7130.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
One-Month of High-Intensity Exercise Did Not Change the Food Intake And
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/ by-nc-nd/3.0), which permits copy and redistribute the material in any medium or format, provided the original work is properly cited. 8 ENDOCRINE REGULATIONS, Vol. 53, No. 1, 8–13, 2019 doi:10.2478/enr-2019-0002 One-month of high-intensity exercise did not change the food intake and the hypothalamic arcuate nucleus proopiomelanocortin and neuropeptide Y expression levels in male Wistar rats Nazli Khajehnasiri1, Homayoun Khazali2, Farzam Sheikhzadeh3, Mahnaz Ghowsi4 1Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran; 2Department of Animal Sciences and Biotechnology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran; 3Department of Animal Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 4Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran E-mail: [email protected] Objective. The hypothalamic arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) circuitries are involved in the inhibition and stimulation of the appetite, respectively. The aim of this study was to investigate the effects of one-month lasting high-intensity exercise on the POMC mRNA and NPY mRNA expression in the above-mentioned brain structure and appetite and food intake levels. Methods. Fourteen male Wistar rats (250±50 g) were used and kept in the well-controlled con- ditions (22±2 °C, 50±5% humidity, and 12 h dark/light cycle) with food and water ad libitum. The rats were divided into two groups (n=7): 1) control group (C, these rats served as controls) and 2) exercised group (RIE, these rats performed a high-intensity exercise for one month (5 days per week) 40 min daily with speed 35 m/min. -
CCK-8S) of Protein Phosphorylation in the Neostriatum (Forskonln/N-Methyl-D-Aspartic Acid/Glutamate) GRETCHEN L
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11277-11281, December 1993 Neurobiology Regulation by the neuropeptide cholecystokinin (CCK-8S) of protein phosphorylation in the neostriatum (forskonln/N-methyl-D-aspartic acid/glutamate) GRETCHEN L. SNYDER*, GILBERTO FISONE*, PATRIZIA MORINOt, VIDAR GUNDERSEN*, OLE PETTER OTTERSEN*, TOMAS HOKFELTt, AND PAUL GREENGARD*§ *Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021; tDepartment of Histology and Neurobiology, Karolinska Institute, S-10401, Stockholm, Sweden; and *Department of Anatomy, University of Oslo, Blindern, N-0317 Oslo, Norway Contributed by Tomas Hokfelt, August 16, 1993 ABSTRACT Despite physiological evidence that cholecys- rons, apparently through a mechanism that involves the tokinin (CCK) is an excitatory neurotransmitter in the brain, release of an excitatory neurotransmitter and activation of little is known about its mechanism of action. CCK immuno- NMDA receptors. reactivity in the brain, including projections to the striatum, is primarily attributable to the sulfated octapeptide CCK-8S. We report here that CCK-8S abolishes cAMP-dependent phos- MATERIALS AND METHODS phorylation ofa dopamine- and cAMP-regulated 32-kDa phos- Materials. RPMI 1640 balanced salt solution, bovine serum phoprotein (DARPP-32) in striatal neurons. The effect of albumin, and 3-isobutylmethylxanthine were obtained from CCK-8S is prevented by antagonists of CCKB and N-methyl- Sigma; forskolin was from Calbiochem; NMDA and (+)-MK- D-aspartate receptors. Our results support a model in which 801 hydrogen maleate (MK-801) were from Research Bio- CCK-8S, originating from CCK or CCK/glutamate cortico- chemicals; CCK-8S was from Bachem; CI-988 was from J. striatal neurons, promotes the release of an excitatory neuro- Hughes; cAMP, RIA, and ECL Western blotting detection transmitter that causes the dephosphorylation and inactivation kits were from Amersham; and goat anti-mouse horseradish of DARPP-32, a potent protein phosphatase inhibitor, thereby peroxidase-linked antibody was from Pierce. -
Dietary Fat Alters the Response of Hypothalamic Neuropeptide Y to Subsequent Energy Intake in Broiler Chickens Xiao J
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 607-614 doi:10.1242/jeb.143792 RESEARCH ARTICLE Dietary fat alters the response of hypothalamic neuropeptide Y to subsequent energy intake in broiler chickens Xiao J. Wang, Shao H. Xu, Lei Liu, Zhi G. Song, Hong C. Jiao and Hai Lin* ABSTRACT Several studies have shown that these hypothalamic neuropeptides Dietary fat affects appetite and appetite-related peptides in birds and are sensitive to body energy status and critical to whole-body mammals; however, the effect of dietary fat on appetite is still unclear metabolic adjustment. NPY reduces energy expenditure by in chickens faced with different energy statuses. Two experiments decreasing adipose tissue thermogenesis (Egawa et al., 1991; Patel were conducted to investigate the effects of dietary fat on food intake et al., 2006; Chao et al., 2011; Zhang et al., 2014). The obesity of and hypothalamic neuropeptides in chickens subjected to two ob/ob mice is attenuated when NPY is knocked out (Erickson et al., fi feeding states or two diets. In Experiment 1, chickens were fed a 1996; Segal-Lieberman et al., 2003). NPY de ciency attenuates high-fat (HF) or low-fat (LF) diet for 35 days, and then subjected to fed responses to a palatable high fat diet in mice (Hollopeter et al., 1998; (HF-fed, LF-fed) or fasted (HF-fasted, LF-fasted) conditions for 24 h. Patel et al., 2006). Animals in which POMC neurons have been In Experiment 2, chickens that were fed a HF or LF diet for 35 days knocked out are obese and hyperphagic (Butler and Cone, 2002; were fasted for 24 h and then re-fed with HF (HF-RHF, LF-RHF) or LF Mencarelli et al., 2012; Diané et al., 2014; Raffan et al., 2016). -
Neuropeptide Y in the Amygdala Induces Long-Term
The Journal of Neuroscience, January 23, 2008 • 28(4):893–903 • 893 Behavioral/Systems/Cognitive Neuropeptide Y in the Amygdala Induces Long-Term Resilience to Stress-Induced Reductions in Social Responses But Not Hypothalamic–Adrenal–Pituitary Axis Activity or Hyperthermia Tammy J. Sajdyk,1 Philip L. Johnson,1 Randy J. Leitermann,3 Stephanie D. Fitz,1 Amy Dietrich,1 Michelle Morin,2 Donald R. Gehlert,2 Janice H. Urban,3 and Anantha Shekhar1 1Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana 46202, 2Eli Lilly, Indianapolis, Indiana 46201, and 3Department of Physiology and Biophysics and Interdepartmental Neurosciences Program, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064 Resilience to mental and physical stress is a key determinant for the survival and functioning of mammals. Although the importance of stress resilience has been recognized, the underlying neural mediators have not yet been identified. Neuropeptide Y (NPY) is a peptide known for its anti-anxiety-like effects mediated via the amygdala. The results of our current study demonstrate, for the first time that repeated administration of NPY directly into the basolateral nucleus of the amygdala (BLA) produces selective stress-resilient behavioral responses to an acute restraint challenge as measured in the social interaction test, but has no effect on hypothalamic–adrenal–pituitary axisactivityorstress-inducedhyperthermia.Moreimportantly,theresilientbehaviorsobservedintheNPY-treatedanimalswerepresent for up to 8 weeks. Antagonizing the activity of calcineurin, a protein phosphatase involved in neuronal remodeling and present in NPY receptor containing neurons within the BLA, blocked the development of long-term, but not the acute increases in social interaction responses induced by NPY administration. -
Neuropeptides Controlling Energy Balance: Orexins and Neuromedins
Neuropeptides Controlling Energy Balance: Orexins and Neuromedins Joshua P. Nixon, Catherine M. Kotz, Colleen M. Novak, Charles J. Billington, and Jennifer A. Teske Contents 1 Brain Orexins and Energy Balance ....................................................... 79 1.1 Orexin............................................................................... 79 2 Orexin and Feeding ....................................................................... 80 3 Orexin and Arousal ....................................................................... 83 J.P. Nixon • J.A. Teske Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA C.M. Kotz (*) Veterans Affairs Medical Center, GRECC (11 G), Minneapolis, MN, USA Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA e-mail: [email protected] C.M. Novak Department of Biological Sciences, Kent State University, Kent, OH, USA C.J. Billington Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Veterans Affairs Medical Center, Endocrine Unit (111 G), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA H.-G. Joost (ed.), Appetite Control, Handbook of Experimental Pharmacology 209, 77 DOI 10.1007/978-3-642-24716-3_4, # Springer-Verlag Berlin Heidelberg 2012 78 J.P. Nixon et al. 4 Orexin Actions on Endocrine and Autonomic Systems ................................. 84 5 Orexin, Physical Activity, and Energy Expenditure .................................... -
Evolution of the Neuropeptide Y and Opioid Systems and Their Genomic
It's time to try Defying gravity I think I'll try Defying gravity And you can't pull me down Wicked List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Sundström G, Larsson TA, Brenner S, Venkatesh B, Larham- mar D. (2008) Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. General and Comparative Endocrinology Feb 1;155(3):705-16. II Sundström G, Larsson TA, Xu B, Heldin J, Lundell I, Lar- hammar D. (2010) Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a and Y8b. Manuscript III Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D. (2010) Characterization of the neuropeptide Y system's three peptides and six receptors in the frog Silurana tropicalis. Manu- script IV Dreborg S, Sundström G, Larsson TA, Larhammar D. (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA Oct 7;105(40):15487-92. V Sundström G, Dreborg S, Larhammar D. (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One May 6;5(5):e10512. VI Sundström G, Larsson TA, Larhammar D. (2008) Phylogenet- ic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology Sep 19;8:254. VII Widmark J, Sundström G, Ocampo Daza D, Larhammar D. (2010) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. -
Rfamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential
Pharmaceuticals 2011, 4, 1248-1280; doi:10.3390/ph4091248 OPEN ACCESS Pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential Maria Findeisen †, Daniel Rathmann † and Annette G. Beck-Sickinger * Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; E-Mails: [email protected] (M.F.); [email protected] (D.R.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-341-9736900; Fax: +49-341-9736909. Received: 29 August 2011; in revised form: 9 September 2011 / Accepted: 15 September 2011 / Published: 21 September 2011 Abstract: Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. -
Calcitonin Gene-Related Peptide and Other Peptides
P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-16 Olesen- 2057G GRBT050-Olesen-v6.cls July 9, 2005 4:30 ••Chapter 16 ◗ Calcitonin Gene-Related Peptide and Other Peptides Susan Brain and Lars Edvinsson Vasoactive peptides can be either stored or synthesized de THE CGRP FAMILY OF PEPTIDES novo before release from a range of tissues in the brain or from the walls of intracranial vasculature. In this chapter, The expression of mRNA from the calcitonin gene is tissue we concentrate on neuropeptides that are released from specific in that CGRP mRNA is predominantly expressed perivascular nerves. These include calcitonin gene-related in nerves and calcitonin mRNA in the thyroid (5). The 37 peptide (CGRP), substance P, neurokinin A, nociceptin, amino acid peptide CGRP belongs to a family that include somatostatin, and opioids (Table 16-1). The endothelium the more recently discovered peptides adrenomedullin produces the potent vasoconstrictors endothelin and an- that is primarily produced by non-neuronal tissues, espe- giotensin, and dilators such as nitric oxide, prostacyclin, cially vascular tissues and amylin that is mainly produced and endothelium-derived hyperpolarizing factors. In ad- in the pancreas. They share some structural homology (ap- dition there are circulating agents; among these the most proximately 25–40%) and also some, but not total, similar- potent is 5-hydroxytryptamine. The neuronal messengers ities in biological activities (see Brain and Grant [11] for stored in the intracranial vessels have been reviewed recent review). CGRP is abundant in the body and has a (32) and it was revealed that sympathetic nerves store wide distribution throughout the central and peripheral noradrenaline, neuropeptide Y, and ATP, the parasympa- nervous systems. -
Co-Regulation of Hormone Receptors, Neuropeptides, and Steroidogenic Enzymes 2 Across the Vertebrate Social Behavior Network 3 4 Brent M
bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Co-regulation of hormone receptors, neuropeptides, and steroidogenic enzymes 2 across the vertebrate social behavior network 3 4 Brent M. Horton1, T. Brandt Ryder2, Ignacio T. Moore3, Christopher N. 5 Balakrishnan4,* 6 1Millersville University, Department of Biology 7 2Smithsonian Conservation Biology Institute, Migratory Bird Center 8 3Virginia Tech, Department of Biological Sciences 9 4East Carolina University, Department of Biology 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running Title: Gene expression in the social behavior network 2 Keywords: dominance, systems biology, songbird, territoriality, genome 3 Corresponding Author: 4 Christopher Balakrishnan 5 East Carolina University 6 Department of Biology 7 Howell Science Complex 8 Greenville, NC, USA 27858 9 [email protected] 10 2 bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward. -
The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons. -
Stress Susceptibility-Specific Phenotype Associated with Different
Lisowski et al. BMC Neuroscience 2013, 14:144 http://www.biomedcentral.com/1471-2202/14/144 RESEARCH ARTICLE Open Access Stress susceptibility-specific phenotype associated with different hippocampal transcriptomic responses to chronic tricyclic antidepressant treatment in mice Pawel Lisowski1*, Grzegorz R Juszczak2, Joanna Goscik3, Adrian M Stankiewicz2, Marek Wieczorek4, Lech Zwierzchowski1 and Artur H Swiergiel5,6 Abstract Background: The effects of chronic treatment with tricyclic antidepressant (desipramine, DMI) on the hippocampal transcriptome in mice displaying high and low swim stress-induced analgesia (HA and LA lines) were studied. These mice displayed different depression-like behavioral responses to DMI: stress-sensitive HA animals responded to DMI, while LA animals did not. Results: To investigate the effects of DMI treatment on gene expression profiling, whole-genome Illumina Expres- sion BeadChip arrays and qPCR were used. Total RNA isolated from hippocampi was used. Expression profiling was then performed and data were analyzed bioinformatically to assess the influence of stress susceptibility-specific phe- notypes on hippocampal transcriptomic responses to chronic DMI. DMI treatment affected the expression of 71 genes in HA mice and 41 genes in LA mice. We observed the upregulation of Igf2 and the genes involved in neuro- genesis (HA: Sema3f, Ntng1, Gbx2, Efna5, and Rora; LA: Otx2, Rarb, and Drd1a) in both mouse lines. In HA mice, we observed the upregulation of genes involved in neurotransmitter transport, the termination of GABA and glycine ac- tivity (Slc6a11, Slc6a9), glutamate uptake (Slc17a6), and the downregulation of neuropeptide Y (Npy) and cortico- tropin releasing hormone-binding protein (Crhbp). In LA mice, we also observed the upregulation of other genes involved in neuroprotection (Ttr, Igfbp2, Prlr) and the downregulation of genes involved in calcium signaling and ion binding (Adcy1, Cckbr, Myl4, Slu7, Scrp1, Zfp330).