<<

Symmetry Tailored workspaces—optimized facility

Process Software Platform Steam Furnaces User-Friendly Interface PIONA Molecular Structure Technology Symmetry Users can easily link the Symmetry platform to Excel using our built-in Excel fluids are complex mixtures of many chemical species. Unit Operation which eliminates the need to write code. This poses a challenge for characterization using conventional methods, where hypothetical components need to be created for each sample, Tailored workspaces—optimized facility Feedstocks Yield Additionally, the Symmetry platform includes a Component Object Model blends, and product. Selection Prediction (COM) link layer which provides a customizable interface that enables you to interact directly with the process simulator without the GUI. This can be The Symmetry platform’s PIONA molecular-structure-characterization Total used to link the Symmetry platform with any COM-compliant application approach represents hydrocarbon fluids in terms of chemical families Optimization such as Excel, Visual Basic, C++, Python, and many others. and number. We can rigorously capture the essential chemistry Hydrocarbon fluids are complexof the mixtures fluids of andmany chemicalblends species. to calculate This poses a chemical challenge for characteriza�onand physical using properties. conven�onal methods, where hypothe�cal components need to be created for each sample, blends and products. Tube TemperatureThis approach can also mechanistically predict kinetic rates using only 8 Cur Row = 170 Tube Coil Inlet = 0.02 mm Case Name = SteamCrackingFurnace-C2-C3.vsym 1120 Symmetry’ s PIONA molecular structure characteriza�on approach represents hydrocarbon fluids in terms of chemical families and carbon Coke Growth Friendly START Row = 171 Tube Pass 2 = 7.64 mm Tube Pass 4 = mm LastRow = 500 7.98 Number of service runs = 8 1080 number.Max.Tube TheTemp. structures useda limited are the PIONA number group: Paraffins,of components. iso-Paraffins, Olefins, This Naphthenesenables andyou different to perform forms of Aroma�cs. highly We can Tube Coil Outlet = 13.61 mm Service Run Profit = 37561 STOP Prediction Interface Max Coil DP = 150.0 kPa *Unit conversion: 1040 Max Tube T = 1093.3 C y = BIAS + x*MULT (from data to model) Time Step = 6 capture the essen�alTube Temp. chemistryaccurate of the fluidsfeed and blending blends rigorously studies, to calculate including chemical and reaction physical proper�es. kinetics This prediction. approach can also 1000 SAVE POIINT Run Length 39 960 mechanis�cally predict kine�c rates using only a limited number of components. This allows the user to perform highly accurate feed blending

COKE COKE COKE COKE COKE COKE COKE COKE MAX MAX 920 Description Save "Fixed" "Fixed" "Fixed" "Fixed" "Fixed" "Fixed" "Fixed" "Fixed" "Constraint""Constraint" studies, including reac�on kine�cs predic�on. Temperature Intelligent Simulation and Optimization Tag Name Point Coil Inlet Pass 6 Pass 7 Coil Outlet Coil Inlet Pass 6 Pass 7 Coil OutletCoil DP Tube T 880 C4LPG Unit Bias COT Blending Feed Unit Mult 840 Units (Y/N) mm mm mm mm mm/day mm/day mm/day mm/day kPa C 800 01-Jan-19 00:00:00 No 0.0 0.0 0.0 0.0 0.00 1.80 1.90 3.50 102.0 965.0 2019/1/1 2019/1/15 2019/1/29 2019/2/12 of Steam Cracking Furnaces 01-Jan-19 06:00:00 No 0.0 0.5 0.5 0.9 0.00 0.19 0.19 0.36 103.6 975.3 01-Jan-19 12:00:00 No 0.0 0.5 0.5 1.0 0.00 0.19 0.19 0.36 103.9 976.3 01-Jan-19 18:00:00 No 0.0 0.6 0.6 1.1 0.00 0.19 0.19 0.36 104.1 977.3 Coke Thickness 02-Jan-19 00:00:00 No 0.0 0.6 0.6 1.2 0.00 0.19 0.20 0.36 104.4 978.4 14 ■ 02-Jan-19 06:00:00 No 0.0 0.7 0.7 1.3 0.00 0.19 0.19 0.36 104.6 979.3 C1 C1 C2 Symmetry*, a process software platform, is a comprehensive simulator that Paraffins, isoparaffins, olefins, naphthenes, and aromatics (PIONA) Tube Temperature C2 C[3-4] 8 Cur Row = 170 Tube Coil Inlet = 0.02 mm Case Name = SteamCrackingFurnace-C2-C3.vsym C1 C[3-4] C[5-6] 02-Jan-19 12:00:00 No 0.0 0.7 0.7 1.3 1120 0.00 0.19 0.20 0.36 104.9 980.4 12 C2 C[7-8] C[3-4] C[5-6] START Row = 171 Tube Pass 2 = 7.64 mm C[5-6] C[7-8] C[9-11] 02-Jan-19 18:00:00 No 0.0 0.7 0.8 1.4 0.00 0.19 0.19 0.35 105.1 981.3 C[7-8] C[9-11] C[12-14] Coil Outlet C[15-17] LastRow = 500 Tube Pass 4 = 7.98 mm Number of service runs = 8 1080 C[9-11] C[12-14] 03-Jan-19 00:00:00 No 0.0 0.8 0.8 1.5 0.00 Max.Tube0. 1Temp9 . 0.20 0.36 105.4 982.4 10 C[12-14] C[15-17] C[18-20] Tube Coil Outlet = 13.61 mm Service Run Profit = 37561 C[15-17] C[18-20] C[21-24] empowers all aspects of your models from reservoir to product distribution. C[18-20] C[25-28] A- molecular structure environment C[21-24] STOP A A- 03-Jan-19 06:00:00 No 0.0 0.8 0.9 1.6 1040 0.00 0.19 0.20 0.36 104.9 983.3 C[21-24] C[25-28] A- C29+ N S,N,V Max Coil DP = 150.0 kPa *Unit conversion: A- A- O Dehyd 8 C[25-28] A- C29+ N A S,N,V I C29+ A S,N,V O Dehyd P 03-Jan-19 12:00:00 No 0.0 0.9 0.9 1.7 0.00 0.19 Tube 0Temp..20 0.36 105.1 984.3 N Dehyd I Max Tube T = 1093.3 C y = BIAS + x*MULT (from data to model) Time Step = 6 I O P 1000 P SAVE POIINT 03-Jan-19 18:00:00 No 0.0 0.9 1.0 1.8 0.00 0.19 0.20 0.36 105.4 985.3 6 C1 ■ C2 04-Jan-19 00:00:00 No 0.0 1.0 1.0 1.9 960 0.00 0.19 0.20 0.36 105.6 986.3 Coil Intlet C[3-4] Feedstock selection and blending optimization Run Length 39 C[5-6] 4 COKE COKE COKE 0C4O-JKaEn-19 C0O6:K0E0:00 CONKoE COKE 0.0COKE M1.A0X M1A.1X 2.0 0.00 0.19 0.20 0.35 105.8 987.2 C[7-8] The Symmetry platform’s steam cracking furnaces are thermal cracking 920 C[9-11]

Description Save "Fixed" "Fixed" "Fixed" 0"4F-iJxaend-"19 "1F2ix:0e0d:"00 "FiNxeod" "Fixed"0.0"Fixed" "1C.1onstraint""1C.o1nstraint" 2.1 0.00 0.19 0.20 0.35 106.1 988.1 Coke Thickness [mm] C[12-14] Temperature 2 C[15-17] Tag Name Point Coil Inlet Pass 6 Pass 7 0C4o-iJl aOnu-t1le9t C1o8i:l 0In0le:0t 0 PaNsso 6 Pass 7 0.0Coil OutletC1o.1il DP T1u.b2e T 2.1 880 0.00 0.19 0.20 0.35 106.3 989.1 C[18-20] ■ Unit Bias C[21-24] Easy matching of plant operating data 05-Jan-19 00:00:00 No 0.0 1.2 1.2 2.2 0.00 0.19 0COT.20 0.35 106.6 990.1 0 A- models that include rigorous kinetic reactions where a wide range of Unit Mult 840 C[25-28] A- 2019/1/1 2019/1/15 2019/1/29 2019/2/12 C29+ A S,N,V 05-Jan-19 06:00:00 No 0.0 1.2 1.3 2.3 0.00 0.19 0.20 0.35 106.8 990.9 N Dehyd Units (Y/N) mm mm mm mm mm/day mm/day mm/day mm/day kPa C I O 800 P 01-Jan-19 00:00:00 No 0.0 0.0 0.0 0.0 0.00 1.80 1.90 3.50 102.0 965.0 2019/1/1 2019/1/15 2019/1/29 2019/2/12 feeds—from light , such as ethane, all the way to vacuum ■ 01-Jan-19 06:00:00 No 0.0 0.5 0.5 0.9 0.00 0.19 0.19 0.36 103.6 975.3 Seamless integration of cracking furnaces and product separation 01-Jan-19 12:00:00 No 0.0 0.5 0.5 1.0 0.00 Tube0.19 Temperature0.19 0.36 103.9 976.3 8 Cur Row = 170 Tube Coil Inlet = 0.02 mm01-Jan-19 18:0C0a:s0e0 NaNmoe = Steam0C.0rackingF0u.r6nace-C20-C.63.vsym 1.1 0.00 0.19 0.19 0.36 104.1 977.3 Coke Thickness START 1120 Row = 171 Tube Pass 2 = 7.64 mm02-Jan-19 00:00:00 No 0.0 0.6 0.6 1.2 0.00 0.19 0.20 0.36 104.4 978.4 14 residues—are heated. The resulting changes in composition due to LastRow = 500 Tube Pass 4 = 7.98 mm02-Jan-19 06:N00u:m00berN oof service ru0n.s0 = 80.7 0.71080 1.3 Max.Tube0.0 0Temp. 0.19 0.19 0.36 104.6 979.3 ■ Tube Coil Outlet = 13.61 mm Service Run Profit = 37561 02-Jan-19 12:00:00 No 0.0 0.7 0.7 1.3 0.00 0.19 0.20 0.36 104.9 980.4 C1 C1 Geometry input for radiant box and convectionST OsectionsP 12 C2 1040 C2 Max Coil DP = 150.0 kPa *Unit conversion: C[3-4] C[3-4] 02-Jan-19 18:00:00 No 0.0 0.7 0.8 1.4 0.00 0.19 0.19 0.35 105.1 981.3 C[5-6] Coil Outlet C[5-6] C[7-8] C[7-8] Max Tube T = 1093.3 C y = BIAS + x*MULT (from data to model) Time Step = 6 Tube Temp. 10 C[9-11] 03-Jan-19 00:00:00 No 0.0 0.8 0.81000 1.5 0.00 0.19 0.20 0.36 105.4 982.4 C[9-11] cracking and other reactions are tracked at every point of the coil(s), C[12-14] C[12-14] C[15-17] SAVE POIINT C[15-17] 03-Jan-19 06:00:00 No 0.0 0.8 0.9 1.6 0.00 0.19 0.20 0.36 104.9 983.3 C[18-20] C[18-20] 8 C[21-24] ■ 960 C[21-24] 03-Jan-19 12:00:00 No 0.0 0.9 0.9 1.7 0.00 0.19 0.20 0.36 105.1 984.3 C[25-28] A- Run Length 39 C[25-28] A- A A- User-friendly Excel interface A A- C29+ N S,N,V C29+ S,N,V O Dehyd 03-Jan-19 18:00:00 No 0.0 0.9 1.0 1.8 0.00 0.19 0.20 0.36 105.4 985.3 6 N Dehyd I COKE COKE COKE COKE COKE COKE COKE COKE MAX MAX I O P all while calculating coke growth rate simultaneously. Furnace simulation 920 P Description Save "Fixed" "Fixed" "Fixed" "Fixed" "Fixed" "Fi0x4e-Jda"n-19" F0i0x:e0d0:"00"FiNxoed" "Const0r.a0int""Con1st.r0aint" 1.0 1.9 0.00 0.19 0.20 0.36 105.6 986.3 Coil Intlet Temperature 4 Tag Name Point Coil Inlet Pass 6 Pass 7 Coil Outlet Coil Inlet Pa0s4s- J6an-19P a0s6s:0 70:00CoiNl oOutletCoil DP0.0 Tube 1T.0 1.1 880 2.0 0.00 0.19 0.20 0.35 105.8 987.2 Naphtha ■ Unit Bias 04-Jan-19 12:00:00 No 0.0 1.1 1.1 2.1 0.00 0.19 0.20 0.35 106.1 988.1 Coke Thickness [mm] Gas Oil COT 2 enables the optimization of production in the case of lighter feeds Rigorous coke growth and service time predictionUnit Mult 04-Jan-19 18:00:00 No 0.0 1.1 1.2 840 2.1 0.00 0.19 0.20 0.35 106.3 989.1 Cracking furnace feed blending. Units (Y/N) mm mm mm mm mm/day mm05/d-Jaayn-19m 0m0/:d0a0y:00mmN/oday kPa 0.0 C 1.2 1.2 2.2 0.00 0.19 0.20 0.35 106.6 990.1 0 800 2019/1/1 2019/1/15 2019/1/29 2019/2/12 01-Jan-19 00:00:00 No 0.0 0.0 0.0 0.0 0.00 05-1J.a8n0-19 06:10.09:000 N3o.50 100.20.0 9615..20 1.3 2019/1/12.3 0.02019/1/15 0.19 201.92/01/29 0.35 2019/21/0126.8 990.9 and rigorously predicts the effect of feed compositions and process ■ 01-Jan-19 06:00:00 No 0.0 0.5 0.5 0.9 0.00 0.19 0.19 0.36 103.6 975.3 Multiple cracking furnace scheduling 01-Jan-19 12:00:00 No 0.0 0.5 0.5 1.0 0.00 0.19 0.19 0.36 103.9 976.3 01-Jan-19 18:00:00 No 0.0 0.6 0.6 1.1 0.00 0.19 0.19 0.36 104.1 977.3 Coke Thickness 02-Jan-19 00:00:00 No 0.0 0.6 0.6 1.2 0.00 0.19 0.20 0.36 104.4 978.4 14 conditions on coke formation and therefore service time runs. 02-Jan-19 06:00:00 No 0.0 0.7 0.7 1.3 0.00 0.19 0.19 0.36 104.6 979.3 Service time study. 02-Jan-19 12:00:00 No 0.0 0.7 0.7 1.3 0.00 0.19 0.20 0.36 104.9 980.4 12 02-Jan-19 18:00:00 No 0.0 0.7 0.8 1.4 0.00 0.19 0.19 0.35 105.1 981.3 Coil Outlet 03-Jan-19 00:00:00 No 0.0 0.8 0.8 1.5 0.00 0.19 0.20 0.36 105.4 982.4 10 03-Jan-19 06:00:00 No 0.0 0.8 0.9 1.6 0.00 0.19 0.20 0.36 104.9 983.3 8 03-Jan-19 12:00:00 No 0.0 0.9 0.9 1.7 0.00 0.19 0.20 0.36 105.1 984.3 03-Jan-19 18:00:00 No 0.0 0.9 1.0 1.8 0.00 0.19 0.20 0.36 105.4 985.3 6 04-Jan-19 00:00:00 No 0.0 1.0 1.0 1.9 0.00 0.19 0.20 0.36 105.6 986.3 Coil Intlet 04-Jan-19 06:00:00 No 0.0 1.0 1.1 2.0 0.00 0.19 0.20 0.35 105.8 987.2 4

04-Jan-19 12:00:00 No 0.0 1.1 1.1 2.1 0.00 0.19 0.20 0.35 106.1 988.1 Coke Thickness [mm] 2 04-Jan-19 18:00:00 No 0.0 1.1 1.2 2.1 0.00 0.19 0.20 0.35 106.3 989.1 05-Jan-19 00:00:00 No 0.0 1.2 1.2 2.2 0.00 0.19 0.20 0.35 106.6 990.1 0 05-Jan-19 06:00:00 No 0.0 1.2 1.3 2.3 0.00 0.19 0.20 0.35 106.8 990.9 2019/1/1 2019/1/15 2019/1/29 2019/2/12 Custom Furnace Geometry Input Rigorous Coke Growth Prediction 1.0 d e 0.8 m r

The PIONA molecular-structure-characterization approach opens the door The Symmetry platform’s coke growth prediction accounts for the different o F

e 0.6 k C o

for rigorous reaction kinetics prediction. The cracking furnace’s rigorous factors that could cause reduced service run times over the lifespan f 0.4 O 950 t i

n 0.2 920 kinetic engine can describe any reaction pathway, including PIONA-based of a coil. The cracking furnace unit considers reduced tube cross section, U 890 860 0.0 830 coke growth. Based on the detailed geometry input for both the radiant heat flux, and yield changes as coke is formed. Coke also causes 800 box and convection sections,Feed blending the Symmetry platformSimplified will calculate the an increase in pressure drop and metal tube temperatures, reducing convec�on Aluminum coa�ng effect product yields, radiant/convection heat transfer, andsec�on pressure drop. service time. Exhaust 25 0.35 This enables you to study and optimizeNaphtha the operation of cracking furnaces Propylene 0.3 Naphtha_I Feed_Preheat Ethylene accounting for continuousM_Feed coke formation across all furnace sections. 0.25 20 no coa�ng 0.2 BFW_Preheat Steam_Drum Naphtha_II Feed blending Simplified 0.15 BFW Blowdown 15 convec�on 0.1 Al coa�ng

MPreheat Coke Thickness [%] Set_Steam HP_Ssec�ontm Product 0.05 Steam Exhaust 25 Hot_BFW TLE 10 Naphtha_III M1 0 A(dh) PropyleneC10+ 0 5 10 15 20 25 30 35 40 45 NaSpuhpethr_aHeater A(dh) C9 Naphtha_I A C9 Service Time [%] Feed_Preheat Cracking EthyleneA C8 A C7 Coke growth kinetic model. M_Feed SHP furnace 5 A C6 Effluent_to_TLE 20 N C6 N C5 N C4 BFW_PrPerheehaetat N C3 Bridge_SWteaallm_Drum 0 O C5 O C4 Naphtha_II Rigorous 1 3 Blowdown 5 7 9 O C3 convec�on BFW ETH1 15 11 13 15 Tube Inlet 17 19 21 O C2 sec�on 23 25 27 P C2 Coke forma�on surface MPreheat 29 31 33 Set_Steam HP_Stm Product 35 37 P C1 ~Feed 39 41 43 45 temperature -18 C 47 49 H2 51 53 55 57 Steam 59 61 Hot_BFW 10 Naphtha_III M1 TLE Fuel_burner Tube Outlet A(dh) C10+ Super_Heater A(dh) C9 A C9 Cracking A C8 A C7 SHP furnace 5 Naphtha feed molecular profiles. A C6 Effluent_to_TLE N C6 N C5 N C4 Preheat N C3 Bridge_Wall 0 O C5 O C4 Rigorous 1 3 5 7 9 O C3 convec�on ETH1 11 13 15 Tube Inlet 17 19 21 O C2 sec�on 23 25 27 P C2 29 31 33 35 37 P C1 ~Feed 39 41 43 45 47 49 H2 51 53 55 57 59 61 Fuel_burner Tube Outlet Cracking furnace in a full simulation environment. Heat transfer model. Furnace Scheduling Total Ethylene Plant Model The Symmetry platform’s rigorous yield prediction and simultaneous heat The Symmetry platform’s comprehensive and user-friendly process simulator enables seamless integration between different processes; it can model transfer and coke growth solution enables optimization studies on cracking a complete ethylene plant in only one flowsheet. The use of rigorous thermodynamics enables proper hydrocarbon-water solubility trending in the quench furnace operation scheduling. section and also enables hydrate formation prediction in the cold-box section. Symmetry’ s rigorous yield predic�on and simultaneous solu�on of heat transfer and coke growth allows for op�miza�on studies on cracking furnace opera�on scheduling.

Ethane_Furnace_Count Furnace Count *22.00 [Fraction] S-g24

Ethane_Furnace_Count S-C22

9 9 9 9 9 9 9 Ethane

9 9 9 9 9 9 9 9 9 9 9 Mixed_Feed 1_C2-Furnace 9 9 9 9 1 1 1 1 1 1 1 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 Exhaust S-c33_C1 ------

1 1 1 1 Feed_Preheat 1 1 1 1 1

- - - - b b b b b b b S-g12 S-g16 - - - - - n n n n n n n n n n n ~S-g2 S-g4 S-g6 Sg-8 S-g10 S-g14 Run All S-c31 S-c30 b b b b e e e e e e e S2-c32 S-c29

n n n n n S-c22_H2 e e e e J a J a J a J a J a J a J a J a J a J a J a F F F F F F F BFW_Preheat M2

------S-C21 S-c20 S-c19 Steam_Drum E-g1 E-g2 E-g3 V3 J a J a J a J a J a F F F F

- - - - - 1 3 5 7 9 1 3 5 7 9 1 - - - - 0 2 4 6 8 0 2 Product BFW Blowdown CP3 C2_Furnaces CP1 CP2 CP4 S-c27 1 3 5 7 9 1 1 1 1 1 2 2 2 2 2 3 2 4 6 8 1 1 1 1 1 2 2 MPreheat S-g1 SC-9 Set_Steam S-g5 S-g13 S-c3 S-c4 S-c12 E-g4 S-c1 S-c8 S-c17 HP_Stm Sep-g1 Sep-g2 Sep-g3 Sep-g4 E2 Steam S-Q12 L-Drier E1 E1_2 Decocking COT Start Date Total Run Profits Super_Heater Hot_BFW TLE SQ-21 S-c6E1_1 S-c10 M1_1 S-g3 S-g11 S-c14 Furnace S-g15 E-c1 E-c2 E-c3 S-g7 S-g17 S-c16 Time [d] Offset [°C] Length [d] [units] SHP S-Q18 M1 SP3 Effluent S-g19 39 37929 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Preheat S-g18 Sep-g5 S-c5 S-c9 S-c13 Run C2 Furnace 13 0 1-Jan-19 DC Bridge_Wall S-g20 S-g23 S-c26 C2 C-Q2 Env1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SepLLV2 SRT4211 S-g21 Sep-c1 SQ-6 Sep-c2 Sep-c3 Sep-c4 Run C2-C3 Air S-Q20 13 -3 14-Jan-19 39 37561 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SQ-5 M5 C2-C3 Fuel Flame S-c18 Furnace Brn1 SQ-4 S-Q16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S-Q17 Sg-25 S-c15 S-c25 ~Hot_Feed Feed T4 ~S-Q10 S-Q19 S-c11 Run Naphtha 13 -6 27-Jan-19 39 14494 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S-c7 S-c24 DC ~SQ-1 T3 V1 S-Q15 SepLLV1 E-Q3 S-c2 M1_3 Naphtha M3 E-Q1 T1 S-Q13 Furnace Naphtha_Furnace_Count Mass Flow 18143.64 [ton(metric)/d] S-Q3 S-c23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Furnace Count *22.00 [Fraction] ~S-Q7 SP2

V-Drier Run Heavy Heavy- 13 -5 10-Feb-19 40 -961 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D0C 0 0 0 1 1 1 1 1 1 1 Naphtha_Furnace_Count S-Q14 S-Q13 Naphtha Furnace Naphtha Exhaust_1 E-q4 S-c28 Nap_Feed T-deC1 No. Unit Running 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Naphtha 1_Nap-Furnace Feed_Preheat_1 S-Q9 S-Q8 Nap_Furnaces T2 BFW_Preheat_1 Set2 Steam_Drum_1 Product_1 Blowdown_1 S-d8 BFW_1 Scheduling of cracking furnace operations. RXN HP_Stm_1 S-d13 S-d15 Set_Steam_1 MPreheat_1 RXN S-d14 S-d17 S-d4 S-d5 S-d6 S-d11 M4 CRx2 S-d1 M3_1 Steam_1 CRx1 Hot_BFW_1 TLE_1 E-d6 M1_2 Set1 E-d5 S-d18_CGP Super_Heater_1 S-d9_ETHYLENE S-d18_CGP S-d9_ETHYLENE C3= 95.50 [%] C2= 99.95 [%] SHP_1 0 [ppm] S-d2 S-d7 Effluent_to_TLE S-d16 Preheat_1 Bridge_Wall_1 T-deC2 Sd12_C4s Acet_TOP_Recov 100 [%] S-d19 S-d10 SW8 T-C2Splitter C3= 5.00 [%] S-d19 T-C3_Splitter S-d3 S-d12 S-d20 Fuel_burner C2== 6.9 [ppm] T-DC3 E-d7 ~Feed_1 S-d3 T-deC2 S-d25_C5s T-DeC5

Ethylene plant example. Symmetry Tailored workspaces—optimized facility

Process Software Platform Steam Cracking Furnaces

slb.com/symmetry

*Mark of Schlumberger Other company, product, and service names are the properties of their respective owners. Copyright © 2020 Schlumberger. All rights reserved. 19-IS-000003