Friedrich Riesz' Beiträge Zur Herausbildung Des Modernen

Total Page:16

File Type:pdf, Size:1020Kb

Friedrich Riesz' Beiträge Zur Herausbildung Des Modernen Friedrich Riesz’ Beitr¨age zur Herausbildung des modernen mathematischen Konzepts abstrakter R¨aume Synthesen intellektueller Kulturen in Ungarn, Frankreich und Deutschland Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” am Fachbereich 08: Physik, Mathematik und Informatik der Johannes Gutenberg-Universit¨at in Mainz Laura Regina Rodr´ıguezHern´andez geboren in Tulancingo, Hidalgo (Mexiko) Mainz, den 10. Juni 2006 Zusammenfassung Der ungarische Mathematiker Friedrich Riesz forschte zwischen 1899 und 1908 in den mathematischen Milieus von Budapest, G¨ottingen und Paris. Diese Tatsa- che motiviert die Suche nach Elementen aus den besagten mathematischen Kul- turen, die zur Herausbildung eines abstrakten Raumbegriffes in dem von Riesz 1906 ver¨offentlichten Text Die Genesis des Raumbegriffs“ beitrugen. ” Sowohl fur¨ seine Fragestellungen als auch fur¨ seinen methodischen Zugang fand Riesz in Frankreich und in G¨ottingen Anregungen: Henri Poincar´esBeitr¨age zur Raumdiskussion, Maurice Fr´echets Ans¨atze einer abstrakte Punktmengen- lehre, David Hilberts Charakterisierung der Stetigkeit des geometrischen Raum- es. Diese Impulse aufgreifend wollte Riesz ein Konzept schaffen, das die Forde- rungen von Poincar´e,Hilbert und Fr´echet in entsprechendem Maße erfulle.¨ So schlug Riesz einen allgemeineren Begriff des mathematischen Kontinuums vor, mit dem sich Fr´echets Konzept der L-Klasse, Hilberts Mannigfaltigkeitsbegriff und Poincar´eserfahrungsgem¨aßes Konzept der Stetigkeit des wirklichen‘ Raum- ’ es auf einen gemeinsamen Nenner bringen ließen. Fur¨ die Durchfuhrung¨ eines solchen Projekts wandte Riesz mengentheoretische und axiomatische Methoden an, die er der Analysis in Frankreich und der Geometrie bei Hilbert entnommen hatte. Riesz’ aufnahmebereite Haltung spielte dabei eine wichtige Rolle. Diese Haltung kann wiederum als ein Element der ungarischen mathematischen Kultur gedeutet werden, welche sich damals ihrerseits stark an den Entwicklungen in Frankreich und Deutschland orientierte. Daruber¨ hinaus enth¨alt Riesz’ Arbeit Ans¨atze einer konstruktiven Mengenleh- re, die auf Ren´eBaire zuruckzuf¨ uhren¨ sind. Aus diesen unerwarteten Ergebnissen ergibt sich die Aufgabe, den Bezug von Riesz’ und Baires Ideen zur sp¨ateren in- tuitionistischen Mengenlehre von L.E.J. Brouwer und Hermann Weyl weiter zu erforschen. Inhaltsverzeichnis Einleitung 1 Teil I 7 1 Sozial- und wissenschaftshistorischer Kontext 7 1.1 Zur Biographie von Friedrich Riesz ................. 7 1.2 Ungarn, Deutschland und Frankreich um 1900 ........... 14 1.3 Zur Raumdiskussion um 1900 .................... 18 1.4 Zu Mengenlehre und Axiomatik um 1900 .............. 19 2 Zur ungarischen mathematischen Kultur 23 2.1 Institutionen, Forschung und Lehre ................. 23 2.1.1 Ausbau des Bildungssystems und die Grundung¨ der Unga- rischen Akademie der Wissenschaften ............ 23 2.1.2 Nationale und internationale Forschungsinteressen ..... 27 2.1.3 Die F¨orderung des Nachwuches ............... 32 2.2 Mengenlehre, Axiomatik, Geometrie, Analysis ........... 34 2.2.1 Mengenlehre .......................... 34 2.2.2 Axiomatik ........................... 35 2.2.3 Geometrie ........................... 36 2.2.4 Analysis ............................ 38 2.3 Wissenschaftliches Milieu ....................... 39 2.3.1 Gyula (Julius) K˝onig ..................... 41 2.3.2 J´ozsef(Josef) Kursch´ak¨ ................... 43 2.3.3 Lip´ot(Leopold) Fej´er ..................... 44 2.3.4 Alfr´edHaar .......................... 46 2.3.5 Marcel Riesz .......................... 49 2.3.6 D´enesK˝onig .......................... 50 3 3 Zur franz¨osischen mathematischen Kultur 51 3.1 Institutionen, Forschung und Lehre ................. 51 3.1.1 Universit¨at versus Grandes Ecoles‘´ ............. 51 ’ 3.1.2 Analysis: eine franz¨osische mathematische Tradition .... 54 3.1.3 Lehre und Lehrbucher¨ .................... 56 3.2 Axiomatik, Mengenlehre und moderne Analysis .......... 57 3.2.1 Rezeption der Cantorschen Mengenlehre .......... 57 3.2.2 Axiomatik und deskriptive Definitionen‘ .......... 61 ’ 3.2.3 Borels Maßtheorie ....................... 67 3.2.4 Baires moderne Theorie der reellen Funktionen ...... 75 3.2.5 Lebesgues Integrationstheorie ................ 81 3.2.6 Fr´echets Calcul Fonctionnel‘ ................. 85 ’ 3.3 Poincar´e uber¨ die Stetigkeit des Raumes .............. 93 3.3.1 Poincar´esPhilosophie der Geometrie ............ 94 3.3.2 Das physikalische Kontinuum‘ bei Poincar´e ........ 99 ’ 4 Zur mathematischen Kultur in G¨ottingen 111 4.1 Institutionen, Forschung und Lehre ................. 111 4.1.1 G¨ottingen als wissenschaftliches Zentrum .......... 111 4.1.2 Forschungsschwerpunkte ................... 113 4.1.3 Dozenten und Studenten ................... 116 4.2 Axiomatik, Mengenlehre und Grundlagen der Geometrie ..... 119 4.2.1 Mengenlehre .......................... 119 4.2.2 Axiomatik bei Hilbert (1894-1905) ............. 124 4.2.3 Axiomatik und Mengenlehre: Ausblick ........... 135 4.3 Hilbert uber¨ die Stetigkeit des Raumes ............... 137 Teil II 145 5 Die Genesis des Raumbegriffs“ 145 ” 5.1 Probleme ............................... 147 5.2 Werkzeuge ............................... 151 5.2.1 Theorie des physikalischen Kontinuums ........... 152 5.2.2 Theorie des mathematischen Kontinuums .......... 154 5.2.3 Theorie der mehrfachen Ordnungstypen .......... 162 5.3 Strategie ................................ 163 6 Das Problem der Stetigkeit des Raumes 169 6.1 Anschluß an Hilberts topologischen Zugang zu den Grundlagen der Geometrie ............................... 169 6.2 Anschluß an Poincar´esIdeen uber¨ die Stetigkeit des Raumes ... 178 6.2.1 Anschluß an Poincar´espsychologische Ansichten zu Zeit und Raum I .......................... 180 6.2.2 Zu einem abstrakten Begriff des physikalischen Kontinuums .......................... 181 6.2.3 Anschluß an Poincar´espsychologische Ansichten zu Zeit und Raum II ......................... 183 6.2.4 Zu Poincar´esProblem der Stetigkeit des Raumes ..... 184 7 Ans¨atze einer abstrakten Punktmengenlehre 189 7.1 Elemente aus Baires Punktmengenlehre fur¨ Folgen ganzer Zahlen 189 7.1.1 Gruppen ganzer Zahlen und physikalische Punkte n-ter Ord- nung .............................. 190 7.1.2 System spezieller Umgebungen ................ 197 7.2 Elemente aus Fr´echets Theorie der L-Klassen ............ 201 8 Axiomatik bei Riesz 207 8.1 Anschluß an axiomatische Praxis in Frankreich ........... 208 8.2 Anschluß an Axiomatik Hilbertscher Pr¨agung ........... 213 9 Rezeption 219 9.1 In Europa ............................... 221 9.1.1 Maurice Fr´echet ........................ 221 9.1.2 Arthur Schoenflies ...................... 228 9.1.3 Leopold Vietoris ....................... 230 9.1.4 Heinrich Tietze ........................ 232 9.1.5 L.E.J. Brouwer und Hermann Weyl ............. 232 9.2 In den USA .............................. 237 9.2.1 Mathematiker um Eliakim Hasting Moore ......... 237 9.2.2 Ralph Eugene Root ...................... 239 9.2.3 Edward Wilson Chittenden ................. 240 9.2.4 Robert Lee Moore ...................... 241 9.2.5 Theophil Henry Hildebrandt ................. 242 9.3 Schlußbemerkungen zur Rezeption .................. 243 10 Schlußbemerkungen zur Bedeutung der Rieszschen Synthesen 247 10.1 Zusammenfassung ........................... 247 10.2 Zur Bedeutung der Rieszschen Synthesen .............. 249 10.3 Schlußwort ............................... 252 A Zitate 253 A.1 Aus Die Genesis des Raumbegriffes“ ................ 253 ” B Tabellen 257 B.1 Tabellen zu Kapitel 2 ......................... 257 B.2 Tabellen zu Kapitel 4 ......................... 260 C Archivalien 265 C.1 Briefwechsel zwischen Riesz und Hilbert .............. 267 C.2 Briefwechsel zwischen Riesz und Fr´echet .............. 270 Literaturverzeichnis 273 Verzeichnis der Archivalien 290 Abbildungsverzeichnis 7.1 Baumdiagramm fur¨ die Bairesche Struktur in Riesz’ System . 196 9.1 Brouwers ¨ortlich verschiedene‘ Punkte . 233 ’ Tabellenverzeichnis 7.1 Bairesche und Rieszsche Begriffe im Vergleich . 190 B.1 Geometrie, Mengenlehre und Analysis in Ungarn . 257 B.2 Professoren an den Universit¨aten in Budapest und Koloszv´ar. 258 B.3 Auslandsaufenthalte ungarischer Mathematiker . 259 B.4 Hilberts Assistenten . 260 B.5 Hilberts Lehrveranstaltungen . 260 B.6 Minkowskis Lehrveranstaltungen . 263 Einleitung Ihrem Titel nach verspricht diese Dissertation, Beitr¨age zur Herausbildung des modernen mathematischen Konzepts abstrakter R¨aume in den Arbeiten des un- garischen Mathematikers Friedrich Riesz aus der Zeit zwischen 1906 und 1908 aufzuzeigen. Die gew¨ahlte Perspektive stutzt¨ sich auf das wissenschaftshistori- sche Konzept lokaler mathematischer Kulturen. So besagt die zentrale These, daß Riesz’ abstrakte Raumbegriffe als Synthesen lokaler mathematischer Kultu- ren in Ungarn, Deutschland und Frankreich entstand. Zun¨achst sollen die eben benutzten Begriffe gekl¨art werden. So gilt festzuhalten: Das Konzept des mathematischen Raumes als solches gibt es nicht. Stattdessen sind dem modernen mathematischen Konzept abstrak- ter R¨aume verschiedene Raumbegriffe in der modernen Mathematik untergeord- net: Vektorr¨aume, topologische R¨aume, unendlich dimensionale R¨aume, normier- te R¨aume, metrische R¨aume, Banach- und Hilbert-R¨aume und so weiter. Als konkrete Beispiele fur¨ diese abstrakten Raumbegriffe k¨onnen unter anderem Fol- genr¨aume und Funktionenr¨aume angegeben werden. Die abstrakten Raumbegrif- fe der modernen Mathematik beschreiben jeweils eine abstrakte
Recommended publications
  • Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
    Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire.
    [Show full text]
  • Corry L. David Hilbert and the Axiomatization of Physics, 1898-1918
    Archimedes Volume 10 Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 10 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ADVISORY BOARD HENK BOS, University of Utrecht MORDECHAI FEINGOLD, Virginia Polytechnic Institute ALLAN D. FRANKLIN, University of Colorado at Boulder KOSTAS GAVROGLU, National Technical University of Athens ANTHONY GRAFTON, Princeton University FREDERIC L. HOLMES, Yale University PAUL HOYNINGEN-HUENE, University of Hannover EVELYN FOX KELLER, MIT TREVOR LEVERE, University of Toronto JESPER LÜTZEN, Copenhagen University WILLIAM NEWMAN, Harvard University JÜRGEN RENN, Max-Planck-Institut für Wissenschaftsgeschichte ALEX ROLAND, Duke University ALAN SHAPIRO, University of Minnesota NANCY SIRAISI, Hunter College of the City University of New York NOEL SWERDLOW, University of Chicago Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and prac- tical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer con- tact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series it- self will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, bro- adly construed, as well as historically-engaged philosophy of science or technology.
    [Show full text]
  • ' I'm Just a Mathematician
    ” I’m Just a Mathematician ”: Why and How Mathematicians Collaborated with Military Ballisticians at Gâvre David Aubin To cite this version: David Aubin. ” I’m Just a Mathematician ”: Why and How Mathematicians Collaborated with Military Ballisticians at Gâvre. 2010. hal-00639895v2 HAL Id: hal-00639895 https://hal.sorbonne-universite.fr/hal-00639895v2 Preprint submitted on 23 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ‘I’m Just a Mathematician’: Why and How Mathematicians Collaborated with Military Ballisticians at Gˆavre David Aubin Abstract. This chapter examines the way in which mathematicians were led to contribute to ballistic studies in France during World War I. It pays special attention to the French Navy’s Gˆavre Experiments Commission first estab- lished in 1829, where University Professor Jules Haag, Navy Engineer Maurice Garnier and high school teacher Os´ee Marcus jointly developed a new method for computing ballistic trajectories (the so-called GHM method). It highlights the difficulties and successes encountered by mathematicians when they ap- proached a military culture that was already mathematically sophisticated. It reviews briefly the history of ballistics at Gˆavre before the First World War to understand the bitter feeling among artillerymen serving on the front about the inadequacies of their ballistic tables.
    [Show full text]
  • Gray J. Plato`S Ghost..The Modernist Transformation of Mathematics
    PLATO’S GHOST This page intentionally left blank PLATO’S GHOST THE MODERNIST TRANSFORMATION OF MATHEMATICS JEREMY GRAY PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright ª 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Gray, Jeremy, 1947– Plato’s ghost : the modernist transformation of mathematics = Jeremy Gray. p. cm. Includes bibliographical references and index. ISBN 978-0-691-13610-3 (alk. paper) 1. Mathematics–History–19th century. 2. Mathematics–Philosophy. 3. Aesthetics, Modern–19th century. I. Title. QA26.G73 2008 510.9'034–dc22 2007061027 This book has been composed in Printed on acid-free paper.? press.princeton.edu Printed in the United States of America 13579108642 WHAT THEN? His chosen comrades thought at school He must grow a famous man; He thought the same and lived by rule, All his twenties crammed with toil; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ Everything he wrote was read, After certain years he won Sufficient money for his need; Friends that have been friends indeed; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ All his happier dreams came true— A small old house, wife, daughter, son, Grounds where plum and cabbage grew, Poets and Wits about him drew; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ ‘‘The work is done,’’ grown old he thought, ‘‘According
    [Show full text]
  • Bertrand Duplantier Vincent Rivasseau Editors Poincaré Seminar
    Progress in Mathematical Physics 67 Bertrand Duplantier Vincent Rivasseau Editors Henri Poincaré, 1912–2012 Poincaré Seminar 2012 Progress in Mathematical Physics Vo l u m e 6 7 Editors-in-Chief Anne Boutet de Monvel, Université Paris VII Denis Diderot, France Gerald Kaiser, Center for Signals and Waves, Portland, OR, USA Editorial Board Sir M. Berry, University of Bristol, UK P. Blanchard, University of Bielefeld, Germany M. Eastwood, University of Adelaide, Australia A.S. Fokas, University of Cambridge, UK F.W. Hehl, University of Cologne, Germany University of Missouri, Columbia, USA D. Sternheimer, Université de Bourgogne, Dijon, France C. Tracy, University of California, Davis, USA For further volumes: http://www.birkhauser-science.com/series/4813 Bertrand Duplantier • Vincent Rivasseau Editors Henri Poincaré, 1912–2012 Poincaré Seminar 2012 Editors Bertrand Duplantier Vincent Rivasseau Institut de Physique Théorique Laboratoire de Physique Théorique CEA Saclay Université Paris-Sud Gif-sur-Yvette Cedex, France Orsay, France ISSN 1544-9998 ISS N 2197-1846 (electronic) ISBN 978-3-0348-0833-0 ISBN 978-3-0348-0834-7 (eBook) DOI 10.1007/978-3-0348-0834-7 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2014955371 MathematicsSubject Classification (2 010): 01Axx, 00A30, 30F10, 30F35, 37-03, 60-03, 78-03 © Springer Basel 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Appendix: a Selection of Documents1
    APPENDIX: A SELECTION OF DOCUMENTS1 1) A letter from Felix Klein to Heinrich von Mühler, the Prussian Minister of Religious, Educational, and Medical Affairs (Minister of Culture).2 Your Excellency, Düsseldorf – December 19, 1870 In a request dated March 7th of this year, I took the liberty of asking for diplomatic recommendations to travel to France and England for the purpose of undertaking a scientific trip. At the same time, I had offered to submit reports on the conditions of mathematics in these countries upon my return. On March 26th, I was fortunate enough to receive a reply from your Excellency (U 7737) to the effect that the diplomatic recommendations in question had been granted to me, and that your Excellency would be pleased to receive reports on the present state of French and English mathematics. Under the prevailing conditions, unfortunately, the trip could not be underta- ken in the way that I intended. My stay in Paris, where I had arrived on April 19th, was suddenly interrupted by the declaration of war on July 16th. I rushed home (Düsseldorf) and, because I was deemed unfit for military service at the moment by the relevant authorities, I joined an association for voluntary medical care, which had meanwhile been established in Bonn. As a member of this association, I spent the period from August 16th to October 2nd, when I was discharged to re- turn home on account of my poor health, in the theater of war. Having only recently recovered, I did not want to make the trip to England because of the time that I had lost.
    [Show full text]
  • A Forgotten Chapter in the History of Algebraic Geometry
    Revue d’histoire des math´ematiques, 3 (1997), p. 1–48. ALGEBRAIC GEOMETRY BETWEEN NOETHER AND NOETHER — A FORGOTTEN CHAPTER IN THE HISTORY OF ALGEBRAIC GEOMETRY Jeremy GRAY (*) ABSTRACT. — Mathematicians and historians generally regard the modern period in algebraic geometry as starting with the workof Kroneckerand Hilbert. But the relevant papers by Hilbert are often regarded as reformulating invariant theory, a much more algebraic topic, while Kronecker has been presented as the doctrinaire exponent of finite, arithmetical mathematics. Attention is then focused on the Italian tradition, leaving the path to Emmy Noether obscure and forgotten. There was, however, a steady flow of papers responding to the workof both Hilbert and Kronecker. The Hungarian mathematicians Gyula (Julius) K¨onig and J´ozsef K¨ursch´ak, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel Lasker and the English school teacher F.S. Macaulay all wrote extensively on the subject. This workis closely connected to a growing sophistication in the definitions of rings, fields and related concepts. The shifting emphases of their workshed light on how algebraic geometry owes much to both its distinguished founders, and how the balance was struckbetween algebra and geometry in the period immediately before Emmy Noether began her work. RESUM´ E´.—LAGEOM´ ETRIE´ ALGEBRIQUE´ DE NOETHER A` NOETHER — UN CHAPITRE OUBLIEDEL’HISTOIREDELATH´ EORIE´ .—Math´ematiciens et historiens consid`erent en g´en´eral que les travaux de Kronecker et de Hilbert inaugurent la p´eriode moderne de la g´eom´etrie alg´ebrique. Mais on a souvent envisag´e les articles correspondants de Hilbert comme une reformulation de la th´eorie des invariants, sujet de caract`ere nettement plus alg´ebrique, alors que Kronecker ´etait pr´esent´e comme promoteur doctrinaire d’une math´ematique arithm´etis´ee, finie.
    [Show full text]
  • Bibliography
    Bibliography 1. —: Carl Herz (1930–1995). Notices Amer. Math. Soc. 43, 768–771 (1996) 2. —: Correspondance mathématique entre Legendre et Jacobi. J. Reine Angew. Math. 80, 205–279 (1875). [Reprint: [3287].] 3. —: Festschrift Heinrich Weber zu seinem siebzigsten Geburtstag am 5. März 1912. Teubner (1912). [Reprint: Chelsea, 1912.] 4. —: Festschrift zur Feier des 100. Geburtstages Eduard Kummers. Teubner (1910) 5. —: Heinrich Grell (3.2.1903–21.8.1974). Math. Nachr. 65, 5–6 (1975) 6. —: Nikola˘ı Mikha˘ıloviˇc Korobov (November 23, 1917 – October 25, 2004). Cebyshevskiı˘ˇ ı. Sb. 6, 224–230 (2005) 7. —: László Rédei (1900–1980). Acta Sci. Math. (Szeged) 43, 3–4 (1981) 8. —: Leonhard Euler: 1707–1783. Beiträge zu Leben und Werk. Birkhäuser (1983) 9. —: Theodore Samuel Motzkin: Professor of mathematics 1908–1970. J. Comb. Th. A 14, 271–272 (1973) 10. —: Obituary: Tadasi Nakayama. Nagoya Math. J. 27, i–vii (1966) 11. —: Oystein Ore (1899–1968). J. Combin. Theory 8, i–iii (1970) 12. —: Paul T. Bateman — biography. Internat. J. Number Th. 11(5), xv–xviii (2015) 13. —: Séminaire Bourbaki. W.A. Benjamin, New York (1966) 14. —: Tadao Tannaka: 1908–1986. Tôhoku Math. J. 39, i–iv (1987) 15. Abel, N.H.: Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen. J. Reine Angew. Math. 1, 65–84 (1826) [French translation: [18] (The pages of Abel’s papers in [18] refer to the first edition.) 1, 5–24.] 16. Abel, N.H.: Recherches sur les fonctions elliptiques. J. Reine Angew. Math. 2, 101–181 (1827); 3, 160–190 (1828) [[18], 1, 141–249.] 17.
    [Show full text]
  • LEJ Brouwer's 'Unreliability of the Logical Principles'. a New Translation, with an Introduction
    L.E.J. Brouwer’s ‘Unreliability of the logical principles’. A new translation, with an introduction Mark van Attena Göran Sundholmb November 5, 2015 Dedicated to the memory of Georg Kreisel, 1923–2015 Abstract We present a new English translation of L.E.J. Brouwer’s paper ‘De onbe- trouwbaarheid der logische principes’ (The unreliability of the logical principles) of 1908, together with a philosophical and historical introduction. In this paper Brouwer for the first time objected to the idea that the Principle of the Excluded Middle is valid. We discuss the circumstances under which the manuscript was submitted and accepted, Brouwer’s ideas on the principle of the excluded mid- dle, its consistency and partial validity, and his argument against the possibility of absolutely undecidable propositions. We note that principled objections to the general excluded middle similar to Brouwer’s had been advanced in print by Jules Molk two years before. Finally, we discuss the influence on George Griss’ negationless mathematics. keywords: Luitzen Egbertus Jan Brouwer, George Griss, intuitionism, Jules Molk, principle of the excluded middle 1 Rationale for this translation In his seminal paper ‘The unreliability of the logical principles’ (1908b), Brouwer arXiv:1511.01113v1 [math.HO] 3 Nov 2015 draws for the first time the revisionistic consequences of the general view on logic that he had presented in his dissertation (Brouwer, 1907, pp. 125–132), by rejecting the principle of excluded middle. The paper appeared in Dutch; Brouwer’s first published remarks in more widely read languages on the unreliability of the principle aSND (CNRS/Paris 4), 28 rue Serpente, 75006 Paris, France.
    [Show full text]
  • Fatou, Julia, Montel
    Lecture Notes in Mathematics 2014 Fatou, Julia, Montel The Great Prize of Mathematical Sciences of 1918, and Beyond Bearbeitet von Michèle Audin 1st Edition. Translation of the French Original Version, Springer 2009. 2011. Taschenbuch. vIII, 332 S. ISBN 978Paperback3 642 17853 5 Format (B x L): 15,5 x 23,5 cm Gewicht: 590 g Weitere Fachgebiete > Mathematik > Mathematik Allgemein Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. I The Great Prize, the framework Bertinck has a chest wound. After a while a fragment smashes away his chin, and the same fragment has sufficient force to tear open Leer’s hip. Leer groans as he supports himself on his arm, he bleeds quickly, no one can help him. Like an emptying tube, after a couple of minutes, he collapses. What use is it to him now that he was such a good mathematician at school? Erich Maria Remarque, All Quiet on the Western Front [1928] In this chapter, we describe the setting for the beginning of our story: the topic of the Great Prize of mathematical sciences, the historical context in mathematics and the historical context in general, namely the First World War. After a quick introduction of the various characters and of their roles, we establish some notation and give the first pertinent examples of the mathemat- ical question under consideration, that is, the iteration of rational functions, setting it as it was when the story began.
    [Show full text]
  • The Road from Zurich (1897) to Madrid (2006)
    From the private to the public: The road from Zurich (1897) to Madrid (2006) José M. Sánchez-Ron Abstract. We review the history of the International Congresses of Mathematicians, from Zurich 1897 to Madrid 2006, mentioning some of the most significant personages and events (scientific as well as political) of such meetings (as a matter of fact, that history did not begin 1897 in Zurich, but in 1893 at the Chicago World’s Columbian Exposition). We report on Felix Klein, Henri Poincaré, David Hilbert, VitoVolterra,Emmy Noether, Ludwig Prandtl, Laurent Schwartz, Klein’s Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, and the role played by the Mathematical Tripos in the education at Cambridge University during the 19th and the first decades of the 20th century (and its influence in the design of the Cambridge 1912 Congress). Some of the further topics discussed here are how the two world wars affected the congresses, the creation of the Fields medals, as well as some of the main changes that mathematics has experienced, internally (i.e., in what it refers to problems, ideas and theories) as well as institutionally (including its manifold connexions with society) during the period covered by the existence of the International Congresses of Mathematicians. Mathematics Subject Classification (2000). Primary 01A60. Keywords. International Congresses of Mathematicians. “What was formerly begun by a single mastermind, we now must seek to accom- plish by united efforts and cooperation”. The author of these prophetic words was Felix Klein, the distinguished German mathematician, and they were stated at the “World Congress” of mathematicians that took place, from the 21st to the 26th of August, as part of the 1893 Chicago World’s Columbian Exposition (Klein was one of the commissioners of the German university exhibit at the Exposition).
    [Show full text]
  • ' I'm Just a Mathematician
    " I'm Just a Mathematician ": Why and How Mathematicians Collaborated with Military Ballisticians at G^avre David Aubin To cite this version: David Aubin. " I'm Just a Mathematician ": Why and How Mathematicians Collaborated with Military Ballisticians at G^avre. 2010. <hal-00639895v2> HAL Id: hal-00639895 http://hal.upmc.fr/hal-00639895v2 Submitted on 23 Sep 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. ‘I’m Just a Mathematician’: Why and How Mathematicians Collaborated with Military Ballisticians at Gˆavre David Aubin Abstract. This chapter examines the way in which mathematicians were led to contribute to ballistic studies in France during World War I. It pays special attention to the French Navy’s Gˆavre Experiments Commission first estab- lished in 1829, where University Professor Jules Haag, Navy Engineer Maurice Garnier and high school teacher Os´ee Marcus jointly developed a new method for computing ballistic trajectories (the so-called GHM method). It highlights the difficulties and successes encountered by mathematicians when they ap- proached a military culture that was already mathematically sophisticated. It reviews briefly the history of ballistics at Gˆavre before the First World War to understand the bitter feeling among artillerymen serving on the front about the inadequacies of their ballistic tables.
    [Show full text]