Energy Storage Systems

Total Page:16

File Type:pdf, Size:1020Kb

Energy Storage Systems University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING AND THE ENVIRONMENT Sustainable Energy Research Group Integrating renewable energy sources with the UK electricity grid through interconnection or energy storage systems by Marcus Joseph Alexander Thesis for the degree of Engineering Doctorate June 2016 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND THE ENVIRONMENT Thesis for the degree of Engineering Doctorate INTEGRATING RENEWABLE ENERGY RESOURCES WITH THE UK ELECTRICITY GRID THROUGH INTERCONNECTION OR ENERGY STORAGE SYSTEMS Marcus Joseph Alexander This thesis considers the generation and demand challenges of a 100% renewable UK electricity grid and how this can be addressed with interconnection or energy storage. Hourly demand and electricity generation profiles for a year have been constructed: Business as Usual with a yearly demand of 540TWh and Green Plus (rapid uptake of energy efficiency and green measures) with a demand of 390TWh. In addition, two extra scenarios based on the above have been considered with electrification of heating (air source heat pumps) and transportation. The resultant hourly imbalances have been used to calculate the interconnection and energy storage requirements. The calculated interconnector capacity required was found to be 60GW at a cost of GBP 58 billion for the BAU scenario. Energy storage capacity requirements vary depending on the selected technology. Rated capacity was estimated to be 14GW with storage capacity of 3TWh for pumped storage, 11GW and 2.3TWh for liquid air, and 65GW and 13.6TWh for hydrogen storage, at a cost of GBP 65, GBP 76 and GBP 45 billion respectively. This thesis indicates that storing hydrogen in underground caverns would offer the cheapest solution. However, whilst these technological solutions can address generation and demand imbalance in a fully renewable electricity grid, there remain barriers to each technology. A further technological solution is to exploit the use of electric heat pumps for domestic heating and hot water, as well as the moderate uptake of electric vehicles. It is proposed that these technologies are used on a local scale to help integrate the additional renewable electricity generated within a pre-determined zone of the electricity network. Analysis has been carried out to determine the constraints in the UK network where renewable electricity generation is greater than local electricity demand. From this, consideration has been made to understand the real impact distributed energy storage in the form of heat pumps and electric vehicles could have. Results show that depending on the demand scenario and location on the network, there is the potential to accommodate up to 50% of the excess electricity generated. Lastly, analysis was conducted on a hybrid technological solution which combines interconnector and energy storage capacity in order to ensure that demand is met year round. This analysis indicates that an optimal combination of a 37GW interconnector plus 11GW of hydrogen (cavern) storage at a cost of GBP 42 billion for the BAU scenario is possible. Likewise, for the GP scenario a 24GW interconnector plus 8.5GW of hydrogen (cavern) storage at a cost of GBP 28 billion was found to be optimal. This analysis shows that a hybrid solution provides a lower cost option than installing either one of the solutions separately. Table of Contents Table of Contents ...................................................................................................... i List of Tables .................................................................................................... vii List of Figures ..................................................................................................... xi DECLARATION OF AUTHORSHIP ............................................................................ xvii Acknowledgements ............................................................................................... xix Definitions and Abbreviations ................................................................................ xxi Chapter 1: Introduction ................................................................................... 1 1.1 Background and Motivation ............................................................................... 1 1.1.1 Evolution of energy consumption ........................................................ 1 1.1.2 Sustainable development ..................................................................... 4 1.1.3 Climate change and historic targets ..................................................... 5 1.1.4 UK commitments .................................................................................. 8 1.1.5 UK greenhouse gas emissions by sector ............................................... 9 1.2 Aims and Research Objectives .......................................................................... 12 1.2.1 Thesis research question .................................................................... 13 1.2.2 Thesis scope and assumptions ........................................................... 14 1.2.3 Philosphical approach of the Thesis ................................................... 15 Chapter 2: Literature Review ......................................................................... 17 2.1 Introduction ...................................................................................................... 17 2.2 Review of the Existing UK Electricity Transmission Grid .................................. 20 2.2.1 Electricity market in the UK ................................................................ 21 2.2.2 UK transmission and distribution network ......................................... 23 2.2.3 UK Electricity Demand ........................................................................ 27 2.2.4 UK Electricity Supply ........................................................................... 28 2.2.5 Planned UK Future Generation and Transmission ............................. 31 2.3 Renewable Energy Sources ............................................................................... 34 2.3.1 Definition ............................................................................................ 35 2.3.2 Benefits ............................................................................................... 36 i 2.3.3 Technologies ....................................................................................... 37 2.3.4 Summary of Renewable Energy Potential .......................................... 50 2.4 Review of Grid Solution .................................................................................... 50 2.4.1 Distributed Generation ...................................................................... 51 2.4.2 Advantages ......................................................................................... 53 2.4.3 Challenges .......................................................................................... 54 2.5 Review of Interconnector Technology ............................................................. 57 2.5.1 Review of cost of interconnectors ..................................................... 60 2.5.2 Benefits of DC interconnectors .......................................................... 62 2.5.3 Interconnection in a 100% renewable system ................................... 63 2.6 Review of Energy Storage Technologies .......................................................... 65 2.6.1 Benefits to the electricity grid ............................................................ 66 2.6.2 Barriers ............................................................................................... 70 2.6.3 Technologies ....................................................................................... 72 2.7 Review of 100% Renewable Energy Grids ........................................................ 79 2.7.1 The 100% renewable scenario – case studies .................................... 79 2.8 Summary and Discussion .................................................................................. 87 Chapter 3: The UK of the Future .................................................................... 89 3.1 Introduction ...................................................................................................... 89 3.2 Factors Increasing Electricity Demand in the Future ....................................... 94 3.2.1 Electrification of transportation in the UK ......................................... 94 3.2.2 Electrification of thermal loads in the UK .......................................... 97 3.3 Future UK Electricity Supply and Demand ....................................................
Recommended publications
  • August Forecast Tnuos Tariffs
    Five-Year View of TNUoS Tariffs for 2021/22 to 2025/26 National Grid Electricity System Operator August 2020 Five-Year View of TNUoS Tariffs for 2021/22 to 2025/26 | Error! No text of specified style in document. 0 Contents Executive Summary ............................................................................................... 4 Forecast Approach ................................................................................................. 7 Generation tariffs ................................................................................................. 11 1. Generation tariffs summary ....................................................................................................... 12 2. Generation wider tariffs.............................................................................................................. 12 3. Changes to wider tariffs over the five-year period ..................................................................... 16 Onshore local tariffs for generation ...................................................................... 19 4. Onshore local substation tariffs ................................................................................................. 19 5. Onshore local circuit tariffs ........................................................................................................ 20 Offshore local tariffs for generation ...................................................................... 23 6. Offshore local generation tariffs ................................................................................................
    [Show full text]
  • A Scoping Study On: Research Into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations
    A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations Laurent Amoudry3, Paul S. Bell3, Kevin S. Black2, Robert W. Gatliff1 Rachel Helsby2, Alejandro J. Souza3, Peter D. Thorne3, Judith Wolf3 April 2009 1British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA [email protected] www.bgs.ac.uk 2Partrac Ltd 141 St James Rd Glasgow G4 0LT [email protected] www.partrac.com 3Proudman Oceanographic Laboratory Joseph Proudman Building 6 Brownlow Street Liverpool L3 5DA, www.pol.ac.uk 2 EXECUTIVE SUMMARY This study scopes research into the impacts and benefits of large-scale coastal and offshore marine renewable energy projects in order to allow NERC to develop detailed plans for research activities in the 2009 Theme Action Plans. Specifically this study focuses on understanding changes in sediment dynamics due to renewable energy structures. Three overarching science ideas have emerged where NERC could provide a significant contribution to the knowledge base. Research into these key areas has the potential to help the UK with planning, regulation and monitoring of marine renewable installations in a sustainable way for both stakeholders and the environment. A wide ranging consultation with stakeholders was carried out encompassing regulators, developers, researchers and other marine users with a relevance to marine renewable energy and/or sediment dynamics. Based on this consultation a review of the present state of knowledge has been produced, and a relevant selection of recent and current research projects underway within the UK identified to which future NERC funded research could add value. A great deal of research has already been done by other organisations in relation to the wind sector although significant gaps remain, particularly in long term and far-field effects.
    [Show full text]
  • Response From
    Agenda Item No. 5 Pieter Montyn E.ON Climate & Renewables UK Cabinet Member for Highways and Transport Rampion Offshore Wind Limited Cabinet Office Westwood Way Ground Floor Westwood Business Park County Hall Coventry West Midlands Chichester CV4 8LG West Sussex www.eon-uk.com PO19 1RZ Chris Tomlinson 01273 603 721 3 December 2013 07815 141 008 Dear Mr Montyn, Rampion Offshore Wind Farm Thank you for your letter dated 14 November 2013 seeking clarity on issues regarding the Rampion offshore wind farm. I respond to each issue in turn. 1. Benefits and facilities for local people The overarching benefits of the Rampion Offshore Wind Farm are to create safe, secure, clean energy to help secure our energy supplies and keep the lights on, while tackling climate change through reducing carbon emissions and creating jobs during construction and operation. In addition to these core benefits, our policy is to ensure that we are a good neighbour to the local community, to continue our track record on existing offshore wind farms of working with communities and supporting local projects and education initiatives. To achieve this, we will develop relationships with Sussex communities and consider the potential to provide initiatives through community benefits funds. Our plan to deliver community benefits is intended to support initiatives in those communities associated with the offshore and onshore elements of the Project. The exact geographical scope and distribution of such initiatives need to be very carefully considered in view of the spatial extent of the Project. We intend to consult the wider community through a number of existing communication channels that we established for the Agenda Item No.
    [Show full text]
  • Golden Eagle Satellite Tag Review
    Scottish Natural Heritage Commissioned Report No. 982 Analyses of the fates of satellite tracked golden eagles in Scotland COMMISSIONED REPORT Commissioned Report No. 982 Analyses of the fates of satellite tracked golden eagles in Scotland For further information on this report please contact: Professor Des Thompson Scottish Natural Heritage Silvan House 231 Corstorphine Road EDINBURGH EH12 7AT Telephone: 0131 316 2630 E-mail: [email protected] This report should be quoted as: Whitfield, D.P. & Fielding, A.H. 2017. Analyses of the fates of satellite tracked golden eagles in Scotland. Scottish Natural Heritage Commissioned Report No. 982. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2017. COMMISSIONED REPORT Summary Analyses of the fates of satellite tracked golden eagles in Scotland Commissioned Report No. 982 Project No: 015542 Contractor: Natural Research Year of publication: 2017 Keywords Golden eagle; satellite tagging; Scotland; juvenile dispersal; wind farms; grouse moor; persecution; illegal killing. Background The Cabinet Secretary for Environment, Climate Change and Land Reform requested a thorough investigation of the fates of satellite tagged raptors, especially golden eagles. This report provides a major review of the movements and fates of golden eagles satellite tagged during 2004 - 2016. Of 131 young eagles tracked, as many as 41 (31%) have disappeared (presumably died) under suspicious circumstances significantly connected with contemporaneous records of illegal persecution.
    [Show full text]
  • A Holistic Framework for the Study of Interdependence Between Electricity and Gas Sectors
    November 2015 A holistic framework for the study of interdependence between electricity and gas sectors OIES PAPER: EL 16 Donna Peng Rahmatallah Poudineh The contents of this paper are the authors’ sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2015 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN 978-1-78467-042-9 A holistic framework for the study of interdependence between electricity and gas sectors i Acknowledgements The authors are thankful to Malcolm Keay, Howard Rogers and Pablo Dueñas for their invaluable comments on the earlier version of this paper. The authors would also like to extend their sincere gratitude to Bassam Fattouh, director of OIES, for his support during this project. A holistic framework for the study of interdependence between electricity and gas sectors ii Contents Acknowledgements .............................................................................................................................. ii Contents ...............................................................................................................................................
    [Show full text]
  • Appendix 1 Overview of RES Electricity Support Mechanisms in the EU Overview of RES Electricity Support Mechanisms in the EU
    Appendix 1 Overview of RES electricity support mechanisms in the EU Overview of RES electricity support mechanisms in the EU EU RENEWABLE ENERGY POLICY A major part of EU energy policy is the promotion of energy produced from renewable energy sources (RES). RES are naturally renewing energy sources, including bioenergy, solar energy, wind energy, hydropower, and geothermal energy. Electricity produced from RES has seen strong growth in the EU over the past decade, prompted in large part by the legally binding targets contained in the EU Renewable Energy Directive (Directive 2009/28/EC). While there have been decreases in the use of electricity generated from RES, the share of RES in electricity production has nevertheless grown as the consumption of fossil fuels has seen larger decreases 1. Through the promotion of energy produced from RES, the EU as a whole is on track to meet the targets it has imposed on itself by 20202. In the absence of public intervention, it would have been impossible for the EU to achieve its goals related to the promotion of electricity generated from RES3. Consequently, support schemes for electricity generated from RES have formed the backbone of the success of RES electricity penetration in the EU electricity market. To date, most RES are in some way or other still dependant on public intervention from different support schemes 4. Amongst these the seemingly most successful support scheme is the feed-in tariff (FiT), a policy mechanism aimed at accelerating investment in RES technologies. As explained in further detail below, FiTs require utilities to purchase electricity generated from RES suppliers at a percentage above the prevailing retail price of electricity.
    [Show full text]
  • International Passenger Survey, 2008
    UK Data Archive Study Number 5993 - International Passenger Survey, 2008 Airline code Airline name Code 2L 2L Helvetic Airways 26099 2M 2M Moldavian Airlines (Dump 31999 2R 2R Star Airlines (Dump) 07099 2T 2T Canada 3000 Airln (Dump) 80099 3D 3D Denim Air (Dump) 11099 3M 3M Gulf Stream Interntnal (Dump) 81099 3W 3W Euro Manx 01699 4L 4L Air Astana 31599 4P 4P Polonia 30699 4R 4R Hamburg International 08099 4U 4U German Wings 08011 5A 5A Air Atlanta 01099 5D 5D Vbird 11099 5E 5E Base Airlines (Dump) 11099 5G 5G Skyservice Airlines 80099 5P 5P SkyEurope Airlines Hungary 30599 5Q 5Q EuroCeltic Airways 01099 5R 5R Karthago Airlines 35499 5W 5W Astraeus 01062 6B 6B Britannia Airways 20099 6H 6H Israir (Airlines and Tourism ltd) 57099 6N 6N Trans Travel Airlines (Dump) 11099 6Q 6Q Slovak Airlines 30499 6U 6U Air Ukraine 32201 7B 7B Kras Air (Dump) 30999 7G 7G MK Airlines (Dump) 01099 7L 7L Sun d'Or International 57099 7W 7W Air Sask 80099 7Y 7Y EAE European Air Express 08099 8A 8A Atlas Blue 35299 8F 8F Fischer Air 30399 8L 8L Newair (Dump) 12099 8Q 8Q Onur Air (Dump) 16099 8U 8U Afriqiyah Airways 35199 9C 9C Gill Aviation (Dump) 01099 9G 9G Galaxy Airways (Dump) 22099 9L 9L Colgan Air (Dump) 81099 9P 9P Pelangi Air (Dump) 60599 9R 9R Phuket Airlines 66499 9S 9S Blue Panorama Airlines 10099 9U 9U Air Moldova (Dump) 31999 9W 9W Jet Airways (Dump) 61099 9Y 9Y Air Kazakstan (Dump) 31599 A3 A3 Aegean Airlines 22099 A7 A7 Air Plus Comet 25099 AA AA American Airlines 81028 AAA1 AAA Ansett Air Australia (Dump) 50099 AAA2 AAA Ansett New Zealand (Dump)
    [Show full text]
  • UK Windfarm Load Factors 2006 by Site
    UK Windfarm Load Factors 2006 By Site The most recent date of ROC issue on the Renewable Obligation Certificate Register available from the Ofgem web site included in the analysis was 25th April 2007. The two monthly figures shown are the actual number of ROC's issued and this figure expressed as a percentage of the the ROC's which could be issued if the output was continually at the at the maximum DNC value, without interruption, for the complete month. The cumulative annual figures are included, where the figures given against each location are the actual number of ROC's issued during the year, the possible number of ROC's which could be issued if the output was continually at the maximum DNC value and actual output expressed as a percentage of this figure. This is the annual load (capacity) factor of each location. Most recent ROC issue date 25 April 2007 For year 2006 Annual output by technology Actual Possible % Median of Individual MWh MWh Monthly % Values Biomass 985214 1759199 56.00 55.19 Co-firing of biomass with fossil fuel 2456733 230290215 1.07 0.91 Biomass and waste using ACT 11496 26114 44.02 48.59 Micro hydro 55815 121504 45.94 46.23 Hydro <20 MW DNC 2049389 4977685 41.17 37.68 Landfill gas 4168045 6718018 62.04 63.76 Waste using an ACT 1224 11529 10.62 11.44 Off-shore wind 685819 2503109 27.40 27.18 On-shore wind 3530914 13767395 25.65 26.58 Wind 4216733 16270504 25.92 Sewage gas 333578 655003 50.93 51.91 Wave power 9 1452 0.62 0.56 PV 131 1770 7.40 7.45 Contribution to annual total renewable energy generation Biomass
    [Show full text]
  • Community Benefits from Offshore Renewables: Good Practice Review
    Community Benefits from Offshore Renewables: Good Practice Review David Rudolph, Claire Haggett, Mhairi Aitken, University of Edinburgh Executive Summary Overview This project evaluates existing practices in community benefit models for offshore renewables. We identify and evaluate national and international case studies of different community benefit models, and provide evidence of how community benefits are delivered and distributed. In particular we consider the key relationship between how communities are identified, how impact is perceived, and how benefits may therefore be apportioned. We then assess the different mechanisms and schemes of benefit-sharing to identify good practice and key points of learning for Scottish policy and planning. The full report can be found at Community Benefits from Offshore Renewables: Good Practice Review. Key findings Evidence for community benefits from offshore renewables is rare. The UK leads the way in delivering benefits, although this is largely ad hoc, voluntary, and varies between developers. The Scottish Government is alone in explicitly considering distribution of the local and national benefits beyond the delivery of supply chain benefits. The way in which community, benefit and impact are understood are crucial in determining whether or how benefit should be apportioned and delivered; and these definitions are closely connected to each other. We detail in the report the range of ways in which benefits are provided; and find that community funds are the most common approach. ClimateXChange is Scotland’s Centre of Expertise on Climate Change, supporting the Scottish Government’s policy development on climate change mitigation, adaptation and the transition to a low carbon economy. The centre delivers objective, independent, integrated and authoritative evidence in response to clearly specified policy questions.
    [Show full text]
  • Social Innovation in Community Energy in Europe: a Review of the Evidence
    Social innovation in community energy in Europe: a review of the evidence 1 Richard J. Hewitt 1*, Nicholas Bradley 2, Andrea Baggio Compagnucci 1, Carla Barlagne 2, 2 Andrzej Ceglarz 3,4 , Roger Cremades 5, Margaret McKeen 1, Ilona M. Otto 6, and Bill Slee 2 3 1Information and Computational Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen 4 AB15 8QH, Scotland UK 5 2Social, Economic, and Geographical Sciences Group, James Hutton Institute, Craigiebuckler, 6 Aberdeen AB15 8QH, Scotland UK 7 3Bavarian School of Public Policy, Technical University Munich, Munich, Germany 8 4Renewables Grid Initiative, Berlin, Germany 9 5Climate Service Center Germany (GERICS), Hamburg, Germany 10 6Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, 11 Germany 12 * Correspondence: 13 Richard J. Hewitt 14 [email protected] 15 Keywords: social innovation 1, community energy 2, renewable energy 3, cooperative 4, 16 grassroots 5, crisis 6, participation 7, energy democracy 8. 17 Abstract 18 Citizen-driven Renewable Energy (RE) projects of various kinds, known collectively as community 19 energy (CE), have an important part to play in the worldwide transition to cleaner energy systems. 20 On the basis of evidence from literature review and an exploratory survey of 8 European countries, 21 we investigate European CE through the lens of Social Innovation (SI). Broadly, three main phases 22 of SI in CE can be identified. The environmental movements of the 1960s and the “oil shocks” of the 23 1970s provided the catalyst for a series of innovative societal responses around energy and self- 24 sufficiency. These first wave CE innovations included cooperatives (e.g.
    [Show full text]
  • OOSSSPPPAAARRR Wwooorrrkkkssshhhooopp Eennnvvviiirrrooonnnmmmeeennntttaaall Aasssssseeessssssmmmeeennnttt Ooff Rreeennneeewwwaaa
    OOSSPPAARR WWoorrkksshhoopp EEnnvviirroonnmmeennttaall AAsssseessssmmeenntt ooff RReenneewwaabbllee EEnneerrggyy iinn tthhee MMaarriinnee EEnnvviirroonnmmeenntt 17th - 18th September 2003 OSPAR Workshop on the Environmental Assessment of Renewable Energy in the Marine Environment EXECUTIVE SUMMARY The global environmental benefits from renewable energy technologies to reduce emissions of greenhouse gases, particularly if accompanied by energy efficiency initiatives, are widely accepted. However, any large construction project will have environmental impacts so it is imperative that they be located and built in an environmentally responsible way. As interest in constructing renewable energy generation facilities in offshore locations increases, regulators need to ensure that adequate measures and controls exist to keep adverse marine environmental impacts to a minimum. Regulators in different countries are facing the same challenges but to date have been progressing on their own with very little exchange of experiences. This has led to duplication of effort and the unintentional withholding of important data sets from the wider scientific community. This workshop of 63 delegates was convened to bring together for the first time regulators, NGOs and other stakeholders with an interest in marine environmental impact assessment from around Europe to share experiences and discuss best practice for offshore renewable technologies. Although it had the broader heading of offshore renewable energy the discussions focussed on wind power as this
    [Show full text]
  • Vestas Wind Systems A/S Vestas Selected As Turnkey Supplier For
    Vestas Wind Systems A/S Copenhagen Stock Exchange Nikolaj Plads 6 DK-1067 Copenhagen K. Ringkøbing, 3 March 2003 Stock Exchange announcement no. 03/2003 Page 1 of 1 Vestas selected as turnkey supplier for another major offshore wind project in the United Kingdom Vestas Wind Systems A/S has via its 100 % owned subsidiary Vestas - Celtic Wind Technology Ltd. been selected to build another major offshore wind farm in the United Kingdom. The turnkey contract has been awarded by Powergen Renewables Offshore Wind Ltd., a 100 % owned subsidiary of Powergen Ltd. The 60 MW project is scheduled for completion in the autumn of 2004, and will be located approximately 3 km. off the East Coast of England at Great Yarmouth, Norfolk, on a sandbank known as the Scroby Sands. The location is characterised by relatively shallow water of 4-8 m depth. The contract comprises 30 units Vestas V80-2.0 MW wind turbines, monopile foundations, offshore electrical infrastructure, the Vestas OnLine™ remote monitoring system and a 5- year contract for operation and maintenance of the power plant. Scroby Sands Offshore Wind Farm is the second of 18 similar projects currently planned in the waters around United Kingdom. “The UK market for wind turbines is gaining momentum, and the recently published White Paper from the government predicts a bright future for wind power in the UK”, says Tom K. Pedersen, Managing Director of Vestas – Celtic Wind Technology Ltd. He continues “We are currently building the first major UK offshore wind project North Hoyle wind farm in the Irish Sea off Wales.
    [Show full text]