Corn Seeding Characteristics in the Eea Pergamino Influence Area, Bs

Total Page:16

File Type:pdf, Size:1020Kb

Corn Seeding Characteristics in the Eea Pergamino Influence Area, Bs CIGR - International Conference of Agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola Brazil, August 31 to September 4, 2008 CORN SEEDING CHARACTERISTICS IN THE EEA PERGAMINO INFLUENCE AREA, BS. AS., ARGENTINA. ÁNGEL ROMITO 1, MARCOS ROBA 2, JUAN D’AMICO 1, LIDIA DONATO 1, NÉSTOR GONZÁLEZ 1, JAVIER ELISEI 1, DIEGO PAREDES 1, OMAR TESOURO 1. 1 Researcher, IIR, CNIA, INTA – Castelar, Argentina. e-mail: [email protected] 2 Undergraduate student, FAUBA / Buenos Aires – Argentina. Presented at CIGR INTERNATIONAL CONFERENCE OF AGRICULTURAL ENGINEERING XXXVII CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA – CONBEA 2008 Brazil, August 31 to September 4, 2008 ABSTRACT: In agricultural production, the crop seeding is a task of paramount importance since it has a direct impact on the stand of plants to harvest and determines largely the performance that they will have throughout the ccycle. To exploit the full potential offered by inputs technology is necessary to know the scope and the actual conditions in which this task is performed. The objective of this study is to obtain information enabling a reliable characterization of the conditions of seeding and the efficiency achieved. For that purpose there was conducted a survey, collecting information on equipment, supplies, operating conditions and regulations made. Subsequently a field sampling was carried out, to characterize specific parameters of seeding. This paper presents the results of the study in 24 establishments located in the northern Buenos Aires province, at the localities of Pergamino and Rojas (Argentina). From them arise that some of the characteristics of the planters, such as age and system of fertilization, as well as working velocity, determines the results of the seeding influencing the quality of implantation obtained. KEYWORDS: seeding, corn, seeders, case study, quality of implantation INTRODUCTION: Under the scope of the Specific Project “Implantation improvement for the main crops”, was initiated an analysis of the characteristics of seeding in different agricultural regions of Argentina. Such activity has as its main objective to collect information about the efficiency of the work and its critical aspects which influence the achievement of better results. The survey consists basically of two parts. First one consists of a questionnaire that collects descriptive information of the plots, seed, and machinery, and also about operating conditions, regulations and checks carried out before and during the work. The second stage consists in a field sampling when the crop was established, determining density, uniformity of the distribution on the seeding line, planting depth and its uniformity in the furrow and emergence. The aim of this survey is to obtain information enabling a reliable characterization of the conditions of seeding and the efficiency achieved in relation to them. With this sense, an integral work was realized, collecting field data and planters information from 24 establishments located in the northern Buenos Aires province, at the localities of Pergamino and Rojas (Argentina) among September and October of 2006, and its subsequent evaluation. METHODOLOGY : During the maize seeding period in the 06/07 campaign was relieved the characteristics of the machinery, the conditions under which the work was performed and the results of planting lots in production in 24 establishments in EEA Pergamino influence area, in Buenos Aires, Argentina. CIGR - International Conference of Agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola Brazil, August 31 to September 4, 2008 There was used a template of survey developed under the mentioned project in order to characterize the work of seeding, following the proposed test methodology of Standard ISO 7256/1: Seeding Equipment-Test methods-Part 1: Single seeds drills (Precision drills). The parameters relieved to field were the following: Seedling density, uniformity of the distribution on the seeding line, planting depth and its uniformity in the furrow and emergence uniformity. The achievement percentage (or implantation efficiency) was calculated using the percentage relation between the seedling density and the seeding density, expressed as viable seeds. From these measurements, the following statistical analyses were realized: Seedling density and achievement percentage : By means of hypotheses testing, which follows a Student's t test distribution, it was established whether the density of seedlings presented or not statistically significant difference at 5% with the corresponding seeding density. Uniformity of distribution in the seeding line : This parameter, which is equivalent to quality of seeding, was estimated by the percentage of acceptable (normally sown) and the standard deviation in the line of seeding. To calculate the acceptable percentage, the mean separation between seedlings in the seeding line was taken as reference distance (Xref). Any separation between consecutive seedlings among 0,5 Xref and 1,5 Xref were considered like acceptable (A). When the separation was lower than 0,5 Xref was calculated as multiple deliveries (D), whereas the seedlings presenting distances greater than 1,5 Xref, were considered as misses (M). Another way of estimating the uniformity of the distribution is using the standard deviation, which quantifies the dispersion of the observations respect of the average sample. To determine the existence or not, of statistically significant differences between particular cases, there were realized tests of homogeneity of variances with a level of significance of 5 %. Uniformity in the seeding depth and in emergence: Both parameters were estimated on the basis of the corresponding standard deviation, for which the statistical analysis is identical to the mentioned in the previous item. Multivariate analysis: It is used for finding relations between the parameters mentioned previously and themselves, as well as between them and the explanatory variables that arise from the characteristics of the machinery and the ones that arise from the ambient conditions in which the seeding was realized. The purpose of this methodology is to analyze simultaneously information sets, which is to analyze with several variables every parameter of study. Among the different multivariate technologies existing, it was used Principal Components Analysis, which analyzes the interrelationships of the variables, presenting them in terms of a minor number of variables, named principal components. The variables with which this analysis was done, are the following: a) Machinery and operative variables. a1) Age of the machine (years) a2) Speed (km/h) a3) Distance between rows (mm) b) Variables that refer to implantation quality b1) Achievement Percentage b2) Standard deviation in the seeding line (mm) b3) CV length, variation coefficient of the seedlings height (%) b4) CV depth, variation coefficient of the seeding depth (%) b5) Acceptable (seeds sowed between 0,5 Xref and 1,5 Xref) b6) Multiple deliveries (seeds sowed to less separations than 0,5 Xref) CIGR - International Conference of Agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agrícola Brazil, August 31 to September 4, 2008 b7) Missing (seeds sowed to greater separations than 1,5 Xref) Correlation Analysis and Regression Analysis: They were used for determining the degree and type of association between certain variables. Analysis of correspondence: It was used to analyze from a graphical point of view, the relations of dependence and independence of a set of categorical and metric variables. When the degree of association is high, these appear in the graphic relatively close. RESULTS AND DISCUSSION: Next it is shown the most relevant information contributed by the surveys in each of the following items: Planters Pool and practices of seeding 40 % of the analyzed establishments effected the seeding with previous tillage whereas 60 % did it by means of direct seeding. It is important to emphasize that still in the cases where the implantation was done by previous tillage, practically the totality of the planters used were for direct seeding. The distancing between lines predominant was of 525 mm (70 % of the whole). The average age of the planters pool is 7 years, with a modal value of 3 years. Associating these two variables, it arises that with the distancing between lines of 525 mm the average age is 5 years whereas, to 700 mm, it is 10 years In relation to the state of conservation and maintenance, 52 % is in very good state and 48 % in good state. The wide of modal labor is 11 lines. With respect to the practice of the fertilization at the moment of the seedtime, the totality of the interviewed people does it, 34 % does it in the furrow, 53 % of lateral form to the line of seeding and 13 % realizes both forms of fertilization. Characteristics and results of the seeding The preceding culture in all the polled establishments was soybean. The most frequent value as for coverage of stubble was 90 % with an average of 56 %, being the dampness of the same one predominantly very dry and dry. Soil condition to the moment of seeding was extremely favorable. The seeding density of used was relatively constant, reaching in average to 78.500 seeds for hectare. The density used by those that implanted the maize with previous tillage was 79.000 seeds for hectare vs. 78.300 seeds for hectare in direct seeding. The population of plántulas obtained to 17 days of the seeding went of
Recommended publications
  • Listado De Comisarías De La Mujer Y La Familia
    Listado de Comisarías de la Mujer y la Familia Cria Mujer y Flia Dirección Teléfono Almirante Brown Andrade 98, Burzaco (011) 42388555 Avellaneda Colón 167, e/ Pavón y Maipú, Avellaneda (011) 42220005 Azul Avenida Perón 865, Azul (02281) 423791 Bahía Blanca Berutti 650, Bahía Blanca (0291) 4558762 Berazategui 160 e/ 24 y 25, Berazategui (011) 43951283 Berisso Montevideo esq. 41, Berisso (0221) 4621295 Bolivar Arenales 245 (0231) 4424368 Cañuelas Libertad 1262, Cañuelas (02226) 431535 Carlos Casares Irigoyen 286, Carlos Casares (02395) 450773 Carmen de Areco Saavedra 272, Carmen de Areco (02273) 443312 Chacabuco Primera Junta 215, Chacabuco (02352) 428471 Chascomús Balcarce y Díaz Vélez, Chascomús (02241) 422653 Chivilcoy Av. Mitre casi esq. 110, Chivilcoy (02346) 435786 Coronel Suárez San Martín 510, Coronel Suárez (02926) 422116 Daireaux Urquiza 220, Daireaxu (02316) 452621 Dolores Espora y J. B. Selva, Dolores (02245) 444458 Ensenada Leandro N. Alem 519, Ensenada (0221) 4602453 Esteban Echeverría Benavidez 223, Monte Grande (011) 42965650 Ezeiza Fariña 105, Tristán Suárez (011) 42343566 Florencio Varela Sgto. Cabral y A. Storni, Florencio Varela (011) 42757185 General Alvear Bernardino Althobe e/Moreno y Milano (02344) 480028 General Belgrano Vicente López 396, General Belgrano (02243) 454509 General La Madrid San Martín 519, General La Madrid (02286) 420215 General Madariaga Dr. Carlos Madariaga 122, Gral. Madariaga (02267) 550479 General Viamonte España 479, Los Toldos (02358) 444657 General Villegas San Martín 472, General Villegas (03388) 428004 Guaminí García Pereira e/Fortines y Gutierrez, Guaminí (02923) 15 434528 Hurlingham Handel 1625, Hurlingham (011) 46624200 Ituzaingó Peredo 3111, Ituzaingó (011) 44815577 Junín Alberdi 146, Junín (0236) 4440270 La Matanza Norte Ombú 3720, San Justo (011) 44845826 La Matanza Sur Gorostiaga 5880, Virrey del Pino (02202) 497000 La Plata Calle 1 523 e/ 42 y 43, La Plata (0221) 4231826 Lanús Aguilar 2333, Remedios de Escalada (011) 42479957 Laprida Av.
    [Show full text]
  • Proyecciones Por Municipio 2010
    Proyecciones de población por Municipio provincia de Buenos Aires 2010-2025. En este informe se describen la metodología empleada en las proyecciones de población de la provincia de Buenos Aires a nivel municipio y se presentan sus resultados. Junio de 2016 Junio 2016 Ministerio de Economía | Subsecretaría de Coordinación Económica | Dirección Provincial de Estadística Gobernadora Lic. María Eugenia VIDAL Ministro de Economía Lic. Hernán LACUNZA Subsecretario de Coordinación Económica Lic. Damián BONARI Director Provincial de Estadística Act. Matías BELLIARD Director de Estadísticas Económicas y Sociales Lic. Daniel BESLER Director de Planificación Metodológica Lic. Guillermo KRIEGER Departamento de Estudios Sociales y Demográficos Lic. María Silvia TOMÁS Analistas Lic. Graciela BALBUENA Lic. Juan BAMPI Lic. Rodrigo PERALTA Tec. Lautaro SERGIO Tec. María Eugenia THILL 1. Introducción Las proyecciones para niveles territoriales menores a Provincia utilizan modelos semidemográficos debido a la complejidad de los métodos puramente demográficos y falta de información minuciosa necesaria para la estimación de la evolución futura de las variables demográficas. Existen distintos métodos matemáticos o semidemográficos para desagregar la población proyectada de un área jerárquicamente mayor a niveles menores. La elección del método adecuado requiere un análisis de las características sociales y demográficas de las áreas en cuestión. Dadas las características demográficas de la Provincia de Buenos Aires el método adecuado es el Método de los Incrementos Relativos. El método elegido utiliza proyecciones ya realizadas de un área jerárquicamente mayor, en este caso las proyecciones de población de la provincia de Buenos Aires por sexo y se desagrega a las áreas menores. Las proyecciones provinciales se elaboraron mediante el método de componentes demográficos (ver Proyecciones de población de la provincia de Buenos Aires 2010- 2040.) por sexo y grupos de edad 2010-2040) 2.
    [Show full text]
  • Referentes Departamentales Delitos Conexos a La Trata De Personas
    Referentes Departamentales Delitos Conexos a la Trata de Personas Departamento Funcionario Teléfono Dirección Judicial UFI Javier Barda Agente Fiscal Cabecera o 02281-432107 Colón 931 Evangelina Goitía UFIE Descentraliz. Int.. 112 - 113 Azul (7300) Instructora Judicial Fabio Molinero Ayudantía 9 de Julio N° 355 Azul Tandil 0249-4426341 Ayudante Fiscal fiscal Tandil Tandil (7000) Ayudantía Cristian Urlezaga 02284-445581 Rufino Fal N° 2943 fiscal Olavarría Ayudante Fiscal int. 192 Olavarría (7400) Olavarría 0291-4500226 Bahía Blanca Mauricio del Cero Moreno 25 UFIJ Nº 14 Cabecera o 0291- 4500229 Agente Fiscal Bahía Blanca Descentraliz. int. 104, 144, (8000) 146, 148, 152 Diego Fernando Cabecera o San Martín Nº 37 Torres UFIJ Nº 3 02245-442589 Descentraliz. Dolores (7100) Agente Fiscal Dolores H. Irigoyen 540 Walter Mércuri UFIJ Nº 8 Gral. 02267-552947 Gral. Madariaga Agente Fiscal Gral. Madariaga Madariaga (7163) Comandante María Fernanda UFIJ Nº 6 Cabecera o 0236-4425810 Escribano Nº 226 Sánchez Descentraliz. y 4425737 subsuelo Agente Fiscal Junín (6000) Junín 0236-4444- Agustina Roldán Ayudantía Cabecera o Mitre n° 2 300 Capponi Fiscal descentraliz. Junín (6000) int. 1529 especializada Analía Córdoba UFIJ N° 2 Agente Fiscal especializada Florencio Varela Cabecera o 011-4616-8750 Nº 2601 La Matanza descentraliz. María Laura Ayudantía San Justo (1754) Gimenez Fiscal Ayudante Fiscal especializada (0221) 410-3871 Calle 54 Nº 590 – Cabecera o La Plata Hugo Tesón UFIJ Nº 8 al 82 / 87 / 88 Pisos 9 y 10 – La Descentraliz. / 89 / 90 Plata (1900) Camino Gral. Presidente Perón ex Camino Negro María Delia Lomas de UFIJ Nº 9 Cabecera 011-4003-2465 y Recalde Zamora Av.
    [Show full text]
  • Rinde Soja. En Kilogramos Por Hectárea. Campaña 2016/17
    Provincia de Buenos Aires Rinde Soja. SAN NICOLAS En kilogramos por hectárea. RAMALLO Ü SAN Campaña 2016/17 PEDRO PERGAMINO COLON ARRECIFES BARADERO ZARATE CAPITAN SAN FERNANDO SARMIENTO GRAL. ROJAS SAN ANTONIO CAMPANA (Islas) ARENALES SALTO DE ARECO EXALTACION CARMEN DE LA CRUZ DE ARECO SAN ANDRES LEANDRO DE GILES N. ALEM JUNIN LUJAN CHACABUCO MERCEDES GRAL. GRAL. RODRIGUEZ PINTO GRAL. SUIPACHA MARCOS VILLEGAS GRAL. PAZ FLORENTINO CHIVILCOY LAS AMEGHINO GRAL. HERAS VIAMONTE ALBERTI NAVARRO SAN LA PLATA CAÑUELAS VICENTE BRAGADO MAGDALENA LINCOLN LOBOS BRANDSEN CARLOS PUNTA TEJEDOR 25 DE GRAL. 9 DE INDIO MAYO MONTE PAZ JULIO ROQUE PEREZ RIVADAVIA CHASCOMUS SALADILLO CARLOS GRAL. CASARES LEZAMA PEHUAJO BELGRANO LAS GRAL. FLORES TRENQUE ALVEAR CASTELLI LAUQUEN H. PILA PELLEGRINI YRIGOYEN BOLIVAR TORDILLO DOLORES TAPALQUE TRES RAUCH LOMAS DAIREAUX GRAL. GRAL. LAVALLE SALLIQUELO AZUL GUIDO OLAVARRIA LA COSTA GUAMINI MAIPU AYACUCHO GRAL. PINAMAR ADOLFO MADARIAGA ALSINA GRAL. LA MADRID TANDIL VILLA CNEL. MAR GESELL CHIQUITA SUAREZ LAPRIDA BENITO JUAREZ BALCARCE SAAVEDRA ADOLFO GRAL. CNEL. GONZALES PUEYRREDON PRINGLES CHAVES PUAN LOBERIA GRAL. TORNQUIST ALVARADO SAN CAYETANO NECOCHEA TRES ARROYOS BAHIA BLANCA CNEL. DORREGO CNEL. DE MARINA L. ROSALES MONTE HERMOSO VILLARINO ESCOBAR PILAR Detalle GBA TIGRE SAN FERNANDO MALVINAS SAN ARGENTINAS ISIDRO JOSE C. VICENTE PAZ LOPEZ SAN GRAL. SAN MIGUEL MARTIN TRES DE MORENO FEBRERO Ciudad de HURLINGHAM Buenos MORON Aires Referencias ITUZAINGO AVELLANEDA Kilogramos por hectárea MERLO LA MATANZA LANUS LOMAS DE QUILMES PATAGONES Menor a 2.500 ZAMORA MARCOS BERAZATEGUI de 2.500 a 3.000 PAZ ALMIRANTE ESTEBAN BROWN ENSENADA de 3.001 a 3.500 ECHEVERRIA EZEIZA FLORENCIO VARELA de 3.501 a 4.000 BERISSO PRESIDENTE PERON LA PLATA Mayor a 4.001 GRAL.
    [Show full text]
  • Quali-Quantitative Study of the Social Variables Defining Transmission
    ARTICLE / ARTÍCULO 171 SALUD COLECTIVA, Buenos Aires, 10(2):171-184, doi: 10.18294/sc.2014.220 Quali-quantitative study of the social variables defining transmission scenarios of Argentine Hemorrhagic Fever in the provinces of Buenos Aires and Santa Fe, 2001-2010 Estudio cualicuantitativo de las variables sociales que definen escenarios de transmisión de la fiebre hemorrágica argentina en las provincias de Buenos Aires y Santa Fe, 2001-2010 Mastrangelo, Andrea1; Tagliabue, Paula2; Berro, Lorena3; De Carolis, Darío4; Sinchi, Anabel5; Digilio, Clara6; Enria, Delia7 1PhD in Social Anthropo- ABSTRACT The aim of this paper was to characterize transmission scenarios of Argentine logy. Researcher Assistant, CONICET-CeNDIE-ANLIS, Hemorrhagic Fever in the post-vaccination period (2001-2010). The study was made up Argentina. andreaveronica- of three phases. The first consisted of a quantitative analysis using the database of the [email protected] Dr. Julio I. Maiztegui National Institute of Human Viral Diseases [Instituto Nacional de 2Bachelor’s Degree in Enfermedades Virales Humanas] regarding the confirmed cases in the period of study Sociology. Research Fellow, (221 cases). Taking into account the transmission site and the known endemic area, cases CeNDIE-ANLIS, Argentina. [email protected] were grouped into three hypothetical transmission scenarios, identified as: a) classical, b) emerging-reemerging, c) traveling. In the second phase, in order to test these hypotheses, 3Journalist. Communication Area, Universidad Nacional in-depth interviews were carried out from August to September 2011 within an intentio- del Noroeste de Buenos nally selected sample of patients distributed proportionally among the three hypotheses. Aires, Argentina. Finally, in the third stage, the data obtained for each hypothetical scenario were grouped [email protected] into three spatiotemporal scales: the microscale (subject), the mesoscale (locality) and 4Bachelor’s Degree in Social macroscale (region).
    [Show full text]
  • Registro De Veterinarios
    REGISTRO DE VETERINARIOS - Padrón Completo Reg N° Apellido y Nombres Matricula N° Localidad Partido e-mail 543 Robles, Jorge Victor 3842 Rivera Adolfo Alsina [email protected] 751 Zavalia, Fabio Agustin 13241 Carhue Adolfo Alsina [email protected] 808 Sanchez, Gustavo Javier 6132 A. Gonzales Chavez A. Gonzales Chavez [email protected] 788 Barberis, Julio Carlos 8491 Coronel Mom Alberti [email protected] 553 Scarano, Nicolas Anibal 11481 Coronel Mom Alberti [email protected] 784 Zunino, Maria Beatriz 8054 Alberti Alberti [email protected] 696 Gonzalez, Hector Ruben 4596 Adrogue Almirante Brown [email protected] 737 Rodriguez, Nelson Javier 13296 Jose Marmol Almirante Brown [email protected] 695 Gonzalez Telmo, Ana Julia 10975 Jose Marmol Almirante Brown [email protected] 655 Schenck, Gerardo Jorge 5994 Porvenir Ameghino [email protected] 442 Fernandez, Salustiano Jose 2720 Blaquier Ameghino [email protected] 578 Olmos, Maria Marta 10989 Arrecifes Arrecifes [email protected] 221 Martínez Leiva, Facundo 10502 Arrecifes Arrecifes [email protected] 431 Poggio, Carlos Asdrubal 3887 Arrecifes Arrecifes [email protected] 791 Beltramo Ferreira, Ivan Bautista 12535 Arrecifes Arrecifes [email protected] 396 De Mateo, Marina Valeria 10449 Arrecifes Arrecifes [email protected] 587 Pallaro, Valentin 12907 Arrecifes Arrecifes [email protected] 601 Mast, Karina Susana 13104 Wilde Avellaneda [email protected] 199 Rojas,
    [Show full text]
  • Provincia De Buenos Aires Informe Sintético De Caracterización Socio
    PROVINCIA DE BUENOS AIRES INFORME SINTÉTICO DE CARACTERIZACIÓN SOCIO-PRODUCTIVA Ministerio de Hacienda Secretaría de Hacienda Dirección Nacional de Asuntos Provinciales RESUMEN EJECUTIVO Buenos Aires es la provincia más poblada de Argentina. En 2010, de acuerdo al último censo de población, tenía 15,6 millones habitantes, el 39% del total del país. Con 50,8 hab/Km2, Buenos Aires en dicho año fue la tercera jurisdicción con mayor densidad poblacional, después de CABA y Tucumán. Los partidos del conurbano son los de mayor densidad, habiendo concentrado en 2010 el 64% de la población en apenas el 1% del territorio provincial1. En lo que respecta al mercado laboral, en el 2° trimestre de 2017 se registró una tasa de actividad del 44,9%, levemente inferior a la media nacional y 1,5 puntos porcentuales menos que la de la Región Centro a la cual pertenece. La tasa de desocupación, por su parte, fue del 10,8%, la más elevada del país. El sector privado de la provincia empleó, en dicho trimestre, a 1,95 millones de asalariados formales, el 31,5% del total nacional; en tanto que el número de empleados de la Administración Pública provincial fue de 677 mil en 2015, equivalente al 35% de los empleos formales totales del sector privado del mismo año, siendo este el cuarto porcentaje más bajo del país, aunque el mayor entre las jurisdicciones más pobladas (Córdoba, Santa Fe y CABA). El grado de informalidad laboral resultó, en el 2° trimestre de 2017, el más alto de la Región Centro, registrando un 35,8% de asalariados sin descuento jubilatorio, porcentaje que superó el promedio nacional, que fue de 33,7%.
    [Show full text]
  • Superficies Alcanzadas Por Normativas De Restriccion De Aplicaciones En Seis Partidos Del Norte De La Provincia De Buenos Aires
    74 RTA / Vol 10 / N°40 SUPERFICIES ALCANZADAS POR NORMATIVAS DE RESTRICCION DE APLICACIONES EN SEIS PARTIDOS DEL NORTE DE LA PROVINCIA DE BUENOS AIRES Diego Bustos1 & Adriana Ferreyra1 Palabras claves: exclusión, amortiguamiento, área buffer, fitosanitarios, superficies El presente artículo presenta, en base a la normativa vigente o en discusión, las superficies afectadas por la reglamentación para uso y aplicación de productos fitosanitarios en los partidos de Leandro N. Alem, San Antonio de Areco, Arrecifes, Chacabuco, Chivilcoy y Pergamino. INTRODUCCION y aplicación de fitosanitarios (zonas de exclusión), y zonas que contemplan el uso de productos ban- La preocupación social en torno al uso de agro- da verde (clases toxicológicas IV según OMS) con químicos y su vínculo con el cuidado del ambiente formas de aplicación específicas y con controles y la salud humana, ha impulsado la elaboración puntuales (zonas de amortiguamiento). En el caso de distintas reglamentaciones tendientes a orde- de Arrecifes se sancionó una ordenanza comple- nar el uso, manipulación y aplicación de productos Restricción de fitosanitarios mentaria -2.882/17- que promociona los sistemas fitosanitarios. Más allá de las leyes ambientales de producciones agroecológicos en todo el parti- nacionales y provinciales, en las comunas se han do. propuesto ordenanzas en este sentido. Aquí la variabilidad de denominaciones y límites El debate en torno al tema dio como resultado se hace muy evidente y se incrementa a medida amplia variabilidad de márgenes de resguardo, que se incorporan otros factores como tipo de apli- implementaciones y conceptos en territorios uni- cación, situación de cursos de agua y acciones en formes.
    [Show full text]
  • Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina
    Agricultural Sciences, 2021, 12, 305-323 https://www.scirp.org/journal/as ISSN Online: 2156-8561 ISSN Print: 2156-8553 Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina Luciana Tozzini, Alejandro Pannunzio, Pamela Texeira Soria Eng. Irrigation and Drainage Section, School of Agronomy, University of Buenos Aires, Buenos Aires, Argentina How to cite this paper: Tozzini, L., Abstract Pannunzio, A. and Soria, P.T. (2021) Water Footprint of Soybean, Maize and Wheat in Nowadays more than 70% of the fresh water available worldwide is used for Pergamino, Argentina. Agricultural Sci- agriculture. In Argentina, extensive crops are not usually irrigated, so the ences, 12, 305-323. cropping production depends mostly on rainfall water. In order to know how https://doi.org/10.4236/as.2021.123020 many liters of water are needed to produce a ton of soybeans, wheat and ma- Received: December 22, 2020 ize in the Pergamino district, Province of Buenos Aires, its Water Footprint Accepted: March 28, 2021 was estimated by the Hoekstra method. Evaporation and rainfall data was Published: March 31, 2021 obtained from SIGA INTA platform and production data was obtained from Copyright © 2021 by author(s) and the Ministry of Agriculture. The results indicated that the average annual to- Scientific Research Publishing Inc. tal water footprint values for soybean, corn and wheat crops for the period This work is licensed under the Creative 2013-2018 in the Pergamino district, province of Buenos Aires, are 1,388 Commons Attribution International l∙kg−1, 693 l∙kg−1 and 1,249 l∙kg−1 respectively.
    [Show full text]
  • Farmacias Adheridas Campaña Antigripal
    Farmacias adheridas campaña antigripal Nombre Dirección Partido DIAZ PUEYRREDON Nº 798 ADOLFO ALSINA PARATORE MOTTA ESQ. LERNOUD Nº 301 ALBERDI FERNANDEZ AV. JUAN DOMINGO PERÓN Nº 5047 ALEJANDRO KORN empalme PINARDI ALFREDO E. GARCIA Nº 400 ALEM TORNO AV. DUNCKLER Nº 236 ALÉM TRAPAGA AVDA. RIVADAVIA Nº 134 ALÉM COIRO MONTEVERDE Nº 1379 ALMIRANTE BROWN PRIANO H.YRIGOYEN y FRANCIA Nº S/N ALMIRANTE BROWN CASTELLI COLON Nº 3351 ALMIRANTE BROWN HERRERA ACOSTA R DE ESCALADA DE SAN MARTIN Nº 611 ALMIRANTE BROWN BIANCO PEDRO GOYENA Nº 925 ALMIRANTE BROWN GURTUBAY DR KELLERTAS Nº 727 ALMIRANTE BROWN KROEGER ITUZAINGO Nº 1153 ALTAMIRANO DESMOURES MITRE Nº 309 ALTAMIRANO NARANJO RICARDO GUTIERREZ Nº 426 ARRECIFES CAMATS NECOCHEA Nº 14 ARRECIFES BASTIDA AVDA ROQUE SAENZ PEÑA Nº 255 ARRECIFES JADUR JOSÉ HERNANDEZ Nº 112 ASCENSIÓN LOGIODICE SALTA Nº 20 ASCENSIÓN FARMACIA UOM AVELLANEDA S.C.S. AVDA. HIPÓLITO IRIGOGEN Nº 386 AVELLANEDA UOM GERLI S.C.S. LACARRA Nº 1556 AVELLANEDA UOM MITRE SCS AV MITRE 1973 AVELLANEDA DEL INDIO SAN MARTIN Nº 1267 AYACUCHO PEROGGI H. IRIGOYEN Nº 548 AZUL SONCINI HIPOLITO YRIGOYEN Nº 650 AZUL MARCHISIO SAN MARTÍN Nº 399 AZUL VINCIGUERRA ALVEAR Y E.RIOS AZUL MERLO MONSEÑOR CANEVA Nº 540 AZUL COLOTTO PTE.PERON (EX.HUMBERTO I ) Nº 850 AZUL SCHIAFFINO SAN MARTIN Nº 1390 AZUL DEAN SAN MARTÍN Nº 1040 AZUL VOLZONE CORONEL SUAREZ Nº 53 AZUL SIRIS 9 de JULIO y BELGRANO AZUL GOLDRIZ ALMIRANTE BROWN Nº 385 AZUL PALLE 9 DE JULIO y M.FIERRO AZUL DIAB AMADO DIAB Nº 311 AZUL SANTA LUCIA AVDA. PIAZZA Nº 1146 AZUL CERONE MONTEVIDEO Nº S/N B.
    [Show full text]
  • Listado De Proveedores 24/11/2009 13:21
    R.A.F.A.M. Municipalidad de Junín Hoja: 1 de 1 LISTADO DE PROVEEDORES 24/11/2009 13:21 Ejercicio: 2009 Código Razón Social Calle Nº Piso Dpto Teléfono Nombre de Fantasía C.P. Localidad C.U.I.T. Estado 1545 A A ANTON SERVICIOS S.R.L 520 1281 BIS 0221 4248029 A A ANTON SERVICIOS S.R.L 1900 Tolosa 30-70890586-7 Normal 1410 A B C Vial S.R.L MENDOZA 4834 011 45217921 A B C Vial S.R.L 1431 Capital Federal 30-70830252-6 Normal 868 A. Russoniello S.A, Av. Benito de MIguel 1018 011 47935400 A. Russoniello S.A, 6000 JUNIN 30-68772200-7 Normal 641 AADI _ CAPIF A.C.R. Paraguay 727 6 2 0341 4267149 AADI _ CAPIF A.C.R. 2000 Rosario 30-57444996-7 Normal 1015 Abal Luis Angel E.MUÑIZ 82 02362 442580 Abal Luis Angel 6000 JUNIN 20-12193622-5 Normal 1342 Abdala Juan Antonio GUIDO SPANO 302 02362 429130 La Esquina de Antonio 6000 JUNIN 20-23398699-3 Normal 839 Abué Gladys Ester QUINTANA 92 02352 451801 LRM.325 RADIO VIDA 97.5 6740 CHACABUCO 27-06556825-5 Normal 10 Acerbo, Osvaldo Americo Belgrano 29 02362 423280 Cochera Belgrano 6000 JUNIN 20-00943948-0 Normal 1417 ACEVEDO JUAN MANUEL SARMIENTO 140 02474 15667672 SALTO DEPORTE 2741 SALTO 20-28142483-2 Normal 829 Acosta Arias Andres Guillermo AV.PUEYRREDON 225 5 43 011 44584227 Acosta Arias Andres Guillermo 1032 Capital Federal 20-23377338-8 Normal 1594 ACQUATRON S.A CARLOS MARIA RAMIREZ 2463 011 49197172 ACQUATRON S.A 1437 Capital Federal 30-68642217-4 Normal 1265 Actis Danna Ruben ALBERDI 305 03543 488589 Actis Danna Ruben 5109 Unquillo 20-14308810-4 Normal 996 Acuña, Carmen Adelina Carlos Tejedor 379 Acuña, Carmen Adelina 6000 JUNIN 27-14988721-6 Normal 1150 Acuña Hugo Daniel BOLIVAR 310 02362 Acuña Hugo Daniel 6000 JUNIN 20-22191192-0 Normal 1598 ADLER MUEBLES S.A GURRUCHAGA 410 011 48543536 ADLER MUEBLES S.A 1414 Capital Federal 30-59715568-5 Normal 447 Adolfo Guerrico S.A.
    [Show full text]
  • Distritos Y Regiones Educativas - Provincia De Buenos Aires
    DISTRITOS Y REGIONES EDUCATIVAS - PROVINCIA DE BUENOS AIRES SAN NICOLAS RAMALLO REGION 1 REGION 10 REGION 15 REGION 20 SAN PEDRO (113) BERISSO (057) G. LAS HERAS (076) 9 DE JULIO (009) BALCARCE PERGAMINO COLON 12 ARRECIFES ZARATE (014) C. BRANDSEN (044) G. RODRIGUEZ (003) ALBERTI (060) LOBERIA BARADERO CAMPANA CPTN. SAN FERNANDO (114) ENSENADA (063) LUJAN (013) BRAGADO (075) NECOCHEA GRAL. 13 SARMIENTO ROJAS S. A. DE ISLAS ARENALES SALTO ARECO E. DE11 (001) LA PLATA (067) MARCOS PAZ (017) C. CASARES (115) S. CAYETANO C. DE LA CRUZ ESCOBAR TIGRE ARECO PILAR (064) MAGDALENA L. N. ALEM (070) MERCEDES (028) CHIVILCOY (102) TANDIL JUNIN S. A. LUJAN DE GILES CHACABUCO GRAL. (134) PUNTA INDIO (074) NAVARRO (118) H. IRIGOYEN GRAL. SUIPACHA RODRIGUEZ PINTO MERCEDES GRAL. MARCOS ENSENADA (093) S. A. DE GILES (079) PEHUAJO REGION 21 VILLEGAS 10 PAZ 14 CHIVILCOY GRAL. BERISSO REGION 2 F. AMEGHINO GRAL. LAS HERAS (101) SUIPACHA (052) B. JUAREZ LINCOLN VIAMONTE ALBERTI NAVARRO LA PLATA CAÑUELAS (005) AVELLANEDA REGION 16 BRAGADO MAGDALENA (016) CAÑUELAS (023) C. DORREGO LOBOS BRANDSEN (062) L. DE ZAMORA (018) C. TEJEDOR (024) C. PRINGLES CARLOS 25 DE MAYO 1 TEJEDOR R. PEREZ GRAL. PUNTA INDIO 9 DE JULIO (111) LANUS REGION 11 (049) G. VILLEGAS (050) A. G. CHAVES MONTE PAZ RIVADAVIA 24 (015) CAMPANA (080) PELLEGRINI 15 SALADILLO (054) LAPRIDA CHASCOMUS CARLOS REGION 3 (031) E. DE LA CRUZ (088) RIVADAVIA CASARES (107) TRES ARROYOS 16 PEHUAJO GRAL. BELGRANO (069) LA MATANZA GRAL. LAS (116) ESCOBAR (120) SALIQUELLO ALVEAR FLORES TRENQUE CASTELLI LAUQUEN (083) PILAR (106) T.
    [Show full text]