An Abstract of the Dissertation Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Dissertation Of AN ABSTRACT OF THE DISSERTATION OF Michael Dossett for the degree of Doctor of Philosophy in Horticulture presented on April 22, 2011 Title: Evaluation of Genetic Diversity in Wild Populations of Black Raspberry (Rubus occidentalis L.) Abstract approved: Chad E. Finn In recent years, there has been renewed interest in black raspberry ( Rubus occidentalis L.) breeding. This has been spurred, in part, by an increase in black raspberry consumption due to studies that have shown them to be particularly high in anthocyanin content indicating high levels of antioxidants. Present cultivars are ill adapted to the biotic and abiotic stresses of the Pacific Northwest, where the commercial black raspberry industry is centered, and fields must be replanted after 3- 5 seasons. Breeding progress in black raspberry has been limited by a lack of genetic diversity. This work is the first documented effort to systematically collect and evaluate wild R. occidentalis germplasm from across the native range of the species. Sources of strong resistance to the virus vector Amphorophora agathonica Hottes were identified from Maine, Michigan, and Ontario. Populations with outstanding vigor and possible resistance to Verticillium wilt were identified, as were two populations with a novel anthocyanin profile. In addition, variation was documented for morphological traits such as thorniness and cane architecture as well as fruit weight and gloss, and ripening times. Molecular analysis of genetic diversity using microsatellite markers in these populations showed that black raspberry cultivars are closely related to each other, but there is tremendous diversity in the wild populations. The data also support phenotypic evidence that several “wild” populations may be descended from feral cultivated plants. Overall, genetic diversity in wild black raspberry germplasm shows tremendous potential for use in breeding improved cultivars. Evaluation of Genetic Diversity in Wild Populations of Black Raspberry ( Rubus occidentalis L.) by Michael Dossett A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented April 22, 2011 Commencement June 2011 Doctor of Philosophy dissertation of Michael Dossett presented on April 22, 2011 . APPROVED: Major Professor, representing Horticulture Head of the Department of Horticulture Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Michael Dossett, Author ACKNOWLEDGMENTS There are many people who have been instrumental in the completion of this project. First, I would like to thank Dr. Chad Finn, for his tireless support and advice, willingness to talk about small fruits at the drop of a hat, or just to listen, his constant encouragement, and seemingly endless enthusiasm and optimism. I would also like to thank Dr. Nahla Bassil for her guidance and support, enthusiasm, constant smile, and cheerful disposition. I owe a great deal of what I have learned over the last several years to them and appreciate all they have done to help me along the way. I would also like to thank my other committee members, Dr. Shawn Mehlenbacher, Dr. Rich Cronn and Dr. Ken Johnson, for their help in answering questions and addressing problems that have arisen during the course of this project, and for their insights that have helped point me in the right direction. I also owe a debt of gratitude to Mary Peterson and Ted Mackey. Aside from just plain putting up with me, their expertise in providing technical and field assistance has been invaluable and is greatly appreciated. Andy Livesay, Rob Livesay, Catherine Wright, Maeve Dempsey, Isaac Otto, and Alex Renn, all helped me out too many times to count with watering plants when I was away, picking fruit, and helping with field maintenance, for which I’m grateful. Erin Ortiz and Sumi Maristany, in addition to providing valuable summer help, taught me a great deal about how to manage my own time and supervise others, while being a joy to work with. I would also like to thank all the folks at the USDA-ARS Horticultural Crops Research Lab and the USDA-ARS National Clonal Germplasm Repository, particularly Bob Martin, Karen Keller, Jana Lee, Jerry Weiland, Paul Charron, Kim Hummer, Joe Snead, Jeanine DeNoma, Missy Fix, Jim Oliphant, and Joseph Postman. I would especially like to thank the past and present members of the Bassil lab, April, Barb, Wambui, and Ted, with whom I have had the pleasure of working over the last few years, for their help and camaraderie, as well as my fellow graduate students in the Horticulture department at Oregon State University. Horticulture department head Anita Azarenko, as well as Gina, LeeAnn, and Viki in the Horticulture office have all been supportive and tremendously helpful with travel and other paperwork. I would like to thank Dr. Jungmin Lee and Chris Rennaker in Parma, Idaho, who helped me with fruit chemistry analyses. In addition to letting me invade her lab and doing her best to make me feel at home while working in Idaho, Jungmin has been a great friend and colleague, given me advice whether I needed it or not, and has always been there to support me in my research and career. Brian Yorgey, with his good-natured humor, freezer space, and advice, also provided space and equipment that helped a great deal during the course of this project. I would also like to thank Dr. Chaim Kempler and Brian Harding with Agriculture and Agri-Foods Canada, and Karen Keller with the USDA-ARS in Corvallis, who helped me get started working with aphids, giving me advice, sharing their techniques, and giving me tips on how to work with them. Without the help of the following individuals sending me seed this project would not have been possible: W. Anderson (Illinois), M. Bathrick (Pennsylvania), C. Brown (New Jersey), P. Byers (Missouri), T. Cuff (Wisconsin), A. Dale (Ontario), R. Davis (New York), R. Geneve (Kentucky), J. Hancock (Michigan), D. Handley (Maine), A. Jamieson (New Brunswick), K. Kellogg (Connecticut), J. Lehman (Indiana), T. Leslie (Ohio), H. Love (Tennessee), J. Luby (Minnesota), C. Mauchline (Pennsylvania), R. Moyer (Virginia), G. Nonnecke (Iowa), M. Retter (Indiana), M. Stanton (Ohio), H. Swartz (Maryland), F. Takeda (West Virginia), E. Thompson (Arkansas), and C. Weber (New York). Financial support for this project was provided by grants from the USDA-ARS Plant Exchange Office, USDA-ARS Northwest Center for Small Fruits Research, and the Oregon Raspberry and Blackberry Commission. There are many others who have helped me and given their support and encouragement these last years and I wish there was the space to list them all, so I will finish by thanking my family, especially my wife Jaye, sisters Lisa and Michelle, and mom and dad. Your support and love has meant more to me than you know and was always there when I needed it the most; thank you. CONTRIBUTION OF AUTHORS Dr. Chad Finn oversaw and assisted with overall project conception, planning and design. Dr. Jungmin Lee oversaw and assisted with sample preparation and analysis of anthocyanins in black raspberry fruit (Chapter 4). Dr. Nahla Bassil oversaw and assisted in the collection and analysis of microsatellite data (Chapter 5). Dr. Kim Lewers provided primer sequences for EST-SSRs from an unpublished black raspberry EST library for use in studying black raspberry diversity (Chapter 5). All coauthors helped to edit and have approved the final version of the chapters with which they are associated. TABLE OF CONTENTS Page Chapter 1: Introduction ............................................................................................ 1 Chapter 2: Identification of Resistance to the Large Raspberry Aphid in Black Raspberry................................................................................................................. 7 Abstract........................................................................................................................................ 8 Introduction.................................................................................................................................. 8 Materials and Methods ............................................................................................................... 11 Plant Materials and Aphids ..................................................................................................... 11 Aphid Resistance Screening.................................................................................................... 12 F1 Populations ........................................................................................................................ 14 BC 1 Populations...................................................................................................................... 15 Statistics................................................................................................................................. 15 Results and Discussion ............................................................................................................... 15 References.................................................................................................................................. 21 Chapter 3: Morphology, Phenology, and Field Performance of Wild Black Raspberry Germplasm ...........................................................................................................
Recommended publications
  • Genetic Diversity in Wild and Cultivated Black Raspberry (Rubus Occidentalis L.) Evaluated by Simple Sequence Repeat Markers
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2012 Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers Michael Dossett Pacific Agri-Food Research Centre Nahla V. Bassil United States Department of Agriculture Kim S. Lewers United States Department of Agriculture Chad E. Finn United States Department of Agriculture, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Dossett, Michael; Bassil, Nahla V.; Lewers, Kim S.; and Finn, Chad E., "Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers" (2012). Publications from USDA-ARS / UNL Faculty. 1243. https://digitalcommons.unl.edu/usdaarsfacpub/1243 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Genet Resour Crop Evol (2012) 59:1849–1865 DOI 10.1007/s10722-012-9808-8 RESEARCH ARTICLE Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers Michael Dossett • Nahla V. Bassil • Kim S. Lewers • Chad E. Finn Received: 7 September 2011 / Accepted: 15 January 2012 / Published online: 26 February 2012 Ó Springer Science+Business Media Dordrecht (outside the USA) 2012 Abstract Breeding progress in black raspberry (Ru- (SSR), markers are highly polymorphic codominant bus occidentalis L.) has been limited by a lack of markers useful for studying genetic diversity, popula- genetic diversity in elite germplasm.
    [Show full text]
  • Transcriptome Assembly and Expression Analysis in Colletotrichum Gloeosporioides-Tolerant Rubus 7 Glaucus Benth
    RESEARCH Transcriptome assembly and expression analysis in Colletotrichum gloeosporioides-tolerant Rubus 7 glaucus Benth. Juliana Arias1, Juan C. Rincón1*, Ana M. López1, and Marta L. Marulanda1 1Universidad Tecnológica de Pereira, Grupo de Investigación en Biodiversidad y Biotecnología, Carrera 27 No. 10-02 Pereira, Risaralda, Colombia. *Corresponding author ([email protected]). Received: 9 April 2019; Accepted: 30 July 2019; doi:10.4067/S0718-58392019000400565 ABSTRACT Andean blackberry (Rubus glaucus Benth.) is an important crop of the Andean region affected by Colletotrichum gloeosporioides. In Colombia, tolerant plant material has been detected, but it has not been completely characterized. The objective of this research was oriented to analyze de novo transcriptome assembly of R. glaucus, and the comparison of the assembly with different reference genomes to further complete differential expression analysis of R. glaucus tolerant to C. gloespoiorides attack. To achieve this, three groups were used: infected tolerant material, infected susceptible material, and a susceptible group without inoculation. The RNA-seq sequencing was achieved through Illumina Hi-seq 2000. De novo assembly (Trinity, CD-HIT, TopHat) and functional annotation of sequences were carried out, additionally, mapping with reference genomes belonging to Rosaceae families was conducted (Bowtie2, TopHat). Subsequently, the differential expression was quantified (Cuffdiff) and analyzed through EdgeR. Variant analysis was made using MISA and SAMtools. After editing and assembly, 43579 consensus sequences were obtained (N50 = 489 bp; GC = 44.6%), annotation detected 35824 and 35602 sequences in Nt (partially non-redundant nucleotide sequences) and Nr (non-redundant protein sequences) databases, respectively. The 85% of Nr sequences was linked to members of Rosaceae family, mainly strawberry (67.6%).
    [Show full text]
  • Appendix 2: Plant Lists
    Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp.
    [Show full text]
  • Rubus Pharmacology: Antiquity to the Present Kim E
    Rubus Pharmacology: Antiquity to the Present Kim E. Hummer U.S. Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97333 Additional index words. ancient and traditional, medicine, blackberries, raspberries, Rubus Abstract. The genus Rubus L., indigenous to six continents, includes blackberries, raspberries, and their hybrids and is commonly referred to as brambles or briers. Rubus species were a food and medicinal source for native peoples soon after the Ice Age. This short article presents only a sample of the wealth of historical reports of medicinal uses for Rubus. Brambles were documented in the writings of the ancient Greeks: Aeschylus, Hippocrates, Krataeus, Dioscorides, and Galen; Romans: Cato, Ovid, and Pliny the Elder; Asian medicinal traditions; traditional Chinese medicine; and the Ayurvedic tradition of India. Folk traditions of native peoples throughout the world have also applied Rubus for multiple medicinal uses. Although in modern times Rubus is grown for its delicious and vitamin-rich fruit for fresh and processed product consumption, the ancients used the whole plant and its parts. Stems, branches, roots, leaves, and flowers were used in decoctions, infusions, plasters, oil or wine extractions, and condensates. Decoctions of branches were applied to stop diarrhea, dye hair, prevent vaginal discharge, and as an antivenom for snakebites. Leaves were chewed to strengthen gums and plastered to constrain shingles, head scurf, prolapsed eyes, and hemorrhoids. Flowers triturated with oil reduced eye inflammations and cooled skin rashes; infusions with water or wine aided stomach ailments. Greeks and Romans recorded female applications, whereas the Chinese described uses in male disorders.
    [Show full text]
  • Downloaded From
    Rubus strigosus Michx. Common Names: American red raspberry (1), wild red raspberry (6), grayleaf red raspberry (2). Etymology: “Rubus” is the latin word for blackberry/raspberry and “strigosus” is the latin word for thin (5). Botanical synonyms: Rubus idaeus L. ssp. strigosus (Michx.) Focke, Rubus melanolasius Dieck, Rubus neglectus Peck, Rubus carolinianus Rydb (2). FAMILY: Rosaceae, the Rose family (1) Quick Notable Features: ¬ Glandular-bristly stems ¬ Pinnately compound leaves with 3- 5 serrated leaflets, abaxially glaucous ¬ Perfect, white flowers with the sepals longer than the petals ¬ Red aggregate of drupelets that separates from the receptacle Plant Height: Rubus strigosus can reach up to 2m (7). Subspecies/varieties recognized (source 1,13): R. strigosus var. aberratus, R. strigosus var. acalyphaceus, R. strigosus var. albus, R. strigosus var. arizonicus, R. strigosus var. caudatus, R. strigosus var. eucyclus, R. strigosus var. heterolasius, R. strigosus var. strigosus, R. strigosus var. tonsus. Most Likely Confused with: Other members of the genus Rubus, such as Rubus occidentalis, Rubus idaeus, and Rubus neglectus. Rosa englanteria and Rosa setigera may also be similar in appearance (8,9). Habitat PreFerence: Rubus strigosus grows in open or disturbed areas with well drained soil (7,8). Geographic Distribution in Michigan: Rubus strigosus is found in most counties of the Upper and Lower Peninsulas (2). Known Elevational Distribution: R. strigosus was found at Mount Mitchell State Park (NC), at an elevation of 2,037m (12). Complete Geographic Distribution: R. strigosus is native to North America and widely distributed on the United States (AK, AZ, CA, CO, CT, DE, IA, ID, IL, IN, MA, MD, ME, MI, MN, MO, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, RI, SD, TN, UT, VA, VT, WA, WI, WV, WY), Canada (AB, BC, LB, MB, NB, NF, NS, NT, NU, ON, PE, QC, SK, YT), and France (St.
    [Show full text]
  • 2002 Black Raspberry (Rubus Occidentalis) Cultivar Study
    Black Raspberry Cultivar Study Page 1 of 3 Black Raspberry ( Rubus occidentalis ) Cultivar Study (Shawn R. Wright, Christie Welch, Lynn Miller and Richard C. Funt) Introduction Two varieties of black raspberry are commonly grown in Southern Ohio. Bristol {1934, NYFTA, Geneva, NY. (Watson Prolific x Honeysweet)}produces a fruit that is medium-large, firm, with good flavor and glossy skin. It is a good yielder and mildew tolerant, but susceptible to anthracnose. Jewel {1973, NYFTA, Geneva, NY. [(Bristol x Dundee) x Dundee]} produces fruit that are also large, firm, with good flavor and glossy skin. The plant is vigorous, erect, resistant to anthracnose, and widely adapted. The fruit ripens after Bristol, though both varieties are considered early season ripening in mid-June in Southern Ohio. Mac Black is another variety that growers have expressed an interest in because it will allow them to extend their picking season for approximately 10 days beyond what is possible with the early varieties. This study was planted to determine the relative yield and harvest season of Mac Black relative to Bristol and Jewel. Growers often wonder if it is advantageous to harvest the “baby crop” the second year from planting or if the it is better to allow the plants to establish themselves and begin harvesting the third year. We can’t say what the effect will be on the long-term health of the planting, but the following information on production should be useful. Methods Experimental design: Randomized Complete Block on raised beds NORTH Guard Row Guard Row 6 plants/plot Jewel Mac Black Mac Black Bristol Mac Black Bristol 30 inch spacing 15 foot plots Jewel Jewel Bristol Mac Black Jewel Bristol 12 foot centers 3 feet between plots Jewel Bristol Jewel Jewel Bristol Bristol Tissue cultured Bristol, Jewel, and Mac Black raspberries ( Rubus occidentalis L.) obtained from Nourse Farm ⊗ were planted at the Ohio State University South Centers (Piketon, OH) on June 15, 2001.
    [Show full text]
  • Helianthus Hirsutus Raf
    Helianthus hirsutus Raf. whiskeredwhiskered sunflower sunflower, Page State Distribution Merel Black- Univ. Wisc. Stevens Point Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern State distribution: Currently, the Michigan distribution as shown via the heritage database is problematical, Global and state rank: G5/S3 owing to the fact that this easily overlooked species has not been verified in many localities via the Other common names: hairy sunflower, stiff-hair collection of voucher specimens. Several reported sunflower records include field surveys by subsequent surveyors that suspect misidentification of the more commonH. Family: Asteraceae (aster family); also known as the divaricatus (woodland sunflower), thus these localities Composite are suspicious and require further investigation, including the acquisition of vouchers. It also appears Synonyms: Helianthus hirsutus var. stenophyllus that some sites based on putative specimens have now Torrey & A. Gray; H. hirsutus var. trachyphyllus Torrey been determined to be invalid. Voss (996) indicates & A. Gray; H. stenophyllus (Torrey & A. Gray) E. the distribution as consisting of Wayne, Washtenaw, Watson; H. leptocaulis (S. Watson) S. F. Blake (Flora of Lenawee, and Menominee counties, which is the North America 2006). distribution depicted here. Taxonomy: A detailed infrageneric classification Recognition: Helianthus hirsutus is a perennial, of Helianthus was proposed by Schilling and leafy-stemmed forb arising from long rhizomes, Heiser (98); however, the reader is referred to the ranging up to 2 m in height. The finely hairy stems contemporary treatment of the Asteraceae in the Flora of bear opposite, ascending, lanceolate (lance-shaped) North America (2006).
    [Show full text]
  • Essential Guide to Rubus
    The Herb Society of America Essential Guide to Rubus Table of Contents From the Bramble Patch 2 The Brambles: Sorting through the Thicket of Rubus Terminology 3 General Culture 10 Cultivars of Note 12 Rubus as Metaphor: The Bramble Bush and the Law 16 On a Roll with Raspberries (With Recipes) 18 The Traditional Bramble (With Recipes) 21 Blackberry Leaf Tea 24 The Literary Rubus 25 Sources 28 The Herb Society of America, Inc. is dedicated to promoting the knowledge, use, and delight of herbs through educational programs, research, and sharing the experience of its members with the community. Environment Statement The Society is committed to protecting our global environment for the health and well-being of humankind and all growing things. We encourage gardeners to practice environmentally sound horticulture. Medical Disclaimer It is the policy of The Herb Society of America not to advise or recommend herbs for medicinal or health use. This information is intended for educational purposes only and should not be considered as a recommendation or an endorsement of any particular medical or health treatment. Please consult a health care provider before pursuing any herbal treatments. Information is provided as an educational service. Mention of commercial products does not indicate an endorsement by The Herb Society of America. 1 Ghost bramble Photo courtesy of robsplants.com Notes from the Bramble Patch From the blackberry tangled verges along country lanes to the new smaller, thornless raspberries being bred for today’s gardeners, the genus Rubus is a diverse one – feeding us and ornamenting our gardens and providing food and protective cover for wildlife and pollinators alike.
    [Show full text]
  • Preliminary Plant List
    Growing Plant List of RoeJan Park, Hillsdale compiled by the Participatory Natural History Survey Group, an initiative of the Farmscape Ecology Program [email protected] 2009 2008 e e d i d i s - s - e n e e e W d a d d d W w i w i i i J e s o o s s s d - e g - - - d d w a o d W S a a S S E W a o o e f R t e e r t l E d d s w w t w w s w f E s E E a a a M m W d s o f e o o o o o e w m l N l e o N N r r r r r t r r r e r d r e o a t r e t t e e e e s o e e i a o a m r f d s f f s s o e g g g F g e / w S t w m f y o a e r e e d d r d d a e r d o o r r a e n h o m l l n l e n e a e i e e i o f f i o o h s w f e F r d f a h m h h f f h y i d a l d r f a d l l t l n n n n b p i p i a p d d d d d d d r r r r a n p a c b t y d n n n n n n i n e e e e f m w a i m W d l t t u l t t n a a a a a o a a a n t a b r l o l l l l l l r a s s s s o c f e W a h w W p o p p p a p l p i p a a a a w l l N u f e e H S w u u u e e b u s a S F u S p u Habitat # on Aerial Photo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 15 5 18 19 Family Species Common Name Aceraceae Acer negundo Boxelder x Aceraceae Acer saccharinum Silver maple x Aceraceae Acer saccharum Sugar maple x Alismataceae Alisma sp.
    [Show full text]
  • Medicinal Plants of Ohio
    Feb., 1910.] Medicinal Plants of Ohio. 73 MEDICINAL PLANTS OF OHIO. FREDA DETMERS. (Continued from page 60.) Papaveraceae. Sanguinaria canadensis L. Blood root. (U. S. P.) (Ec.) (Horn.) Rhizome. Stylophorum diphyllum Nutt. Celandine Poppy. (Ec.) Rhizome. Chelidonium majus L. Celandine. (Ec.) Plant. Argemone mexicana L. Mexican or Prickly Poppy. (Ec.) Plant. Fumariaceae. Bicuculla canadensis (Goldie) Millsp. (Dicentra canadensis DC). Squirrel corn. (Ec.) (Horn.) Tubers. Cruciferae. Bursa bursa-pastoris (L.) Britt. (Capsella bursa-pastoris Moench). Shepherd's Purse. (Ec.) Dried plant. Brassica alba (L.) Boiss. {Sinapis alba L.) White Mustard. (U. S. P.) (Ec.) (Horn.) Seed. Brassica nigra (L.) Koch. {Sinapis nigra L.) Black Mustard. (U. S. P.) (Ec.) (Horn.) Seed. Sisymbrium officinale Scop. Hedge Mustard. (Ec.) Seeds and herb. Sarraceniales. Sarraceniaceae. Sarracenia purpurea L. Pitcher Plant. (Ec.) (Horn.) Root. Droseraceae. Drosera rotundifolia L. Round-leaved Sundew. (Ec.) (Horn.) herb. Rosales. Penthoraceae. Penthorum sedoides L. Ditch Stone crop. (Ec.) (Horn.) Herb. Saxifragaceae. Heuchera americana L. Alum Root, American Sanicle. (Ec.) Root. Hydrangeaceae. Hydrangea arborescens L. Seven Barks, Hydrangea. (Ec.) (Horn.) Root. Philadelphia coronarius L. Garden Syringa, Mock Orange. (Horn.) Flowers. 74 The Ohio Naturalist. [Vol. X, No. 4, Grossulariaceae. Ribes rubrum L. Red Currant. (Ec.) Fruit. Ribes nigrum L. Black Currant cult. (Ec.) Fruit. Ribes floridum L'Her. Wild Black Currant. (Ec.) Fruit. Hamamelidaceae. Hamamelis virginiana L. Witch Hazel. (U. S. P.) (Ec.) (Horn.) Leaves coll. in autumn, bark and twigs. Liquidambar styriciflua L. Sweet Gum. (Ec.) Sap. Rosace ae. Spiraea tomentosa L. Hard hack. (Ec.) (Horn.) Herb. Porteranthus trifoliatus (L.) Britt. (Gillenia trifoliata Moench.) Indian Physic. (Ec.) Bark of Rhizome.
    [Show full text]
  • Japanese Wineberry Rubus Phoenicolasius
    Japanese wineberry Rubus phoenicolasius Description Introduced in the United States in 1890 as breeding stock for new Rubus cultivars (blackberries and raspberries). It is used today by berry breeders to add specific genes to berry varieties or species. Habit Perennial shrub with long arching stems (canes) up to 9 ft in length. Leaves Alternate, palmately compound, 3 heart-shaped serrated leaflets. Stems Arching, known as canes, grows up to 9 ft in length, Upright stems have red gland tipped hairs and small spines. Source: MISIN. 2021. Midwest Invasive Species Information Network. Michigan State University - Applied Spatial Ecology and Technical Services Laboratory. Available online at https://www.misin.msu.edu/facts/detail.php?id=73. Flowers Small, greenish in color with white petals and reddish hairs; blooms in late spring to early summer. Fruits and Seeds Edible raspberry-like fruit, bright red to orange-red in color, multiple drupes and ripens in mid summer. Produces seeds as well. Habitat Native to Japan, Korea, and China. Found in forests, fields, streams and wetland edge habitats, open woods, savannas and prairie habitats. Reproduction By seeds, and through vegetative means including root buds and the sprouting of new plants from where canes touch the soil. Similar Red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis) / (Rubus leucodermis) and blackberry (Rubus fruticosus). Monitoring and Rapid Response Removal of plants by hand-pulling or use a 4-prong spading fork when the soil is moist. Branches and berries should be bagged but the remaining plant material can be left to compost. Sites can be burned or mowed.
    [Show full text]
  • 'Kokanee' Primocane-Fruiting Red Raspberry
    HORTSCIENCE 53(3):380–383. 2018. https://doi.org/10.21273/HORTSCI12691-17 bit asymmetrical with uneven surface) fruit that ripen late. ‘Vintage’ is a smaller, less vigorous plant than ORUS 1173-2 with out- ‘Kokanee’ Primocane-fruiting Red standing flavored, bright-colored, and firm fruit (Finn et al., 2013). ‘Kokanee’ is being Raspberry released primarily because of its outstanding 1 fresh fruit quality (large, attractive, good Chad E. Finn flavor, and bright color), its adaption to U.S. Department of Agriculture-Agricultural Research Service, Horticultural handling in the wholesale fresh market, and Crops Research Unit, Corvallis, OR 97330 its adaptation to production in regions as diverse as the Pacific Northwest and the Bernadine C. Strik central highlands of Mexico. Department of Horticulture, Oregon State University, Corvallis, OR 97331 Description and Performance Mary E. Peterson U.S. Department of Agriculture-Agricultural Research Service, Horticultural ‘Kokanee’ has been evaluated most ex- Crops Research Unit, Corvallis, OR 97330 tensively in trials at Oregon State Univer- sity’s North Willamette Research and Brian M. Yorgey Extension Center (OSU-NWREC, Aurora, Department of Food Science and Technology, Oregon State University, OR) as well as observation plots with the Corvallis, OR 97331 U.S. Dept. of Agriculture-Agricultural Re- search Service (USDA-ARS) in Corvallis, Patrick P. Moore OR, and in commercial trials in northern Department of Horticulture, Washington State University (WSU) , Puyallup, (Watsonville) and southern (Oxnard) Cali- fornia, central Mexico (Zamora), and south- WA 98371 western Spain (Huelva). At OSU-NWREC ° # $ ° # $ Patrick A. Jones (lat. 45 16 48 N, long. 122 45 3 W; USDA-ARS Hardiness Zone 8b), trials were North Willamette Research and Extension Center, Oregon State University, established in 2010 and 2015 and arranged in Aurora, OR 97002 a randomized complete block design, with three 3-plant replications (0.9 m between Jungmin Lee plants) used for measuring fresh fruit char- U.S.
    [Show full text]