Diversity of the Rfamide Peptide Family in Mollusks Céline Zatylny-Gaudin, Pascal Favrel

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of the Rfamide Peptide Family in Mollusks Céline Zatylny-Gaudin, Pascal Favrel Diversity of the RFamide Peptide Family in Mollusks Céline Zatylny-Gaudin, Pascal Favrel To cite this version: Céline Zatylny-Gaudin, Pascal Favrel. Diversity of the RFamide Peptide Family in Mollusks. Frontiers in Endocrinology, Frontiers, 2014, 5, 10.3389/fendo.2014.00178. hal-02154046 HAL Id: hal-02154046 https://hal.archives-ouvertes.fr/hal-02154046 Submitted on 12 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW ARTICLE published: 24 October 2014 doi: 10.3389/fendo.2014.00178 Diversity of the RFamide peptide family in mollusks 1,2,3,4,5 1,2,3,4,5 Celine Zatylny-Gaudin and Pascal Favrel * 1 Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France 2 Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France 3 Université Pierre et Marie Curie, BOREA, Paris, France 4 UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France 5 IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France Edited by: Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve Karine Rousseau, Muséum National mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have d’Histoire Naturelle, France been identified in mollusks. FLPs were initially isolated and molecularly characterized in Reviewed by: Dick R. Nässel, Stockholm University, model mollusks using biochemical methods. The development of recombinant technolo- Sweden gies and, more recently, of genomics has boosted knowledge on their diversity in various Jan Adrianus Veenstra, Université de mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide pep- Bordeaux, France tides that appear to result from the expression of only five genes: the FMRFamide-related *Correspondence: peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the chole- Pascal Favrel, Université de Caen Basse-Normandie, Esplanade de la cystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression Paix, CS 14032, Caen Cedex 5 14032, in the central and peripheral nervous system. Working as neurotransmitters, neuromodu- France lators, or neurohormones, FLPs are involved in the control of a great variety of biological e-mail: [email protected] and physiological processes including cardiovascular regulation, osmoregulation, reproduc- tion, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling path- ways by characterizing the specific receptors these peptides bind remains another exciting objective. Keywords: FaRPs, LFRFamide, luqin, NPF, CCK/SK, mollusks INTRODUCTION mollusks. Initial studies essentially concerned immunocytochem- Mollusks exhibit great morphological diversity. They have adapted ical screening of mollusk tissues with antibodies raised against to marine, freshwater, and terrestrial habitats. They have distinct the tetrapeptide FMRFamide. Then, with the refinement of pep- reproductive strategies; some species are gonochoric, simulta- tide purification and sequencing methodologies,many new related neous hermaphrodite, or alternative hermaphrodite. The phy- peptides were discovered. By rendering the structure of the precur- lum Mollusca is divided into eight classes (1): Monopla- sors encoding this family of peptides accessible, the development cophora (Neopilina), Polyplacophora (chitons), Bivalvia (clams, of recombinant technology has progressively extended knowledge oysters, mussels), Gastropoda (snails, slugs), Aplacophora (worm- about the diversity of FLPs. Knowledge includes FMRFamide- like mollusks), Cephalopoda (squid, cuttlefish, octopus), and related peptides (FaRPs) and other RFamide peptides, especially in Scaphopoda (tusk shells). Neuropeptides play a crucial neuro- mollusks where purification was difficult for anatomical reasons transmitter, neuromodulator, or neurohormone role in the elab- (Figure 1). oration of adapted physiological and behavioral responses to In addition to mollusks (6), the FLP family has been extensively environmental constraints. As a result, phylogenetic distances, described in all major animal phyla, from cnidarians to mammals together with body plan and physiological behavior diversity (7, 8), and are involved in the regulation of a great variety of probably reflect differences in the composition of mollusks’ neu- physiological processes (9–12). With the advent of the genomics ropeptide record and their pattern of expression. The relatively era, bioinformatics analyses of transcriptome and genome data- simple central nervous system (CNS) of the gastropod mollusks bases now clearly suggest that the high diversity of RFamide pep- Aplysia californica and Lymnaea stagnalis, with large identified tides in mollusks results from the expression of only five distinct neurons, has made them the most widely studied species for genes: the FMRF gene, the LFRFamide gene, the luqin gene, the deciphering the role of neuropeptides in the control of physio- neuropeptide F (NPF) gene, and the cholecystokinin/sulfakinin logical processes and behaviors (2–4). In mollusks, among the (CCK/SK)-related gene (Figure 1). multiplicity of neuropeptides, the cardioexcitatory neuropeptide FMRFamide was first isolated in the clam Macrocallista nimbosa THE FMRF GENE CODES FOR A DIVERSITY OF (5). So far, FMRFamide along with its structurally related neu- FMRFamide-RELATED PEPTIDES ropeptides or FMRFamide-like peptides (FLPs) that display vary- Since the discovery of the FMRFamide, a cardioactive neuropep- ing sizes but harbor the common C-terminal RFamide sequence tide in the clam M. nimbosa (5), an increasing number of studies probably represent the best investigated family of neuropeptides in has demonstrated the presence of this peptide and related peptides www.frontiersin.org October 2014 | Volume 5 | Article 178 | 1 Zatylny-Gaudin and Favrel Molluscan FMRFamide-like peptides Detecon FLPs Chordata Deuterostomia I P T G Echinodermata Monoplacophora LFRFa Luqin NPF CCK/SK Bilateria FaRPs Ecdysozoa Protostomia Polyplacophora Lophotrochozoa Bivalvia Gastropoda Mollusca Aplacophora Cephalopoda Lophotrochozoa Scaphopoda Annelida FIGURE 1 | Phylogenic tree of mollusks based on Stöger et al. (1). The occurrence of the different FMRFamide-like peptides (FLPs) in each class is detailed. Fa, FMRFa-related peptides or FaRPs; Lr, LFRFamide peptides; Lu, Luqin; Np, NPF; Cck, cholecystokinin-/sulfakinin-like peptides. The methodologies used for FLPs detection are indicated: I, immunohistochemistry; P,peptide identification; T, transcript characterization; G, genome. (FaRPs) in other mollusks (Table 1) and other protostomes [for the visceral loop, and the buccal nerve cords in scaphodod larvae reviews, see Ref. (6, 8)]. (38). However, the use of FMRFamide antisera recognizing the Immunohistochemistry assays using an anti-FMRFamide antigenic major determinant RFamide likely covers the detection serum have evidenced the expression of a diversity of RFamide- of different sets of peptides. like peptides in the five classes of mollusks through a variety of Different FLPs including FaRPs have been characterized by nervous structures and peripheral tissues. After the initial stud- HPLC separation and amino acid sequencing by Edman degra- ies demonstrating the widespread distribution of FMRF-amide dation. Besides the tetrapeptide identified in several gastropod or immunoreactivity in perikarya and nerve fibers in the central cephalopod species, other peptides defined as FaRPs have been and peripheral nervous system of the pond snail L. stagnalis described; FaRPs include all the peptides with the C-terminal con- (29, 30), presence of FMRFamide immunoreactivity was inves- sensus sequence X1×2RFamide where X1 is an aromatic amino tigated in a significant collection of mollusks. In the bivalve acid Phenylalanine (F), Tryptophane (W), or Tyrosine (Y) and Placopecten magellanicus, immunoreactivity was not only con- X2 a hybrophobic amino acid Phenylalanine (F), Methionine centrated in the cerebral, pedal, and parietovisceral ganglia but (M), Isoleucine (I), or Leucine (L) (39). Thus, the pentapeptides was also equally localized in the peripheral organs, including the AFLRFamide and TFLRFamide were identified from immunore- gut and gills of juveniles and adults (31). In Dreissena polymor- active fractions of Octopus vulgaris vena cava (14). The hep- pha, immunoreactivity was observed in all nervous ganglia and tapeptides SDPFLRFamide and GDPFLRFamide were identified in the neuromuscular system associated to the siphon and mantle from immunoreactive fractions in L. stagnalis (40) but also in H. (32). In the gastropod Helix aspersa, immunoreactivity revealed aspersa where other heptapeptides (pQDPFLRFamide, NDPYL- a highly developed peripheral nervous system where nerves con- RFamide,
Recommended publications
  • Regulation of the Gastrin Promoter by Epidermal Growth Factor and Neuropeptides JUANITA M
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 3036-3040, May 1989 Biochemistry Regulation of the gastrin promoter by epidermal growth factor and neuropeptides JUANITA M. GODLEY AND STEPHEN J. BRAND Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114 Communicated by Kurt J. Isselbacher, December 30, 1988 ABSTRACT The regulation of gastrin gene transcription gastrin secretion (12, 13), the effect of GRP on gastrin gene was studied in GH4 pituitary cells transfected with constructs expression has not been reported. Antral G cells are also comprised of the first exon of the human gastrin gene and inhibited by the paracrine release of somatostatin from various lengths of 5' regulatory sequences ligated upstream of adjacent antral D cells (14), and local release of somatostatin the reporter gene chloramphenicol acetyltransferase. Gastrin inhibits gastrin gene expression as well as gastrin secretion reporter gene activity in GH4 cells was equal to the activity of (15). a reporter gene transcribed from the endogenously expressed In contrast to the detailed studies on gastrin secretion, the growth hormone promoter. The effect of a variety of peptides regulation of gastrin gene expression has not been well on gastrin gene transcription including epidermal growth investigated. The cellular mechanisms controlling gastrin factor (normally present in the gastric lumen), gastrin- secretion have been analyzed using isolated primary G cells releasing peptide, vasoactive intestinal peptide, and somato- (12, 13); however, the limited viability of these cells has statin (present in gastric nerves) was assessed. Epidermal precluded their use in studying the regulation of gastrin gene growth factor increased the rate ofgastrin transcription almost transcription using DNA transfection techniques.
    [Show full text]
  • A Comparative Survey of the RF-Amide Peptide Superfamily
    EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP.
    [Show full text]
  • Adrenocorticotrophic and Melanocyte-Stimulating Peptides in the Human Pituitary by ALEXANDER P
    Biochem. J. (1974) 139, 593-602 593 Printed in Great Britain Adrenocorticotrophic and Melanocyte-Stimulating Peptides in the Human Pituitary By ALEXANDER P. SCOTT and PHILIP J. LOWRY* Department ofChemical Pathology, St. Bartholomew's Hospital, London EC1A 7BE, U.K. and CIBA Laboratories, Horsham, Sussex RH12 4AB, U.K. (Received 7 December 1973) The adrenocorticotrophic and melanocyte-stimulating peptides of the human pituitary were investigated by means of radioimmunoassay, bioassay and physicochemical pro- cedures. Substantial amounts of adrenocorticotrophin and a peptide resembling /8-lipotrophin were identified in pituitary extracts, but a-melanocyte-stimulating hormone, ,B-melanocyte-stimulating hormone and corticotrophin-like intermediate lobe peptide, which have been identified in thepars intermedia ofpituitaries from other vertebrates, were not found. The absence of fJ-melanocyte-stimulating hormone appears to contradict previous chemical and radioimmunological studies. Our results suggest, however, that it is not a natural pituitary peptide but an artefact formed by enzymic degradation of ,6-lipotrophin during extraction. Melanocyte-stimulating and corticotrophic pep- extraction of human pituitaries for growth hormone tides have been identified in the pituitaries of all (Dixon, 1960). Its stucture was determined by Harris vertebrate species studied, and several have been (1959) and shown to be similar to ,B-MSH isolated isolated and characterized. They belong to two from other species, except for the presence of an structually related classes, namely those related to extra four amino acids at the N-terminus. The adrenocorticotrophin (ACTH) including ACTH, presence of sufficient amounts of 8-MSH in human a-melanocyte-stimulating hormone (a-MSH) and pituitaries to account alone for the bulk of the 'corticotrophin-like intermediate lobepeptide' ACTH melanocyte-stimulating activity in the pituitary (18-39) peptide (CLIP), and others related to fi- extracts was shown by radioimmunoassay (Abe et al., melanocyte-stimulating hormone (,B-MSH) including 1967b).
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • CCK-8S) of Protein Phosphorylation in the Neostriatum (Forskonln/N-Methyl-D-Aspartic Acid/Glutamate) GRETCHEN L
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11277-11281, December 1993 Neurobiology Regulation by the neuropeptide cholecystokinin (CCK-8S) of protein phosphorylation in the neostriatum (forskonln/N-methyl-D-aspartic acid/glutamate) GRETCHEN L. SNYDER*, GILBERTO FISONE*, PATRIZIA MORINOt, VIDAR GUNDERSEN*, OLE PETTER OTTERSEN*, TOMAS HOKFELTt, AND PAUL GREENGARD*§ *Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021; tDepartment of Histology and Neurobiology, Karolinska Institute, S-10401, Stockholm, Sweden; and *Department of Anatomy, University of Oslo, Blindern, N-0317 Oslo, Norway Contributed by Tomas Hokfelt, August 16, 1993 ABSTRACT Despite physiological evidence that cholecys- rons, apparently through a mechanism that involves the tokinin (CCK) is an excitatory neurotransmitter in the brain, release of an excitatory neurotransmitter and activation of little is known about its mechanism of action. CCK immuno- NMDA receptors. reactivity in the brain, including projections to the striatum, is primarily attributable to the sulfated octapeptide CCK-8S. We report here that CCK-8S abolishes cAMP-dependent phos- MATERIALS AND METHODS phorylation ofa dopamine- and cAMP-regulated 32-kDa phos- Materials. RPMI 1640 balanced salt solution, bovine serum phoprotein (DARPP-32) in striatal neurons. The effect of albumin, and 3-isobutylmethylxanthine were obtained from CCK-8S is prevented by antagonists of CCKB and N-methyl- Sigma; forskolin was from Calbiochem; NMDA and (+)-MK- D-aspartate receptors. Our results support a model in which 801 hydrogen maleate (MK-801) were from Research Bio- CCK-8S, originating from CCK or CCK/glutamate cortico- chemicals; CCK-8S was from Bachem; CI-988 was from J. striatal neurons, promotes the release of an excitatory neuro- Hughes; cAMP, RIA, and ECL Western blotting detection transmitter that causes the dephosphorylation and inactivation kits were from Amersham; and goat anti-mouse horseradish of DARPP-32, a potent protein phosphatase inhibitor, thereby peroxidase-linked antibody was from Pierce.
    [Show full text]
  • Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells
    Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. M Schalling, … , T Hökfelt, J F Rehfeld J Clin Invest. 1990;86(2):660-669. https://doi.org/10.1172/JCI114758. Research Article In previous studies we have shown that the gene encoding cholecystokinin (CCK) is expressed in spermatogenic cells of several mammalian species. In the present study we show that a gene homologous to the CCK-related hormone, gastrin, is expressed in the human testis. The mRNA hybridizing to a human gastrin cDNA probe in the human testis was of the same size (0.7 kb) as gastrin mRNA in the human antrum. By in situ hybridization the gastrinlike mRNA was localized to seminiferous tubules. Immunocytochemical staining of human testis revealed gastrinlike peptides in the seminiferous tubules primarily at a position corresponding to spermatids and spermatozoa. In ejaculated spermatozoa gastrinlike immunoreactivity was localized to the acrosome. Acrosomal localization could also be shown in spermatids with electron microscopy. Extracts of the human testis contained significant amounts of progastrin, but no bioactive amidated gastrins. In contrast, ejaculated sperm contained mature carboxyamidated gastrin 34 and gastrin 17. The concentration of gastrin in ejaculated human spermatozoa varied considerably between individuals. We suggest that amidated gastrin (in humans) and CCK (in other mammals) are released during the acrosome reaction and that they may be important for fertilization. Find the latest version: https://jci.me/114758/pdf Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells Martin Schalling,* Hhkan Persson,t Markku Pelto-Huikko,*9 Lars Odum,1I Peter Ekman,I Christer Gottlieb,** Tomas Hokfelt,* and Jens F.
    [Show full text]
  • Supplementary Table 1. Clinico-Pathologic Features of Patients with Pancreatic Neuroendocrine Tumors Associated with Cushing’S Syndrome
    Supplementary Table 1. Clinico-pathologic features of patients with pancreatic neuroendocrine tumors associated with Cushing’s syndrome. Review of the English/Spanish literature. Other hormones Age of Cortisol Other hormones Other ACTH Size (ICH or assay) ENETS Follow- Time Year Author Sex CS onset level (Blood syndromes or Site MET Type AH level (cm) corticotrophic Stage up (months) (years) (µg/dl) detection) NF other differentiation 1 1 1946 Crooke F 28 uk uk none no 4.5 H liver/peritoneum NET uk uk yes IV DOD 6 2 1956 Rosenberg 2 F 40 uk 92 none no 10 B liver NET uk uk yes IV PD 3 & p 3 1959 Balls F 36 uk elevated insulin Insulinoma 20 B liver/LNl/lung NET uk uk yes IV DOD 1 4 & 4 1962 Meador F 47 13~ elevated none no uk T liver/spleen NET ACTH uk yes IV uk 5 1963 Liddle5 uk uk uk elevated uk uk uk uk uk NET ACTH uk uk uk uk 6 1964 Hallwright6 F 32 uk uk none no large H LN/liver NET ACTH, MSH uk yes IV DOD 24 7 1965 Marks7 M 43 uk elevated insulin insulinomas 1.8 T liver NET uk uk yes IV DOD 7 8 1965 Sayle8 F 62 uk uk none carcinoidb 4 H LN/liver NET uk uk yes IV DOD 6 9 1965 Sayle8 F 15 uk uk none no 4 T no NET ACTH uk yes IIa DOD 5 9 b mesentery/ 10 1965 Geokas M 59 uk uk gastrin ZES large T NET uk uk yes IV DOD 2 LN/pleural/bone 11 1965 Law10 F 35 1.2 ∞ 91 gastrin ZESs uk B LN/liver NET ACTH, MSH gastrin yes IV PD 12 1967 Burkinshaw11 M 2 uk 72 none no large T no NET uk uk no uk AFD 12 13 1968 Uei12 F 9 uk uk none ZESs 7 T liver NET ACTH uk yes IV DOD 8 13 PTH, ADH, b gastrin, 14 1968 O'Neal F 52 13~ uk ZES uk T LN/liver/bone NET
    [Show full text]
  • TRH-Like Peptides
    Physiol. Res. 60: 207-215, 2011 https://doi.org/10.33549/physiolres.932075 REVIEW TRH-Like Peptides R. BÍLEK1, M. BIČÍKOVÁ1, L. ŠAFAŘÍK2 1Institute of Endocrinology, Prague, Czech Republic, 2Urology Clinic, Beroun, Czech Republic Received September 6, 2010 Accepted October 8, 2010 On-line November 29, 2010 Summary of the leaders working in the area concerning the TRH TRH-like peptides are characterized by substitution of basic research was Professor V. Schreiber from Prague, Czech amino acid histidine (related to authentic TRH) with neutral or Republic, which already in 1959 formulated the acidic amino acid, like glutamic acid, phenylalanine, glutamine, hypothesis that adenohypophyseal acid phosphatase is tyrosine, leucin, valin, aspartic acid and asparagine. The related to thyrotropin secretion and that TRH is its presence of extrahypothalamic TRH-like peptides was reported in possible activator (Schreiber and Kmentova 1959, peripheral tissues including gastrointestinal tract, placenta, neural Schreiber et al. 1962). TRH precursor, human prepro- tissues, male reproductive system and certain endocrine tissues. TRH, consists of 242 amino acid residues, and contains Work deals with the biological function of TRH-like peptides in six separate copies of the TRH progenitor sequence different parts of organisms where various mechanisms may (Satoh and Mori 1994), which determine the primary serve for realisation of biological function of TRH-like peptides as structure of TRH as a tripeptide pyroglutamyl-histidinyl- negative feedback to the pituitary exerted by the TRH-like proline amide. The transcriptional unit of prepro-TRH is peptides, the role of pEEPam such as fertilization-promoting localized on chromosome 3 in humans (three exons peptide, the mechanism influencing the proliferative ability of interrupted by two introns) (Yamada et al.
    [Show full text]
  • Peptide Handbook a Guide to Peptide Design and Applications in Biomedical Research
    Peptide Handbook A Guide to Peptide Design and Applications in Biomedical Research First Edition www.GenScript.com GenScript USA Inc. 860 Centennial Ave. Piscataway, NJ 08854 USA Phone: 1-732-885-9188 Toll-Free: 1-877-436-7274 Fax: 1-732-885-5878 Table of Contents The Universe of Peptides Reliable Synthesis of High-Quality Peptides Molecular structure 3 by GenScript Characteristics 5 Categories and biological functions 8 Analytical methods 10 Application of Peptides Research in structural biology 12 Research in disease pathogenesis 12 Generating antibodies 13 FlexPeptideTM Peptide Synthesis Platform which takes advantage of the latest Vaccine development 14 peptide synthesis technologies generates a large capacity for the quick Drug discovery and development 15 synthesis of high-quality peptides in a variety of lengths, quantities, purities Immunotherapy 17 and modifications. Cell penetration-based applications 18 Anti-microorganisms applications 19 Total Quality Management System based on multiple rounds of MS and HPLC Tissue engineering and regenerative medicine 20 analyses during and after peptide synthesis ensures the synthesis of Cosmetics 21 high-quality peptides free of contaminants, and provides reports on peptide Food industry 21 solubility, quality and content. Synthesis of Peptides Diverse Delivery Options help customers plan their peptide-based research Chemical synthesis 23 according to their time schedule and with peace of mind. Microwave-assisted technology 24 ArgonShield™ Packing eliminates the experimental variation caused by Ligation technology 26 oxidization and deliquescence of custom peptides through an innovative Recombinant technology 28 Modifications packing and delivery technology. 28 Purification 30 Expert Support offered by Ph.D.-level scientists guides customers from Product identity and quality control 31 peptide design and synthesis to reconstitution and application.
    [Show full text]
  • Effect of Atropine on Vagal Release of Gastrin and Pancreatic Polypeptide
    Effect of Atropine on Vagal Release of Gastrin and Pancreatic Polypeptide MARK FELDMAN, CHARLES T. RICHARDSON, IAN L. TAYLOR, and JOHN H. WALSH, Departments of Internal Medicine, Veterans Administration Hospital, Dallas, Texas 75216; University of California at Los Angeles Health Science Center, Los Angeles, California 90093; and The University of Texas Health Science Center at Dallas, Southwestern Medical School, Dallas, Texas 75235 A B S TRA C T We studied the effect of several doses of the rise in serum gastrin concentration induced by in- atropine on the serum gastrin and pancreatic poly- sulin hypoglycemia was further increased by atropine peptide responses to vagal stimulation in healthy premedication (1). In addition, several workers have human subjects. Vagal stimulation was induced by shown that atropine increases the serum gastrin con- sham feeding. To eliminate the effect of gastric acidity centration after an eaten meal (2-4). These observa- on gastrin release, gastric pH was held constant (pH 5) tions, together with the fact that basal and postprandial and acid secretion was measured by intragastric titra- gastrin levels rise after vagotomy (5-7), have led to tion. Although a small dose of atropine (2.3 ,ug/kg) speculation that the vagus nerve can inhibit, as well as significantly inhibited the acid secretory response and stimulate, gastrin release. completely abolished the pancreatic polypeptide re- For several reasons, however, none of these observa- sponse to sham feeding, this dose of atropine signifi- tions proves that the vagus nerve actually inhibits cantly enhanced the gastrin response. Higher atropine gastrin release under normal circumstances. First, doses (7.0 and 21.0,g/kg) had effects on gastrin and studies using insulin hypoglycemia as a vagal stimulant pancreatic polypeptide release which were similar to must be interpreted with caution because there is the 2.3-pAg/kg dose.
    [Show full text]
  • Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: a Pilot Dose-Ranging Study
    nutrients Article Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: A Pilot Dose-Ranging Study Anne Christin Meyer-Gerspach 1,2,* , Jürgen Drewe 3, Wout Verbeure 4 , Carel W. le Roux 5, Ludmilla Dellatorre-Teixeira 5, Jens F. Rehfeld 6, Jens J. Holst 7 , Bolette Hartmann 7, Jan Tack 4, Ralph Peterli 8, Christoph Beglinger 1,2 and Bettina K. Wölnerhanssen 1,2,* 1 St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; [email protected] 2 Faculty of Medicine, University of Basel, 4001 Basel, Switzerland 3 Department of Clinical Pharmacology and Toxicology, University Hospital of Basel, 4001 Basel, Switzerland; [email protected] 4 Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, 3000 Leuven, Belgium; [email protected] (W.V.); [email protected] (J.T.) 5 Diabetes Complications Research Centre, Conway Institute University College Dublin, 3444 Dublin, Ireland; [email protected] (C.W.l.R.); [email protected] (L.D.-T.) 6 Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; [email protected] 7 Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; [email protected] (J.J.H.); [email protected] (B.H.) 8 Department of Surgery, Clarunis, St. Claraspital, 4002 Basel, Switzerland; [email protected] * Correspondence: [email protected] (A.C.M.-G.); [email protected] (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G.
    [Show full text]
  • A Mon Cher Papa Et Ma Chère Maman, a Mes Sœurs, Ghania, Dalila Et Kaissa, a Mes Frères Smaïl Et Khaled, a Ma Tante Marie-Jo Et Mon Oncle Mohand, Qui Me Sont Chers…
    A mon cher Papa et ma chère Maman, A mes sœurs, Ghania, Dalila et Kaissa, A mes frères Smaïl et Khaled, A ma tante Marie-Jo et mon oncle Mohand, Qui me sont chers… Ce travail a été réalisé au Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine (DC2N), Inserm 1239, dirigé par le Docteur Youssef Anouar sous la direction du Docteur Jérôme Leprince. Je tiens à remercier la Région Normandie pour l’aide financière qui m’a été octroyée durant la préparation de ma thèse de doctorat, ce qui m'a permis de l’effectuer dans les meilleures conditions. Ce travail n’aurait pas pu être conduit à son terme sans l’aide généreuse de plusieurs organismes : - L’institut National de la Santé et de la Recherche Médicale (INSERM) - L’Université de Rouen-Normandie - L’Institut de Recherche et de l’’Innovation Biomédicale (IRIB) - La Plate-Forme Régionale de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN) Monsieur le Dr Frédéric Bihel, Chargé de Recherche CNRS, me fait l’honneur d’être Rapporteur de ce travail. Mesurant pleinement la faveur qu’il m’accorde, je tiens à lui témoigner l’expression de mon profond respect. Monsieur le Dr Xavier Iturrioz, Chargé de Recherche INSERM, a accepté la charge d’être Rapporteur de ce mémoire. Je tiens à le remercier très sincèrement de l’intérêt qu’il témoigne ainsi à nos recherches. Monsieur le Dr Nicolas Chartrel, Directeur de Recherche INSERM, a accepté de participer à ce jury. Je le remercie très sincèrement de l’intérêt qu’il manifeste pour ces travaux.
    [Show full text]