' I'm Just a Mathematician
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire. -
Corry L. David Hilbert and the Axiomatization of Physics, 1898-1918
Archimedes Volume 10 Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 10 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ADVISORY BOARD HENK BOS, University of Utrecht MORDECHAI FEINGOLD, Virginia Polytechnic Institute ALLAN D. FRANKLIN, University of Colorado at Boulder KOSTAS GAVROGLU, National Technical University of Athens ANTHONY GRAFTON, Princeton University FREDERIC L. HOLMES, Yale University PAUL HOYNINGEN-HUENE, University of Hannover EVELYN FOX KELLER, MIT TREVOR LEVERE, University of Toronto JESPER LÜTZEN, Copenhagen University WILLIAM NEWMAN, Harvard University JÜRGEN RENN, Max-Planck-Institut für Wissenschaftsgeschichte ALEX ROLAND, Duke University ALAN SHAPIRO, University of Minnesota NANCY SIRAISI, Hunter College of the City University of New York NOEL SWERDLOW, University of Chicago Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and prac- tical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer con- tact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series it- self will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, bro- adly construed, as well as historically-engaged philosophy of science or technology. -
Gray J. Plato`S Ghost..The Modernist Transformation of Mathematics
PLATO’S GHOST This page intentionally left blank PLATO’S GHOST THE MODERNIST TRANSFORMATION OF MATHEMATICS JEREMY GRAY PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright ª 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Gray, Jeremy, 1947– Plato’s ghost : the modernist transformation of mathematics = Jeremy Gray. p. cm. Includes bibliographical references and index. ISBN 978-0-691-13610-3 (alk. paper) 1. Mathematics–History–19th century. 2. Mathematics–Philosophy. 3. Aesthetics, Modern–19th century. I. Title. QA26.G73 2008 510.9'034–dc22 2007061027 This book has been composed in Printed on acid-free paper.? press.princeton.edu Printed in the United States of America 13579108642 WHAT THEN? His chosen comrades thought at school He must grow a famous man; He thought the same and lived by rule, All his twenties crammed with toil; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ Everything he wrote was read, After certain years he won Sufficient money for his need; Friends that have been friends indeed; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ All his happier dreams came true— A small old house, wife, daughter, son, Grounds where plum and cabbage grew, Poets and Wits about him drew; ‘‘What then?’’ sang Plato’s ghost. ‘‘What then?’’ ‘‘The work is done,’’ grown old he thought, ‘‘According -
Continuous Groups of Transformations:´Elie Cartan's
Continuous groups of transformations: Elie´ Cartan's structural approach Alberto Cogliati 2 Contents 1 Elie´ Joseph Cartan 13 2 Cartan's doctoral dissertation 23 2.1 Finite continuous groups . 23 2.1.1 Reduced form of a given group . 27 2.1.2 Integrability and Semisimplicity Criteria . 32 2.1.3 Radical and decomposition theorems . 35 2.2 Lie's theory of complete systems . 40 2.3 Complete systems and canonical reduction . 46 3 Infinite continuous groups 1883-1902 53 3.1 Lie's first contributions . 55 3.2 Differential invariants . 58 3.3 Engel's Habilitationsschrift . 65 3.4 Foundations of infinite continuous groups . 69 3.5 On a theorem by Engel . 80 3.6 Medolaghi's contributions . 83 3.7 Vessiot and his M´emoirecouronn´ee. 91 4 Exterior differential systems 105 4.1 Some technical preliminaries . 106 4.2 The state of the art in the early 1890's . 109 4.3 Engel's invariants theory of Pfaffian systems . 110 4.3.1 Invariant correspondences . 110 4.4 von Weber's contributions: 1898-1900 . 114 4.4.1 Character and characteristic transformations . 115 4.4.2 Pfaffian systems of character one, I . 118 4.4.3 Reducibility of a Pfaffian system to its normal form . 120 4.5 The foundations of the exterior differential calculus . 125 4.6 Cartan's theory of general Pfaffian systems . 127 4.6.1 Geometrical representation . 127 4.6.2 Cauchy's first theorem . 131 4.6.3 Genre and characters . 135 3 4 CONTENTS 4.6.4 Characteristic elements . 138 4.6.5 Pfaffian systems of character one, II . -
Bertrand Duplantier Vincent Rivasseau Editors Poincaré Seminar
Progress in Mathematical Physics 67 Bertrand Duplantier Vincent Rivasseau Editors Henri Poincaré, 1912–2012 Poincaré Seminar 2012 Progress in Mathematical Physics Vo l u m e 6 7 Editors-in-Chief Anne Boutet de Monvel, Université Paris VII Denis Diderot, France Gerald Kaiser, Center for Signals and Waves, Portland, OR, USA Editorial Board Sir M. Berry, University of Bristol, UK P. Blanchard, University of Bielefeld, Germany M. Eastwood, University of Adelaide, Australia A.S. Fokas, University of Cambridge, UK F.W. Hehl, University of Cologne, Germany University of Missouri, Columbia, USA D. Sternheimer, Université de Bourgogne, Dijon, France C. Tracy, University of California, Davis, USA For further volumes: http://www.birkhauser-science.com/series/4813 Bertrand Duplantier • Vincent Rivasseau Editors Henri Poincaré, 1912–2012 Poincaré Seminar 2012 Editors Bertrand Duplantier Vincent Rivasseau Institut de Physique Théorique Laboratoire de Physique Théorique CEA Saclay Université Paris-Sud Gif-sur-Yvette Cedex, France Orsay, France ISSN 1544-9998 ISS N 2197-1846 (electronic) ISBN 978-3-0348-0833-0 ISBN 978-3-0348-0834-7 (eBook) DOI 10.1007/978-3-0348-0834-7 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2014955371 MathematicsSubject Classification (2 010): 01Axx, 00A30, 30F10, 30F35, 37-03, 60-03, 78-03 © Springer Basel 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
And the Shadow of Camille Jordan)
Revue d’histoire des mathématiques 17 (2011), p. 273–371 SELF-PORTRAITS WITH EÂVARISTE GALOIS (AND THE SHADOW OF CAMILLE JORDAN) FreÂdeÂric Brechenmacher Abstract. — This paper investigates the collections of 19th century texts in which Evariste Galois’s works were referred to in connection to those of Camille Jordan. Before the 1890s, when object-oriented disciplines developed, most of the papers referring to Galois have underlying them three main networks of texts. These groups of texts were revolving around the works of individuals: Kronecker, Klein, and Dickson. Even though they were mainly active for short periods of no more than a decade, the three networks were based in turn on specific references to the works of Galois that occurred in the course of the Texte reçu le 15 février 2011, accepté le 15 mars 2011. F. Brechenmacher, Univ. Lille Nord de France, 59000 Lille (France), U. Artois, Laboratoire de mathématiques de Lens (EA 2462), rue Jean Souvraz S.P. 18, 62300 Lens (France). Courrier électronique : [email protected] 2000 Mathematics Subject Classification : 01A55, 01A85. Key words and phrases : Galois, Jordan, Hermite, Kronecker, Klein, Dickson, Moore, Traité des substitutions, networks of texts, history of algebra, history of number theory, linear groups, cyclotomy, substitutions, group theory, equations, finite fields, Galois fields. Mots clefs. — Galois, Jordan, Hermite, Kronecker, Klein, Dickson, Moore, Traité des substitutions, réseaux de textes, histoire de l’algèbre, histoire de la théorie des nombres, groups linéaires, cyclotomie, substitutions, théorie des groupes, equations, corps finis. Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche: ANR CaaFÉ (ANR-10-JCJC 0101). -
Inventaire Du Fonds D'archives D'émile Borel
ACADÉMIE DES SCIENCES 44 J Fonds Émile Borel 1889-1937 Inventaire par Florence GREFFE Conservateur en chef du patrimoine Révisé en octobre 2020 Sommaire Introduction p 2-5 44 J 1 Correspondance de René Baire et d’Emile Borel (B 001-052) p 44 J 2-3 Lettres de Henri Lebesgue à Emile Borel (L 001-230) p. 44 J 4-11 Lettres adressées à Emile Borel (M 001-400) p. 20-52 44 J 12-15 Création de la Revue du Mois (RM 001-340 ) p. 53-86 44 J 16 Activité politique d’Émile Borel (VP 001-019) p. 87-88 Index p. 89-98 REPERES BIOGRAPHIQUES Né à Saint-Affrique (Aveyron) le 7 janvier 1871 Émile Borel a fait l’essentiel de sa carrière scientifique à Paris. Il décède à Paris le 3 février 1956. Fils d’Honoré Borel, pasteur protestant, et d’Émilie Teissié-Solier, il est reconnu comme un prodige dès 1882, et quitte l’école privée de son père pour le lycée Ingres de Montauban jusqu’à l’obtention du baccalauréat ès sciences et ès lettres (1887). Arrivé à Paris comme boursier pour préparer ses études universitaires, il fréquente le collège Sainte-Barbe et le lycée Louis-le-Grand. Il est introduit dans le cercle de Gaston Darboux par l’intermédiaire de son fils avec lequel il s’est lié d’amitié. Cette rencontre le détermine à faire des études de mathématiques. En 1889, il est reçu premier au concours de l’École Polytechnique et de l’École Normale Supérieure. Il choisit la voie de l’enseignement et de la recherche et suit les 2 cours de l’École Normale Supérieure (1er novembre 1889-31 octobre 1892). -
RÉFÉRENCES Abbadie, A. 1868, D', Sur Le Dernier Travail De M. Foucault
1 RÉFÉRENCES Abbadie, A. 1868, d', Sur le dernier travail de M. Foucault, CRAS 66, 589 Abbott, D. 1984, The biographical dictionary of scientists : Astronomers, Blond Educational, London. Abetti, G. 1970, Antoniadi, Eugène M., Dictionary of Scientific Biography 1, 172 Adam, 1904, Discours prononcé aux obsèques de Prosper Henry , Bulletin astronomique 21, 49 Aitken, R.G. 1942, Dorothea Klumpke Roberts, an appreciation, Pub. astron. soc. Pacific 54, 217 Alcan, F. 1918, Paul Porchon, Annuaire de l’association amicale des anciens élèves de l’École normale supérieure, p. 26 Aldunate, A. 1975, Chile mira hacia las estrellas, Santiago Allard, E. 1879, Phares et balises, Rotschild, Paris Allorge, H. 1936, Alexandre Allégret, Dictionnaire de biographie française 2, 158 Allotte de la Fuÿe, M. 1953, Jules Verne, sa vie, son œuvre, Hachette, Paris Alphandéry, M.-F. 1963, Dictionnaire des inventeurs français, Seghers, Paris Amat, Roman d’ 1948, Augustin Babin, Dictionnaire de biographie française 4, 1013 Amat, Roman d' 1965, Charles-François Delamarche, Dictionnaire de biographie française 10,668 Ames, J.S. 1902, Marie-Alfred Cornu, Astrophysical Journal 15, 299 Amoudry, M. 1993, Le général Ferrié et la naissance des transmlissions et de la radiodiffusion, Presses universitaires de Grenoble, Grenoble Ancellin, J. 1985, Un homme de science du XIXe siècle : l'astronome Emmanuel Liais, Mémoires de la société nationale des sciences naturelles et mathématiques de Cherbourg, 57, 1 André, C. 1878, L'observatoire universitaire de Lyon (Saint-Genis-Laval), Association typographique, Lyon. Extrait des mémoires de l'Académie des Sciences, Belles-Lettres et Arts de Lyon Andrews, A.D. 1995, Cyclopaedia of telescope makers. -
Appendix: a Selection of Documents1
APPENDIX: A SELECTION OF DOCUMENTS1 1) A letter from Felix Klein to Heinrich von Mühler, the Prussian Minister of Religious, Educational, and Medical Affairs (Minister of Culture).2 Your Excellency, Düsseldorf – December 19, 1870 In a request dated March 7th of this year, I took the liberty of asking for diplomatic recommendations to travel to France and England for the purpose of undertaking a scientific trip. At the same time, I had offered to submit reports on the conditions of mathematics in these countries upon my return. On March 26th, I was fortunate enough to receive a reply from your Excellency (U 7737) to the effect that the diplomatic recommendations in question had been granted to me, and that your Excellency would be pleased to receive reports on the present state of French and English mathematics. Under the prevailing conditions, unfortunately, the trip could not be underta- ken in the way that I intended. My stay in Paris, where I had arrived on April 19th, was suddenly interrupted by the declaration of war on July 16th. I rushed home (Düsseldorf) and, because I was deemed unfit for military service at the moment by the relevant authorities, I joined an association for voluntary medical care, which had meanwhile been established in Bonn. As a member of this association, I spent the period from August 16th to October 2nd, when I was discharged to re- turn home on account of my poor health, in the theater of war. Having only recently recovered, I did not want to make the trip to England because of the time that I had lost. -
French Efforts at the Creation of a Galois Theory of Differential Equations 1880–1910
Revue d’histoire des mathématiques 17 (2011), p. 373–401 DIFFERENTIAL EQUATIONS AND ALGEBRAIC TRANSCENDENTS: FRENCH EFFORTS AT THE CREATION OF A GALOIS THEORY OF DIFFERENTIAL EQUATIONS 1880±1910 Tom Archibald Abstract. — A “Galois theory” of differential equations was first proposed by Émile Picard in 1883. Picard, then a young mathematician in the course of mak- ing his name, sought an analogue to Galois’s theory of polynomial equations for linear differential equations with rational coefficients. His main results were limited by unnecessary hypotheses, as was shown in 1892 by his student Ernest Vessiot, who both improved Picard’s results and altered his approach, leading Picard to assert that his lay closest to the path of Galois. The subject became interesting to a number of French researchers in the next decade and more, most importantly Jules Drach, whose flawed 1898 doctoral thesis led to a further reworking of the subject by Vessiot. The present paper recounts these events, looking at the tools created and at the interpretation of the Galois legacy man- ifest in these different attempts. Résumé (Équations différentielles et transcendants algébriques : les efforts français sur la création d’une théorie de Galois pour les équations différen- tielles 1880–1910) Une « théorie de Galois » pour les équations différentielles a été créée pour la première fois par Émile Picard en 1883. Picard, à cette époque un jeune mathématicien qui cherchait faire une réputation, a façonné une théo- rie analogue à celle des équations algébriques de Galois pour les équations différentielles linéaires à coefficients rationnels. Ses résultats étaient limités par des hypothèses superflues, un fait démontré en 1892 par son élève Ernest Vessiot, qui a amélioré les résultats de Picard en modifiant son approche. -
A Forgotten Chapter in the History of Algebraic Geometry
Revue d’histoire des math´ematiques, 3 (1997), p. 1–48. ALGEBRAIC GEOMETRY BETWEEN NOETHER AND NOETHER — A FORGOTTEN CHAPTER IN THE HISTORY OF ALGEBRAIC GEOMETRY Jeremy GRAY (*) ABSTRACT. — Mathematicians and historians generally regard the modern period in algebraic geometry as starting with the workof Kroneckerand Hilbert. But the relevant papers by Hilbert are often regarded as reformulating invariant theory, a much more algebraic topic, while Kronecker has been presented as the doctrinaire exponent of finite, arithmetical mathematics. Attention is then focused on the Italian tradition, leaving the path to Emmy Noether obscure and forgotten. There was, however, a steady flow of papers responding to the workof both Hilbert and Kronecker. The Hungarian mathematicians Gyula (Julius) K¨onig and J´ozsef K¨ursch´ak, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel Lasker and the English school teacher F.S. Macaulay all wrote extensively on the subject. This workis closely connected to a growing sophistication in the definitions of rings, fields and related concepts. The shifting emphases of their workshed light on how algebraic geometry owes much to both its distinguished founders, and how the balance was struckbetween algebra and geometry in the period immediately before Emmy Noether began her work. RESUM´ E´.—LAGEOM´ ETRIE´ ALGEBRIQUE´ DE NOETHER A` NOETHER — UN CHAPITRE OUBLIEDEL’HISTOIREDELATH´ EORIE´ .—Math´ematiciens et historiens consid`erent en g´en´eral que les travaux de Kronecker et de Hilbert inaugurent la p´eriode moderne de la g´eom´etrie alg´ebrique. Mais on a souvent envisag´e les articles correspondants de Hilbert comme une reformulation de la th´eorie des invariants, sujet de caract`ere nettement plus alg´ebrique, alors que Kronecker ´etait pr´esent´e comme promoteur doctrinaire d’une math´ematique arithm´etis´ee, finie. -
The Eyes of French Mathematicians on Tullio Levi-Civita - the Case of Hydrodynamics (1900-1930) Rossana Tazzioli
The eyes of French mathematicians on Tullio Levi-Civita - the case of hydrodynamics (1900-1930) Rossana Tazzioli To cite this version: Rossana Tazzioli. The eyes of French mathematicians on Tullio Levi-Civita - the case of hydrodynamics (1900-1930). Images of Italian Mathematics in France: The Latin Sisters, from Risorgimento to Fascism, 2016. hal-01436973 HAL Id: hal-01436973 https://hal.archives-ouvertes.fr/hal-01436973 Submitted on 22 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The eyes of French mathematicians on Tullio Levi-Civita – the case of hydrodynamics (1900-1930) Rossana Tazzioli Laboratoire Paul Painlevé Université de Lille 1, Sciences et Technologies 1. Introduction Tullio Levi-Civita (1871-1943), professor at the University of Rome from 1918 onwards, was a prominent Italian mathematician of the first part of the 20th century. He gave remarkable contributions to various mathematical fields, such as general relativity, the three-body problem, differential geometry, and hydrodynamics. French scholars generally appreciated Levi-Civita’s work – for instance, his work on differential geometry influenced Élie Cartan and his school, and his papers on the regularization of the three-body were essential for Jean Chazy’s research concerning the long-term behaviour of the solutions of the three-body problem.