciology, varve records), and age-equivalent stratigraphic markers (tephrochronology, palaeomagnetism, biostratigraphy). When used together with radiometric techniques, these methods allow glacier response to climate change to be characterized across the Quaternary, with resolutions from annual to thousands of years, and timespans applicable over the last few years, decades, centuries, millennia and millions of years. All dating strategies must take place within a geomorphological and sedimentological framework that seeks to comprehend glacier processes, depositional pathways and post-depositional processes, and dating techniques must be used with knowledge of their key assumptions, best-practice guidelines and limitations.
    [Show full text]
  • Glaciers in Indiana
    Glaciers in Indiana Key Objectives State Parks Featured Students will understand how glacial ice and melting water ■ Pokagon State Park www.stateparks.IN.gov/2973.htm shaped and reshaped the Earth’s land surface by eroding rocks ■ Chain O’Lakes State Park www.stateparks.IN.gov/2987.htm and soil in some areas and depositing them in other areas in a process that extended over a long period, and will look at how the glaciers affected two Indiana State Parks. Activity: Standards: Benchmarks: Assessment Tasks: Key Concepts: Glaciers Describe how wind, water and glacial ice shape and reshape earth’s land surface by eroding Explain how a glacier is formed and Glaciers and nat- Time and SCI.4.2.2 2010 rock and soil in some areas and depositing moves along, and what natural features ural features of IN Motion them in other areas in a process that occurs it can leave behlnd. State Parks over a long period of time. Glacial vocabulary Pose and respond to specific questions to Understand the different glaciers that clarify or follow up on information, and make ELA.4.SL.2.4 moved across Indiana and the parts of comments that contribute to the discussion the state they reached. and link to the remarks of others. The World in Spatial Terms: Use latitude and Left Behind: longitude to identify physical and human Identify the location of two Indiana Glacial Parks SS.4.3.1 2007 features of Indiana. Example: Transportation State Parks using latitude and longitude in Indiana routes and major bodies of water (lakes and rivers) Engage effectively in a range of collabora- tive discussions (one-on-one, in groups, and Discuss and understand some the ELA.4.SL.2.1 teacher-led) on grade-appropriate topics and glacial features at Chain O’Lakes and texts, building on others’ ideas and expressing Pokagon.
    [Show full text]